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Features

— Monitors all dispatched instructions and retires them in order

— Tracks unresolved branches and flushes instructions after a mispredicted branch 

— Retires as many as three instructions per clock cycle

• Separate on-chip L1 instruction and data caches (Harvard architecture)

— 32-Kbyte, eight-way set-associative instruction and data caches

— Pseudo least-recently-used (PLRU) replacement algorithm

— 32-byte (eight-word) L1 cache block

— Physically indexed/physical tags

— Cache write-back or write-through operation programmable on a per-page or per-block basis

— Instruction cache can provide four instructions per clock cycle; data cache can provide four 
words per clock cycle

— Caches can be disabled in software.

— Caches can be locked in software.

— MESI data cache coherency maintained in hardware

— Separate copy of data cache tags for efficient snooping

— Parity support on cache

— No snooping of instruction cache except for icbi instruction

— Data cache supports AltiVec LRU and transient instructions

— Critical double- and/or quad-word forwarding is performed as needed. Critical quad-word 
forwarding is used for AltiVec loads and instruction fetches. Other accesses use critical 
double-word forwarding.

• Level 2 (L2) cache interface

— On-chip, 1-Mbyte, eight-way set-associative unified instruction and data cache

— Cache write-back or write-through operation programmable on a per-page or per-block basis

— Parity support on cache tags

— ECC or parity support on data

— Error injection allows testing of error recovery software

• Separate memory management units (MMUs) for instructions and data

— 52-bit virtual address, 32- or 36-bit physical address

— Address translation for 4-Kbyte pages, variable-sized blocks, and 256-Mbyte segments

— Memory programmable as write-back/write-through, caching-inhibited/caching-allowed, and 
memory coherency enforced/memory coherency not enforced on a page or block basis

— Separate IBATs and DBATs (eight each) also defined as SPRs

— Separate instruction and data translation lookaside buffers (TLBs) 

– Both TLBs are 128-entry, two-way set-associative and use an LRU replacement algorithm.

– TLBs are hardware- or software-reloadable (that is, a page table search is performed in 
hardware or by system software on a TLB miss).
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Comparison with the MPC7447A, MPC7447, MPC7445, and MPC7441

Execution Unit Timings (Latency-Throughput)

Aligned load (integer, float, vector) 3-1, 4-1, 3-1

Misaligned load (integer, float, vector) 4-2, 5-2, 4-2

L1 miss, L2 hit latency with ECC (data/instruction) 12/16 —

L1 miss, L2 hit latency without ECC (data/instruction) 11/15 9/13

SFX (add, sub, shift, rot, cmp, logicals) 1-1

Integer multiply (32 × 8, 32 × 16, 32 × 32) 4-1, 4-1, 5-2

Scalar float 5-1

VSFX (vector simple) 1-1

VCFX (vector complex) 4-1

VFPU (vector float) 4-1

VPER (vector permute) 2-1

MMUs

TLBs (instruction and data) 128-entry, 2-way

Tablewalk mechanism Hardware + software

Instruction BATs/data BATs 8/8 8/8 8/8 8/8 4/4

L1 I Cache/D Cache Features

Size 32K/32K

Associativity 8-way

Locking granularity Way

Parity on I cache Word

Parity on D cache Byte

Number of D cache misses (load/store) 5/2 5/1

Data stream touch engines 4 streams

On-Chip Cache Features

Cache level L2

Size/associativity 1-Mbyte/
8-way

512-Kbyte/8-way 256-Kbyte/8-way

Access width 256 bits

Number of 32-byte sectors/line 2 2

Parity tag Byte Byte

Parity data Byte Byte

Data ECC 64-bit —

Thermal Control

Dynamic frequency switching divide-by-two mode Yes Yes No No No

Dynamic frequency switching divide-by-four mode Yes No No No No

Thermal diode Yes Yes No No No

Table 1. Microarchitecture Comparison (continued)

Microarchitectural Specs MPC7448 MPC7447A MPC7447 MPC7445 MPC7441
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Electrical and Thermal Characteristics

Figure 3 provides the SYSCLK input timing diagram.

Figure 3. SYSCLK Input Timing Diagram

5.2.2 Processor Bus AC Specifications
Table 9 provides the processor bus AC timing specifications for the MPC7448 as defined in Figure 4 and 
Figure 5. 

