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2 Features
This section summarizes features of the MPC7448 implementation.

Major features of the MPC7448 are as follows:

• High-performance, superscalar microprocessor

— Up to four instructions can be fetched from the instruction cache at a time.

— Up to three instructions plus a branch instruction can be dispatched to the issue queues at a 
time.

— Up to 12 instructions can be in the instruction queue (IQ).

— Up to 16 instructions can be at some stage of execution simultaneously.

— Single-cycle execution for most instructions

— One instruction per clock cycle throughput for most instructions

— Seven-stage pipeline control

• Eleven independent execution units and three register files

— Branch processing unit (BPU) features static and dynamic branch prediction

– 128-entry (32-set, four-way set-associative) branch target instruction cache (BTIC), a cache 
of branch instructions that have been encountered in branch/loop code sequences. If a target 
instruction is in the BTIC, it is fetched into the instruction queue a cycle sooner than it can 
be made available from the instruction cache. Typically, a fetch that hits the BTIC provides 
the first four instructions in the target stream.

– 2048-entry branch history table (BHT) with 2 bits per entry for four levels of 
prediction—not taken, strongly not taken, taken, and strongly taken

– Up to three outstanding speculative branches

– Branch instructions that do not update the count register (CTR) or link register (LR) are 
often removed from the instruction stream.

– Eight-entry link register stack to predict the target address of Branch Conditional to Link 
Register (bclr) instructions

— Four integer units (IUs) that share 32 GPRs for integer operands

– Three identical IUs (IU1a, IU1b, and IU1c) can execute all integer instructions except 
multiply, divide, and move to/from special-purpose register instructions.

– IU2 executes miscellaneous instructions, including the CR logical operations, integer 
multiplication and division instructions, and move to/from special-purpose register 
instructions.

— Five-stage FPU and 32-entry FPR file

– Fully IEEE Std. 754™-1985–compliant FPU for both single- and double-precision 
operations

– Supports non-IEEE mode for time-critical operations

– Hardware support for denormalized numbers

– Thirty-two 64-bit FPRs for single- or double-precision operands
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— Four vector units and 32-entry vector register file (VRs)

– Vector permute unit (VPU)

– Vector integer unit 1 (VIU1) handles short-latency AltiVec™ integer instructions, such as 
vector add instructions (for example, vaddsbs, vaddshs, and vaddsws).

– Vector integer unit 2 (VIU2) handles longer-latency AltiVec integer instructions, such as 
vector multiply add instructions (for example, vmhaddshs, vmhraddshs, and 
vmladduhm).

– Vector floating-point unit (VFPU)

— Three-stage load/store unit (LSU)

– Supports integer, floating-point, and vector instruction load/store traffic

– Four-entry vector touch queue (VTQ) supports all four architected AltiVec data stream 
operations

– Three-cycle GPR and AltiVec load latency (byte, half word, word, vector) with one-cycle 
throughput

– Four-cycle FPR load latency (single, double) with one-cycle throughput

– No additional delay for misaligned access within double-word boundary

– A dedicated adder calculates effective addresses (EAs).

– Supports store gathering 

– Performs alignment, normalization, and precision conversion for floating-point data

– Executes cache control and TLB instructions

– Performs alignment, zero padding, and sign extension for integer data

– Supports hits under misses (multiple outstanding misses)

– Supports both big- and little-endian modes, including misaligned little-endian accesses

• Three issue queues, FIQ, VIQ, and GIQ, can accept as many as one, two, and three instructions, 
respectively, in a cycle. Instruction dispatch requires the following:

— Instructions can only be dispatched from the three lowest IQ entries—IQ0, IQ1, and IQ2.

— A maximum of three instructions can be dispatched to the issue queues per clock cycle.

— Space must be available in the CQ for an instruction to dispatch (this includes instructions that 
are assigned a space in the CQ but not in an issue queue).

• Rename buffers

— 16 GPR rename buffers

— 16 FPR rename buffers

— 16 VR rename buffers

• Dispatch unit

— Decode/dispatch stage fully decodes each instruction

• Completion unit

— Retires an instruction from the 16-entry completion queue (CQ) when all instructions ahead of 
it have been completed, the instruction has finished executing, and no exceptions are pending

— Guarantees sequential programming model (precise exception model)
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Figure 2 shows the undershoot and overshoot voltage on the MPC7448.

Figure 2. Overshoot/Undershoot Voltage

The MPC7448 provides several I/O voltages to support both compatibility with existing systems and 
migration to future systems. The MPC7448 core voltage must always be provided at the nominal voltage 
(see Table 4). The input voltage threshold for each bus is selected by sampling the state of the voltage 
select pins at the negation of the signal HRESET. The output voltage will swing from GND to the 
maximum voltage applied to the OVDD power pins. Table 3 provides the input threshold voltage settings. 
Because these settings may change in future products, it is recommended that BVSEL[0:1] be configured 
using resistor options, jumpers, or some other flexible means, with the capability to reconfigure the 
termination of this signal in the future, if necessary.

Table 3. Input Threshold Voltage Setting

BVSEL0 BVSEL1 I/O Voltage Mode1 Notes

0 0 1.8 V 2, 3

0 1 2.5 V 2, 4

1 0 1.5 V 2

1 1 2.5 V 4

Notes:
1. Caution: The I/O voltage mode selected must agree with the OVDD voltages 

supplied. See Table 4.