Table 9. Processor Bus AC Timing Specifications1

At recommended operating conditions. See Table 4.

Parameter Symbol 2
All Speed Grades

Unit Notes
Min Max

Input setup times:
A[0:35], AP[0:4]
D[0:63], DP[0:7]
AACK, ARTRY, BG, CKSTP_IN, DBG, DTI[0:3], GBL, TT[0:4], 

QACK, TA, TBEN, TEA, TS, EXT_QUAL, PMON_IN, 
SHD[0:1]

BMODE[0:1], BVSEL[0:1]

tAVKH
tDVKH
tIVKH

tMVKH

1.5
1.5
1.5

1.5

—
—
—

—

ns
—
—
—

8

Input hold times:
A[0:35], AP[0:4]
D[0:63], DP[0:7]
AACK, ARTRY, BG, CKSTP_IN, DBG, DTI[0:3], GBL, TT[0:4], 

QACK, TA, TBEN, TEA, TS, EXT_QUAL, PMON_IN, 
SHD[0:1]

BMODE[0:1], BVSEL[0:1]

tAXKH
tDXKH
tIXKH

tMXKH

0
0
0

0

—
—
—

—

ns
—
—
—
—

8

Output valid times: 
A[0:35], AP[0:4]
D[0:63], DP[0:7]
BR, CI, DRDY, GBL, HIT, PMON_OUT, QREQ, TBST, 

TSIZ[0:2], TT[0:4], WT
TS
ARTRY, SHD[0:1]

tKHAV
tKHDV
tKHOV

tKHTSV
tKHARV

—
—
—

—
—

1.8
1.8
1.8

1.8
1.8

ns

Output hold times:
A[0:35], AP[0:4]
D[0:63], DP[0:7]
BR, CI, DRDY, GBL, HIT, PMON_OUT, QREQ, TBST, 

TSIZ[0:2], TT[0:4], WT
TS
ARTRY, SHD[0:1]

tKHAX
tKHDX
tKHOX

tKHTSX
tKHARX

0.5
0.5
0.5

0.5
0.5

—
—
—

—
—

ns

SYSCLK to output enable tKHOE 0.5 — ns 5

SYSCLK VMVMVM
CVIH

CVIL

VM = Midpoint Voltage (OVDD/2)

tSYSCLK

tKR tKF
tKHKL
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Electrical and Thermal Characteristics

5.2.3 IEEE Std. 1149.1 AC Timing Specifications
Table 10 provides the IEEE Std. 1149.1 (JTAG) AC timing specifications as defined in Figure 8 through 
Figure 11.

Table 10. JTAG AC Timing Specifications (Independent of SYSCLK)1

At recommended operating conditions. See Table 4.

Parameter Symbol Min Max Unit Notes

TCK frequency of operation fTCLK 0 33.3 MHz

TCK cycle time tTCLK 30 — ns

TCK clock pulse width measured at 1.4 V tJHJL 15 — ns

TCK rise and fall times tJR and tJF — 2 ns

TRST assert time tTRST 25 — ns 2

Input setup times:
Boundary-scan data
TMS, TDI 

tDVJH
tIVJH

4
0

—
—

ns 3

Input hold times:
Boundary-scan data
TMS, TDI 

tDXJH
tIXJH

20
25

—
—

ns 3

Valid times:
Boundary-scan data
TDO

tJLDV
tJLOV

4
4

20
25

ns 4

Output hold times:
Boundary-scan data
TDO

tJLDX
tJLOX

30
30

—
—

ns 4

TCK to output high impedance:
Boundary-scan data
TDO

tJLDZ
tJLOZ

3
3

19
9

ns 4, 5

Notes: 
1. All outputs are measured from the midpoint voltage of the falling/rising edge of TCLK to the midpoint of the signal in question. 

The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load (see Figure 7). 
Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

2. TRST is an asynchronous level sensitive signal. The time is for test purposes only.

3. Non-JTAG signal input timing with respect to TCK.

4. Non-JTAG signal output timing with respect to TCK.

5. Guaranteed by design and characterization.
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Electrical and Thermal Characteristics

Figure 11 provides the test access port timing diagram.