2. If used, pull-down resistors should be less than 250 Ω.

3. The pin configuration used to select 1.8V mode on the MPC7448 is not compatible 
with the pin configuration used to select 1.8V mode on the MPC7447A and earlier 
devices.

4. The pin configuration used to select 2.5V mode on the MPC7448 is fully compatible 
with the pin configuration used to select 2.5V mode on the MPC7447A and earlier 
devices.

VIH

GND
GND – 0.3 V

GND – 0.7 V
Not to Exceed 10%

OVDD + 20%

VIL

OVDD

OVDD + 5%

of tSYSCLK
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when running a typical benchmark at temperatures in a typical system. The Full-Power Mode–Thermal 
value is intended to represent the sustained power consumption of the device when running a typical code 
sequence at high temperature and is recommended to be used as the basis for designing a thermal solution; 
see Section 9.7, “Power and Thermal Management Information” for more information on thermal 
solutions. The Full-Power Mode–Maximum value is recommended to be used for power supply design 
because this represents the maximum peak power draw of the device that a power supply must be capable 
of sourcing without voltage droop. For information on power consumption when dynamic frequency 
switching is enabled, see Section 9.7.5, “Dynamic Frequency Switching (DFS).” 

Table 7. Power Consumption for MPC7448 at Maximum Rated Frequency

Die Junction 
Temperature 

(Tj)

Maximum Processor Core Frequency (Speed Grade, MHz)
Unit Notes

1000 MHz 1420 MHz 1600 MHz 1700 MHz

Full-Power Mode

Typical 65 •CC 15.0 19.0 20.0 21.0 W 1, 2

Thermal 105 •CC 18.6 23.3 24.4 25.6 W 1, 5

Maximum 105 •CC 21.6 27.1 28.4 29.8 W 1, 3

Nap Mode

Typical 105 •CC 11.1 11.8 13.0 13.0 W 1, 6

Sleep Mode

Typical 105 •CC 10.8 11.4 12.5 12.5 W 1, 6

Deep Sleep Mode (PLL Disabled)

Typical 105 •CC 10.4 11.0 12.0 12.0 W 1, 6

Notes: 
1. These values specify the power consumption for the core power supply (VDD) at nominal voltage and apply to all valid 

processor bus frequencies and configurations. The values do not include I/O supply power (OVDD) or PLL supply power 
(AVDD). OVDD power is system dependent but is typically < 5% of VDD power. Worst case power consumption for 
AVDD < 13 mW. Freescale also offers MPC7448 part numbers that meet lower power consumption specifications; for 
more information on these devices, see Section 11.2, “Part Numbers Not Fully Addressed by This Document.”

2. Typical power consumption is an average value measured with the processor operating at its rated maximum processor 
core frequency (except for Deep Sleep Mode), at nominal recommended VDD (see Table 4) and 65°C while running the 
Dhrystone 2.1 benchmark and achieving 2.3 Dhrystone MIPs/MHz. This parameter is not 100% tested but periodically 
sampled.b 

3. Maximum power consumption is the average measured with the processor operating at its rated maximum processor core 
frequency, at nominal VDD and maximum operating junction temperature (see Table 4) while running an entirely 
cache-resident, contrived sequence of instructions to keep all the execution units maximally busy.

4. Doze mode is not a user-definable state; it is an intermediate state between full-power and either nap or sleep mode. As 
a result, power consumption for this mode is not tested.

5. Thermal power consumption is an average value measured at the nominal recommended VDD (see Table 4) and 105 °C 
while running the Dhrystone 2.1 benchmark and achieving 2.3 Dhrystone MIPs/MHz. This parameter is not 100% tested 
but periodically sampled.

6. Typical power consumption for these modes is measured at the nominal recommended VDD (see Table 4) and 105 °C in 
the mode described. This parameter is not 100% tested but is periodically sampled.
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Figure 3 provides the SYSCLK input timing diagram.

Figure 3. SYSCLK Input Timing Diagram

5.2.2 Processor Bus AC Specifications
Table 9 provides the processor bus AC timing specifications for the MPC7448 as defined in Figure 4 and 
Figure 5. 

Table 9. Processor Bus AC Timing Specifications1

At recommended operating conditions. See Table 4.

Parameter Symbol 2
All Speed Grades

Unit Notes
Min Max

Input setup times:
A[0:35], AP[0:4]
D[0:63], DP[0:7]
AACK, ARTRY, BG, CKSTP_IN, DBG, DTI[0:3], GBL, TT[0:4], 

QACK, TA, TBEN, TEA, TS, EXT_QUAL, PMON_IN, 
SHD[0:1]

BMODE[0:1], BVSEL[0:1]

tAVKH
tDVKH
tIVKH

tMVKH

1.5
1.5
1.5

1.5

—
—
—

—

ns
—
—
—

8

Input hold times:
A[0:35], AP[0:4]
D[0:63], DP[0:7]
AACK, ARTRY, BG, CKSTP_IN, DBG, DTI[0:3], GBL, TT[0:4], 

QACK, TA, TBEN, TEA, TS, EXT_QUAL, PMON_IN, 
SHD[0:1]

BMODE[0:1], BVSEL[0:1]

tAXKH
tDXKH
tIXKH

tMXKH

0
0
0

0

—
—
—

—

ns
—
—
—
—

8

Output valid times: 
A[0:35], AP[0:4]
D[0:63], DP[0:7]
BR, CI, DRDY, GBL, HIT, PMON_OUT, QREQ, TBST, 

TSIZ[0:2], TT[0:4], WT
TS
ARTRY, SHD[0:1]

tKHAV
tKHDV
tKHOV

tKHTSV
tKHARV

—
—
—

—
—

1.8
1.8
1.8

1.8
1.8

ns

Output hold times:
A[0:35], AP[0:4]
D[0:63], DP[0:7]
BR, CI, DRDY, GBL, HIT, PMON_OUT, QREQ, TBST, 

TSIZ[0:2], TT[0:4], WT
TS
ARTRY, SHD[0:1]

tKHAX
tKHDX
tKHOX

tKHTSX
tKHARX

0.5
0.5
0.5

0.5
0.5

—
—
—

—
—

ns

SYSCLK to output enable tKHOE 0.5 — ns 5

SYSCLK VMVMVM
CVIH

CVIL

VM = Midpoint Voltage (OVDD/2)

tSYSCLK

tKR tKF
tKHKL
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SYSCLK to output high impedance (all except TS, ARTRY, 
SHD0, SHD1)

tKHOZ — 1.8 ns 5

SYSCLK to TS high impedance after precharge tKHTSPZ — 1 tSYSCLK 3, 4, 5

Maximum delay to ARTRY/SHD0/SHD1 precharge tKHARP — 1 tSYSCLK 3, 5, 6, 7

SYSCLK to ARTRY/SHD0/SHD1 high impedance after 
precharge

tKHARPZ — 2 tSYSCLK 3, 5, 6, 7

Notes: 
1. All input specifications are measured from the midpoint of the signal in question to the midpoint of the rising edge of the input 

SYSCLK. All output specifications are measured from the midpoint of the rising edge of SYSCLK to the midpoint of the signal 
in question. All output timings assume a purely resistive 50-Ω load (see Figure 4). Input and output timings are measured at 
the pin; time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

2. The symbology used for timing specifications herein follows the pattern of t(signal)(state)(reference)(state) for inputs and 
t(reference)(state)(signal)(state) for outputs. For example, tIVKH symbolizes the time input signals (I) reach the valid state (V) 
relative to the SYSCLK reference (K) going to the high (H) state or input setup time. And tKHOV symbolizes the time from 
SYSCLK(K) going high (H) until outputs (O) are valid (V) or output valid time. Input hold time can be read as the time that the 
input signal (I) went invalid (X) with respect to the rising clock edge (KH) (note the position of the reference and its state for 
inputs) and output hold time can be read as the time from the rising edge (KH) until the output went invalid (OX).

3. tsysclk is the period of the external clock (SYSCLK) in ns. The numbers given in the table must be multiplied by the period of 
SYSCLK to compute the actual time duration (in ns) of the parameter in question.

4. According to the bus protocol, TS is driven only by the currently active bus master. It is asserted low and precharged high 
before returning to high impedance, as shown in Figure 6. The nominal precharge width for TS is tSYSCLK, that is, one clock 
period. Since no master can assert TS on the following clock edge, there is no concern regarding contention with the 
precharge. Output valid and output hold timing is tested for the signal asserted. Output valid time is tested for precharge.The 
high-impedance behavior is guaranteed by design.

5. Guaranteed by design and not tested

6. According to the bus protocol, ARTRY can be driven by multiple bus masters through the clock period immediately following 
AACK. Bus contention is not an issue because any master asserting ARTRY will be driving it low. Any master asserting it low 
in the first clock following AACK will then go to high impedance for a fraction of a cycle, then negated for up to an entire cycle 
(crossing a bus cycle boundary) before being three-stated again. The nominal precharge width for ARTRY is 1.0 tSYSCLK; 
that is, it should be high impedance as shown in Figure 6 before the first opportunity for another master to assert ARTRY. 
Output valid and output hold timing is tested for the signal asserted.The high-impedance behavior is guaranteed by design.

7. According to the MPX bus protocol, SHD0 and SHD1 can be driven by multiple bus masters beginning two cycles after TS. 
Timing is the same as ARTRY, that is, the signal is high impedance for a fraction of a cycle, then negated for up to an entire 
cycle (crossing a bus cycle boundary) before being three-stated again. The nominal precharge width for SHD0 and SHD1 is 
1.0 tSYSCLK. The edges of the precharge vary depending on the programmed ratio of core to bus (PLL configurations).

8. BMODE[0:1] and BVSEL[0:1] are mode select inputs. BMODE[0:1] are sampled before and after HRESET negation. 
BVSEL[0:1] are sampled before HRESET negation. These parameters represent the input setup and hold times for each 
sample. These values are guaranteed by design and not tested. BMODE[0:1] must remain stable after the second sample; 
BVSEL[0:1] must remain stable after the first (and only) sample. See Figure 5 for sample timing.