Figure 11. Test Access Port Timing Diagram

5.3 Voltage and Frequency Derating
Voltage and frequency derating is no longer supported for part numbers described by this document 
beginning with datecode 0613. (See Section 11, “Part Numbering and Marking,” for information on date 
code markings.) It is supported by some MPC7448 part numbers which target low-power applications; see 
Section 11.2, “Part Numbers Not Fully Addressed by This Document” and the referenced MPC7448 
Hardware Specification Addenda for more information on these low-power devices. For those devices 
which previously supported this feature, information has been archived in the Chip Errata for the 
MPC7448 (document order no. MPC7448CE). 

VMTCK

TDI, TMS

TDO Output Data Valid

VM = Midpoint Voltage (OVDD/2)

tIXJH
tIVJH

tJLOV

tJLOZ

Input
Data Valid

TDO Output Data Valid

tJLOX

VM
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Pin Assignments

6 Pin Assignments
Figure 12 (in Part A) shows the pinout of the MPC7448, 360 high coefficient of thermal expansion ceramic 
ball grid array (HCTE) package as viewed from the top surface. Part B shows the side profile of the HCTE 
package to indicate the direction of the top surface view.

Figure 12. Pinout of the MPC7448, 360 HCTE Package as Viewed from the Top Surface
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Pinout Listings

Table 11. Pinout Listing for the MPC7448, 360 HCTE Package

Signal Name Pin Number Active I/O Notes

A[0:35] E11, H1, C11, G3, F10, L2, D11, D1, C10, G2, D12, L3, G4, T2, F4, V1, 
J4, R2, K5, W2, J2, K4, N4, J3, M5, P5, N3, T1, V2, U1, N5, W1, B12, 
C4, G10, B11

High I/O 2

AACK R1 Low Input

AP[0:4] C1, E3, H6, F5, G7 High I/O 2

ARTRY N2 Low I/O 3

AVDD A8 — Input

BG M1 Low Input

BMODE0 G9 Low Input 4

BMODE1 F8 Low Input 5

BR D2 Low Output

BVSEL0 B7 High Input 1, 6

BVSEL1 E10 High Input 1, 20

CI J1 Low Output

CKSTP_IN A3 Low Input

CKSTP_OUT B1 Low Output

CLK_OUT H2 High Output

D[0:63] R15, W15, T14, V16, W16, T15, U15, P14, V13, W13, T13, P13, U14, 
W14, R12, T12, W12, V12, N11, N10, R11, U11, W11, T11, R10, N9, 
P10, U10, R9, W10, U9, V9, W5, U6, T5, U5, W7, R6, P7, V6, P17, R19, 
V18, R18, V19, T19, U19, W19, U18, W17, W18, T16, T18, T17, W3, 
V17, U4, U8, U7, R7, P6, R8, W8, T8

High I/O

DBG M2 Low Input

DFS2 A12 Low Input 20, 21

DFS4 B6 Low Input 12, 20, 21

DP[0:7] T3, W4, T4, W9, M6, V3, N8, W6 High I/O

DRDY R3 Low Output 7

DTI[0:3] G1, K1, P1, N1 High Input 8

EXT_QUAL A11 High Input 9

GBL E2 Low I/O

GND B5, C3, D6, D13, E17, F3, G17, H4, H7, H9, H11, H13, J6, J8, J10, J12, 
K7, K3, K9, K11, K13, L6, L8, L10, L12, M4, M7, M9, M11, M13, N7, P3, 
P9, P12, R5, R14, R17, T7, T10, U3, U13, U17, V5, V8, V11, V15

— —

GND A17, A19, B13, B16, B18, E12, E19, F13, F16, F18, G19, H18, J14, L14, 
M15, M17, M19, N14, N16, P15, P19

— — 15

GND_SENSE G12, N13 — — 19

HIT B2 Low Output 7

HRESET D8 Low Input

INT D4 Low Input

L1_TSTCLK G8 High Input 9

L2_TSTCLK B3 High Input 10
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LVRAM B10 — — 12, 20, 22

NC (no connect) A6, A14, A15, B14, B15, C14, C15, C16, C17, C18, C19, D14, D15, D16, 
D17, D18, D19, E14, E15, F14, F15, G14, G15, H15, H16, J15, J16, J17, 
J18, J19, K15, K16, K17, K18, K19, L15, L16, L17, L18, L19