Table 9. Processor Bus AC Timing Specifications1 (continued)
At recommended operating conditions. See Table 4.

Parameter Symbol 2
All Speed Grades

Unit Notes
Min Max
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Figure 7 provides the AC test load for TDO and the boundary-scan outputs of the MPC7448.

Figure 7. Alternate AC Test Load for the JTAG Interface

Figure 8 provides the JTAG clock input timing diagram.

Figure 8. JTAG Clock Input Timing Diagram

Figure 9 provides the TRST timing diagram.

Figure 9. TRST Timing Diagram

Figure 10 provides the boundary-scan timing diagram.

Figure 10. Boundary-Scan Timing Diagram

Output Z0 = 50 Ω OVDD/2
RL = 50 Ω

VMVMVM

VM = Midpoint Voltage (OVDD/2)

tTCLK

tJR tJFtJHJL

TCLK

TRST
tTRST

VM = Midpoint Voltage (OVDD/2)

VM VM

VMTCK

Boundary

Boundary

Boundary

Data Outputs

Data Inputs

Data Outputs

VM = Midpoint Voltage (OVDD/2)

tDXJH

tDVJH

tJLDV

tJLDZ

Input
Data Valid

Output Data Valid

Output Data Valid

tJLDX

VM
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6 Pin Assignments
Figure 12 (in Part A) shows the pinout of the MPC7448, 360 high coefficient of thermal expansion ceramic 
ball grid array (HCTE) package as viewed from the top surface. Part B shows the side profile of the HCTE 
package to indicate the direction of the top surface view.

Figure 12. Pinout of the MPC7448, 360 HCTE Package as Viewed from the Top Surface
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7 Pinout Listings
Table 11 provides the pinout listing for the MPC7448, 360 HCTE package. The pinouts of the MPC7448 
and MPC7447A are compatible, but the requirements regarding the use of the additional power and ground 
pins have changed. The MPC7448 requires these pins be connected to the appropriate power or ground 
plane to achieve high core frequencies; see Section 9.3, “Connection Recommendations,” for additional 
information. As a result, these pins should be connected in all new designs.

Additionally, the MPC7448 may be populated on a board designed for a MPC7447 (or MPC7445 or 
MPC7441), provided the core voltage can be made to match the requirements in Table 4 and all pins 
defined as ‘no connect’ for the MPC7447 are unterminated, as required by the MPC7457 RISC 
Microprocessor Hardware Specifications. The MPC7448 uses pins previously marked ‘no connect’ for the 
temperature diode pins and for additional power and ground connections. The additional power and 
ground pins are required to achieve high core frequencies and core frequency will be limited if they are 
not connected; see Section 9.3, “Connection Recommendations,” for additional information. Because 
these ‘no connect’ pins in the MPC7447 360 pin package are not driven in functional mode, an MPC7447 
can be populated in an MPC7448 board. 

NOTE

Caution must be exercised when performing boundary scan test operations 
on a board designed for an MPC7448, but populated with an MPC7447 or 
earlier device. This is because in the MPC7447 it is possible to drive the 
latches associated with the former ‘no connect’ pins in the MPC7447, 
potentially causing contention on those pins. To prevent this, ensure that 
these pins are not connected on the board or, if they are connected, ensure 
that the states of internal MPC7447 latches do not cause these pins to be 
driven during board testing. 

For the MPC7448, pins that were defined as the TEST[0:4] factory test signal group on the MPC7447A 
and earlier devices have been assigned new functions. For most of these, the termination recommendations 
for the TEST[0:4] pins of the MPC7447A are compatible with the MPC7448 and will allow correct 
operation with no performance loss. The exception is BVSEL1 (TEST3 on the MPC7447A and earlier 
devices), which may require a different termination depending which I/O voltage mode is desired; see 
Table 3 for more information.

NOTE

This pinout is not compatible with the MPC750, MPC7400, or MPC7410 
360 BGA package.
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Table 11. Pinout Listing for the MPC7448, 360 HCTE Package

Signal Name Pin Number Active I/O Notes

A[0:35] E11, H1, C11, G3, F10, L2, D11, D1, C10, G2, D12, L3, G4, T2, F4, V1, 
J4, R2, K5, W2, J2, K4, N4, J3, M5, P5, N3, T1, V2, U1, N5, W1, B12, 
C4, G10, B11

High I/O 2

AACK R1 Low Input

AP[0:4] C1, E3, H6, F5, G7 High I/O 2

ARTRY N2 Low I/O 3

AVDD A8 — Input

BG M1 Low Input

BMODE0 G9 Low Input 4

BMODE1 F8 Low Input 5

BR D2 Low Output

BVSEL0 B7 High Input 1, 6

BVSEL1 E10 High Input 1, 20

CI J1 Low Output

CKSTP_IN A3 Low Input

CKSTP_OUT B1 Low Output

CLK_OUT H2 High Output

D[0:63] R15, W15, T14, V16, W16, T15, U15, P14, V13, W13, T13, P13, U14, 
W14, R12, T12, W12, V12, N11, N10, R11, U11, W11, T11, R10, N9, 
P10, U10, R9, W10, U9, V9, W5, U6, T5, U5, W7, R6, P7, V6, P17, R19, 
V18, R18, V19, T19, U19, W19, U18, W17, W18, T16, T18, T17, W3, 
V17, U4, U8, U7, R7, P6, R8, W8, T8

High I/O

DBG M2 Low Input

DFS2 A12 Low Input 20, 21

DFS4 B6 Low Input 12, 20, 21

DP[0:7] T3, W4, T4, W9, M6, V3, N8, W6 High I/O

DRDY R3 Low Output 7

DTI[0:3] G1, K1, P1, N1 High Input 8

EXT_QUAL A11 High Input 9

GBL E2 Low I/O

GND B5, C3, D6, D13, E17, F3, G17, H4, H7, H9, H11, H13, J6, J8, J10, J12, 
K7, K3, K9, K11, K13, L6, L8, L10, L12, M4, M7, M9, M11, M13, N7, P3, 
P9, P12, R5, R14, R17, T7, T10, U3, U13, U17, V5, V8, V11, V15

— —

GND A17, A19, B13, B16, B18, E12, E19, F13, F16, F18, G19, H18, J14, L14, 
M15, M17, M19, N14, N16, P15, P19

— — 15

GND_SENSE G12, N13 — — 19

HIT B2 Low Output 7

HRESET D8 Low Input

INT D4 Low Input

L1_TSTCLK G8 High Input 9

L2_TSTCLK B3 High Input 10
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8 Package Description
The following sections provide the package parameters and mechanical dimensions for the HCTE 
package. 

8.1 Package Parameters for the MPC7448, 360 HCTE BGA
The package parameters are as provided in the following list. The package type is 25 × 25 mm, 360-lead 
high coefficient of thermal expansion ceramic ball grid array (HCTE).

Package outline 25 × 25 mm
Interconnects 360 (19 × 19 ball array – 1)
Pitch 1.27 mm (50 mil)
Minimum module height 2.32 mm
Maximum module height 2.80 mm
Ball diameter 0.89 mm (35 mil)
Coefficient of thermal expansion12.3 ppm/°C 
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8.2 Mechanical Dimensions for the MPC7448, 360 HCTE BGA
Figure 13 provides the mechanical dimensions and bottom surface nomenclature for the MPC7448, 360 
HCTE BGA package.

Figure 13. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC7448, 
360 HCTE BGA Package

NOTES:
1. Dimensioning and 

tolerancing per ASME 
Y14.5M, 1994

2. Dimensions in millimeters.
3. Top side A1 corner index is a 

metalized feature with 
various shapes. Bottom side 
A1 corner is designated with 
a ball missing from the array.
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9 System Design Information
This section provides system and thermal design requirements and recommendations for successful 
application of the MPC7448.

9.1 Clocks
The following sections provide more detailed information regarding the clocking of the MPC7448. 

9.1.1 PLL Configuration
The MPC7448 PLL is configured by the PLL_CFG[0:5] signals. For a given SYSCLK (bus) frequency, 
the PLL configuration signals set the internal CPU and VCO frequency of operation. The PLL 
configuration for the MPC7448 is shown in Table 12. In this example, shaded cells represent settings that, 
for a given SYSCLK frequency, result in core and/or VCO frequencies that do not comply with Table 8. 
When enabled, dynamic frequency switching (DFS) also affects the core frequency by halving or 
quartering the bus-to-core multiplier; see Section 9.7.5, “Dynamic Frequency Switching (DFS),” for more 
information. Note that when DFS is enabled the resulting core frequency must meet the adjusted minimum 
core frequency requirements (fcore_DFS) described in Table 8. Note that the PLL_CFG[5] is currently used 
for factory test only and should be tied low, and that the MPC7448 PLL configuration settings are 
compatible with the MPC7447A PLL configuration settings when PLL_CFG[5] = 0.

Table 12. MPC7448 Microprocessor PLL Configuration Example

PLL_CFG[0:5]

Example Core and VCO Frequency in MHz

Bus-to-Core 
Multiplier 5

Core-to-VCO 
Multiplier 5

Bus (SYSCLK) Frequency

33.3
MHz

50
MHz

66.6
MHz

75
MHz

83
MHz

100
MHz

133
MHz

167
MHz

200
MHz

010000 2x 6 1x

100000 3x 6 1x 600

101000 4x 6 1x 667 800

101100 5x 1x 667 835 1000

100100 5.5x 1x 733 919 1100

110100 6x 1x 600 800 1002 1200

010100 6.5x 1x 650 866 1086 1300

001000 7x 1x 700 931 1169 1400

000100 7.5x 1x 623 750 1000 1253 1500

110000 8x 1x 600 664 800 1064 1336 1600

011000 8.5x 1x 638 706 850 1131 1417 1700

011110 9x 1x 600 675 747 900 1197 1500

011100 9.5x 1x 633 712 789 950 1264 1583

101010 10x 1x 667 750 830 1000 1333 1667

100010 10.5x 1x 700 938 872 1050 1397
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9.4 Output Buffer DC Impedance
The MPC7448 processor bus drivers are characterized over process, voltage, and temperature. To measure 
Z0, an external resistor is connected from the chip pad to OVDD or GND. The value of each resistor is 
varied until the pad voltage is OVDD/2. Figure 20 shows the driver impedance measurement.

Figure 20. Driver Impedance Measurement

The output impedance is the average of two components—the resistances of the pull-up and pull-down 
devices. When data is held low, SW2 is closed (SW1 is open), and RN is trimmed until the voltage at the 
pad equals OVDD/2. RN then becomes the resistance of the pull-down devices. When data is held high, 
SW1 is closed (SW2 is open), and RP is trimmed until the voltage at the pad equals OVDD/2. RP then 
becomes the resistance of the pull-up devices. RP and RN are designed to be close to each other in value. 
Then, Z0 = (RP + RN)/2.

Table 15 summarizes the signal impedance results. The impedance increases with junction temperature 
and is relatively unaffected by bus voltage.

9.5 Pull-Up/Pull-Down Resistor Requirements
The MPC7448 requires high-resistive (weak: 4.7-KΩ) pull-up resistors on several control pins of the bus 
interface to maintain the control signals in the negated state after they have been actively negated and 
released by the MPC7448 or other bus masters. These pins are: TS, ARTRY, SHDO, and SHD1.

Some pins designated as being factory test pins must be pulled up to OVDD or down to GND to ensure 
proper device operation. The pins that must be pulled up to OVDD are LSSD_MODE and TEST[0:3]; the 
pins that must be pulled down to GND are L1_TSTCLK and TEST[4]. The CKSTP_IN signal should 

Table 15. Impedance Characteristics
At recommended operating conditions. See Table 4

Impedance Processor Bus Unit

Z0 Typical 33–42 Ω

Maximum 31–51 Ω

OVDD

OGND

RP

RN

Pad
Data

SW1

SW2
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to fully control the processor. If the target system has independent reset sources, such as voltage monitors, 
watchdog timers, power supply failures, or push-button switches, then the COP reset signals must be 
merged into these signals with logic.

The arrangement shown in Figure 21 allows the COP port to independently assert HRESET or TRST, 
while ensuring that the target can drive HRESET as well. If the JTAG interface and COP header will not 
be used, TRST should be tied to HRESET through a 0-Ω isolation resistor so that it is asserted when the 
system reset signal (HRESET) is asserted, ensuring that the JTAG scan chain is initialized during 
power-on. Although Freescale recommends that the COP header be designed into the system as shown in 
Figure 21, if this is not possible, the isolation resistor will allow future access to TRST in the case where 
a JTAG interface may need to be wired onto the system in debug situations.

The COP header shown in Figure 21 adds many benefits—breakpoints, watchpoints, register and memory 
examination/modification, and other standard debugger features are possible through this interface—and 
can be as inexpensive as an unpopulated footprint for a header to be added when needed.

The COP interface has a standard header for connection to the target system, based on the 0.025" 
square-post, 0.100" centered header assembly (often called a Berg header). The connector typically has 
pin 14 removed as a connector key.

There is no standardized way to number the COP header shown in Figure 21; consequently, many different 
pin numbers have been observed from emulator vendors. Some are numbered top-to-bottom then 
left-to-right, while others use left-to-right then top-to-bottom, while still others number the pins counter 
clockwise from pin 1 (as with an IC). Regardless of the numbering, the signal placement recommended in 
Figure 21 is common to all known emulators.

The QACK signal shown in Figure 21 is usually connected to the bridge chip or other system control logic 
in a system and is an input to the MPC7448 informing it that it can go into the quiescent state. Under 
normal operation this occurs during a low-power mode selection. In order for COP to work, the MPC7448 
must see this signal asserted (pulled down). While shown on the COP header, not all emulator products 
drive this signal. If the product does not, a pull-down resistor can be populated to assert this signal. 
Additionally, some emulator products implement open-drain type outputs and can only drive QACK 
asserted; for these tools, a pull-up resistor can be implemented to ensure this signal is negated when it is 
not being driven by the tool. Note that the pull-up and pull-down resistors on the QACK signal are 
mutually exclusive and it is never necessary to populate both in a system. To preserve correct power-down 
operation, QACK should be merged through logic so that it also can be driven by the bridge or system 
logic.
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9.7.1 Internal Package Conduction Resistance
For the exposed-die packaging technology described in Table 5, the intrinsic conduction thermal resistance 
paths are as follows:

• The die junction-to-case thermal resistance (the case is actually the top of the exposed silicon die)

• The die junction-to-board thermal resistance

Figure 24 depicts the primary heat transfer path for a package with an attached heat sink mounted to a 
printed-circuit board.

Figure 24. C4 Package with Heat Sink Mounted to a Printed-Circuit Board

Heat generated on the active side of the chip is conducted through the silicon, through the heat sink attach 
material (or thermal interface material), and, finally, to the heat sink, where it is removed by forced-air 
convection.

Because the silicon thermal resistance is quite small, the temperature drop in the silicon may be neglected 
for a first-order analysis. Thus, the thermal interface material and the heat sink conduction/convective 
thermal resistances are the dominant terms.

9.7.2 Thermal Interface Materials
A thermal interface material is recommended at the package lid-to-heat sink interface to minimize the 
thermal contact resistance. For those applications where the heat sink is attached by spring clip 
mechanism, Figure 25 shows the thermal performance of three thin-sheet thermal-interface materials 
(silicone, graphite/oil, fluoroether oil), a bare joint, and a joint with thermal grease as a function of contact 
pressure. As shown, the performance of these thermal interface materials improves with increasing contact 
pressure. The use of thermal grease significantly reduces the interface thermal resistance. That is, the bare 
joint results in a thermal resistance approximately seven times greater than the thermal grease joint. 

Often, heat sinks are attached to the package by means of a spring clip to holes in the printed-circuit board 
(see Figure 22). Therefore, synthetic grease offers the best thermal performance due to the low interface 
pressure and is recommended due to the high power dissipation of the MPC7448. Of course, the selection 

External Resistance

External Resistance

Internal Resistance

Radiation Convection

Radiation Convection

Heat Sink

Printed-Circuit Board

Thermal Interface Material

Package/Leads
Die Junction
Die/Package

(Note the internal versus external package resistance.)
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Shin-Etsu MicroSi, Inc. 888-642-7674
10028 S. 51st St.
Phoenix, AZ 85044
Internet: www.microsi.com

Laird Technologies - Thermal 888-246-905
(formerly Thermagon Inc.)
4707 Detroit Ave.
Cleveland, OH 44102
Internet: www.lairdtech.com

The following section provides a heat sink selection example using one of the commercially available heat 
sinks.

9.7.3 Heat Sink Selection Example
For preliminary heat sink sizing, the die-junction temperature can be expressed as follows:

 Tj = Ti + Tr + (RθJC + Rθint + Rθsa) × Pd 

where:

Tj is the die-junction temperature 
Ti is the inlet cabinet ambient temperature
Tr is the air temperature rise within the computer cabinet
RθJC is the junction-to-case thermal resistance
Rθint is the adhesive or interface material thermal resistance
Rθsa is the heat sink base-to-ambient thermal resistance
Pd is the power dissipated by the device

During operation, the die-junction temperatures (Tj) should be maintained less than the value specified in 
Table 4. The temperature of air cooling the component greatly depends on the ambient inlet air temperature 
and the air temperature rise within the electronic cabinet. An electronic cabinet inlet-air temperature (Ti) 
may range from 30� to 40�C. The air temperature rise within a cabinet (Tr) may be in the range of 5� to 
10�C. The thermal resistance of the thermal interface material (Rθint) is typically about 1.1 �C/W. For 
example, assuming a Ti of 30�C, a Tr of 5�C, an HCTE package RθJC = 0.1, and a power consumption 
(Pd) of 25.6 W, the following expression for Tj is obtained:

Die-junction temperature: Tj = 30�C + 5�C + (0.1�C/W + 1.1�C/W + θsa) × 25.6

For this example, a Rθsavalue of 1.53 �C/W or less is required to maintain the die junction temperature 
below the maximum value of Table 4.

Though the die junction-to-ambient and the heat sink-to-ambient thermal resistances are a common 
figure-of-merit used for comparing the thermal performance of various microelectronic packaging 
technologies, one should exercise caution when only using this metric in determining thermal management 
because no single parameter can adequately describe three-dimensional heat flow. The final die-junction 
operating temperature is not only a function of the component-level thermal resistance, but the 
system-level design and its operating conditions. In addition to the component's power consumption, a 
number of factors affect the final operating die-junction temperature—airflow, board population (local 
heat flux of adjacent components), heat sink efficiency, heat sink attach, heat sink placement, next-level 
interconnect technology, system air temperature rise, altitude, and so on.
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Due to the complexity and variety of system-level boundary conditions for today's microelectronic 
equipment, the combined effects of the heat transfer mechanisms (radiation, convection, and conduction) 
may vary widely. For these reasons, we recommend using conjugate heat transfer models for the board as 
well as system-level designs.

For system thermal modeling, the MPC7448 thermal model is shown in Figure 26. Four volumes represent 
this device. Two of the volumes, solder ball-air and substrate, are modeled using the package outline size 
of the package. The other two, die and bump-underfill, have the same size as the die. The silicon die should 
be modeled 8.0 × 7.3 × 0.86 mm3 with the heat source applied as a uniform source at the bottom of the 
volume. The bump and underfill layer is modeled as 8.0 × 7.3 × 0.07 mm3collapsed in the z-direction with 
a thermal conductivity of 5.0 W/(m • K) in the z-direction. The substrate volume is 25 × 25 × 1.14 mm3 
and has 9.9 W/(m • K) isotropic conductivity in the xy-plane and 2.95 W/(m • K) in the direction of the 
z-axis. The solder ball and air layer are modeled with the same horizontal dimensions as the substrate and 
is 0.8 mm thick. For the LGA package the solder and air layer is 0.1 mm thick, but the material properties 
are the same. It can also be modeled as a collapsed volume using orthotropic material properties: 
0.034 W/(m • K) in the xy-plane direction and 11.2 W/(m • K) in the direction of the z-axis.

Figure 26. Recommended Thermal Model of MPC7448
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Bump and Underfill (8.0 × 7.3 × 0.07 mm3)

kz 5.0 W/(m • K)

Substrate (25 × 25 × 1.14 mm3)

kx 9.9 W/(m • K)

ky 9.9

kz 2.95

Solder Ball and Air (25 × 25 × 0.8 mm3)

kx 0.034 W/(m • K)

ky 0.034

kz 11.2
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Solving for T, the equation becomes:

9.7.5 Dynamic Frequency Switching (DFS)
The DFS feature in the MPC7448 adds the ability to divide the processor-to-system bus ratio by two or 
four during normal functional operation. Divide-by-two mode is enabled by setting the HID1[DFS2] bit 
in software or by asserting the DFS2 pin via hardware. The MPC7448 can be returned for full speed by 
clearing HID1[DFS2] or negating DFS2. Similarly, divide-by-four mode is enabled by setting 
HID1[DFS4] in software or by asserting the DFS4 pin. In all cases, the frequency change occurs in 1 clock 
cycle and no idle waiting period is required to switch between modes. Note that asserting either DFS2 or 
DFS4 overrides software control of DFS, and that asserting both DFS2 and DFS4 disables DFS 
completely, including software control. Additional information regarding DFS can be found in the 
MPC7450 RISC Microprocessor Family Reference Manual. Note that minimum core frequency 
requirements must be observed when enabling DFS, and the resulting core frequency must meet the 
requirements for fcore_DFS given in Table 8.

9.7.5.1 Power Consumption with DFS Enabled
Power consumption with DFS enabled can be approximated using the following formula:

Where:

PDFS = Power consumption with DFS enabled

fDFS = Core frequency with DFS enabled

f = Core frequency prior to enabling DFS

P = Power consumption prior to enabling DFS (see Table 7)

PDS = Deep sleep mode power consumption (see Table 7)

The above is an approximation only. Power consumption with DFS enabled is not tested or guaranteed.

9.7.5.2 Bus-to-Core Multiplier Constraints with DFS
DFS is not available for all bus-to-core multipliers as configured by PLL_CFG[0:5] during hard reset. The 
complete listing is shown in Table 16. Shaded cells represent DFS modes that are not available for a 
particular PLL_CFG[0:5] setting. Should software or hardware attempt to transition to a multiplier that is 
not supported, the device will remain at its current multiplier. For example, if a transition from 
DFS-disabled to an unsupported divide-by-2 or divide-by-4 setting is attempted, the bus-to-core multiplier 
will remain at the setting configured by the PLL_CFG[0:5] pins. In the case of an attempted transition from 
a supported divide-by-2 mode to an unsupported divide-by-4 mode, the device will remain in divide-by-2 
mode. In all cases, the HID1[PC0-5] bits will correctly reflect the current bus-to-core frequency multiplier.

 nT =   
 VH – VL__________

1.986 × 10–4

 PDFS =   (P – PDS)  + PDS
fDFS___

f
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9.7.5.3 Minimum Core Frequency Requirements with DFS
In many systems, enabling DFS can result in very low processor core frequencies. However, care must be 
taken to ensure that the resulting processor core frequency is within the limits specified in Table 8. Proper 
operation of the device is not guaranteed at core frequencies below the specified minimum fcore.

10 Document Revision History
Table 17 provides a revision history for this hardware specification.

24x 011010 12x 101110 6x 110100

28x 111010 14x 110010 7x 001000

Notes: 
1. DFS mode is not supported for this combination of DFS mode and PLL_CFG[0:5] setting. As a result, the processor 

will ignore these settings and remain at the previous multiplier, as reflected by the HID1[PC0-PC5] bits.

2. Though supported by the MPC7448 clock circuitry, multipliers of n.25x and n.75x cannot be expressed as valid PLL 
configuration codes. As a result, the values displayed in HID1[PC0-PC5] are rounded down to the nearest valid PLL 
configuration code. However, the actual bus-to-core multiplier is as stated in this table.

3. Note that in the HID1 register of the MPC7448, the PC0, PC1, PC2, PC3, PC4, and PC5 bits are bits 15, 16, 17, 18, 
19, and 14 (respectively). See the MPC7450 RISC Microprocessor Reference Manual for more information.

4. Special considerations regarding snooped transactions must be observed for bus-to-core multipliers less than 5x. 
See the MPC7450 RISC Microprocessor Reference Manual for more information.

Table 17. Document Revision History

 Revision Date Substantive Change(s)

4 3/2007 Table 19: Added 800 MHz processor frequency.

3 10/2006 Section 9.7, “Power and Thermal Management Information”: Updated contact information.

Table 18, Table 20, and Table 19: Added Revision D PVR.

Table 19: Added 600 processor frequency, additional product codes, date codes for 1400 processor 
frequency, and footnotes 1 and 2.

Table 20: Added PPC product code and footnote 1.

Table 19 and Table 20: Added Revision D information for 1267 processor frequency.

Table 16. Valid Divide Ratio Configurations (continued)

DFS mode disabled
DFS divide-by-2 mode enabled
(HID1[DFS2] = 1 or DFS2 = 0)

DFS divide-by-4 mode enabled
(HID1[DFS4] = 1 or DFS4 = 0)

Bus-to-Core Multiplier 
Configured by 
PLL_CFG[0:5]
(see Table 12)

HID1[PC0-5] 3
Bus-to-Core 

Multiplier HID1[PC0-5] 3
Bus-to-Core 

Multiplier HID1[PC0-5] 3