— — 11

LSSD_MODE E8 Low Input 6, 12

MCP C9 Low Input

OVDD B4, C2, C12, D5, F2, H3, J5, K2, L5, M3, N6, P2, P8, P11, R4, R13, R16, 
T6, T9, U2, U12, U16, V4, V7, V10, V14

— —

OVDD_SENSE E18, G18 — — 16

PLL_CFG[0:4] B8, C8, C7, D7, A7 High Input

PLL_CFG[5] D10 High Input 9, 20

PMON_IN D9 Low Input 13

PMON_OUT A9 Low Output

QACK G5 Low Input

QREQ P4 Low Output

SHD[0:1] E4, H5 Low I/O 3

SMI F9 Low Input

SRESET A2 Low Input

SYSCLK A10 — Input

TA K6 Low Input

TBEN E1 High Input

TBST F11 Low Output

TCK C6 High Input

TDI B9 High Input 6

TDO A4 High Output

TEA L1 Low Input

TEMP_ANODE N18 — — 17

TEMP_CATHODE N19 — — 17

TMS F1 High Input 6

TRST A5 Low Input 6, 14

TS L4 Low I/O 3

TSIZ[0:2] G6, F7, E7 High Output

TT[0:4] E5, E6, F6, E9, C5 High I/O

WT D3 Low Output

VDD H8, H10, H12, J7, J9, J11, J13, K8, K10, K12, K14, L7, L9, L11, L13, M8, 
M10, M12

— —

VDD A13, A16, A18, B17, B19, C13, E13, E16, F12, F17, F19, G11, G16, 
H14, H17, H19, M14, M16, M18, N15, N17, P16, P18

— — 15

Table 11. Pinout Listing for the MPC7448, 360 HCTE Package (continued)

Signal Name Pin Number Active I/O Notes
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Package Description

8.2 Mechanical Dimensions for the MPC7448, 360 HCTE BGA
Figure 13 provides the mechanical dimensions and bottom surface nomenclature for the MPC7448, 360 
HCTE BGA package.

Figure 13. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC7448, 
360 HCTE BGA Package

NOTES:
1. Dimensioning and 

tolerancing per ASME 
Y14.5M, 1994

2. Dimensions in millimeters.
3. Top side A1 corner index is a 

metalized feature with 
various shapes. Bottom side 
A1 corner is designated with 
a ball missing from the array.
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8.4 Mechanical Dimensions for the MPC7448, 360 HCTE LGA
Figure 13 provides the mechanical dimensions and bottom surface nomenclature for the MPC7448, 360 
HCTE LGA package.

Figure 14. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC7448, 
360 HCTE LGA Package

NOTES:
1. Dimensioning and 

tolerancing per ASME 
Y14.5M, 1994

2. Dimensions in millimeters
3. Top side A1 corner index is a 

metalized feature with 
various shapes. Bottom side 
A1 corner is designated with 
a pad missing from the array.
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8.6 Mechanical Dimensions for the MPC7448, 360 HCTE 
RoHS-Compliant BGA

Figure 13 provides the mechanical dimensions and bottom surface nomenclature for the MPC7448, 360 
HCTE BGA package with RoHS-compliant lead-free spheres.

Figure 15. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC7448, 
360 HCTE RoHS-Compliant BGA Package

NOTES:
1. Dimensioning and 

tolerancing per ASME 
Y14.5M, 1994

2. Dimensions in millimeters.
3. Top side A1 corner index is a 

metalized feature with 
various shapes. Bottom side 
A1 corner is designated with 
a ball missing from the array.

4. Dimension A1 represents the 
collapsed sphere diameter.
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These requirements are shown graphically in Figure 16.

Figure 16. MPC7448 Power Up Sequencing Requirements

Certain stipulations also apply to the manner in which the power rails of the MPC7448 power down, as 
follows:

• OVDD may ramp down any time before or after VDD.

• The voltage at the SYSCLK input must not exceed VDD once VDD has ramped down below 0.9 V.

• The voltage at the SYSCLK input must not exceed OVDD by more 20% during transients (see 
overshoot/undershoot specifications in Figure 2) or 0.3 V DC (see Table 2) at any time.

AVDD

VDD

OVDD

SYSCLK

0.9 V

no restrictions between OVDD and VDD

0.9 V

limit imposed by VDD if OVDD ramps up first

limit imposed by OVDD if VDD ramps up first

100 μs (nominal) delay from VDD to AVDD
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Figure 17. MPC7448 Power Down Sequencing Requirements

There is no requirement regarding AVDD during power down, but it is recommended that AVDD track VDD 
within the RC time constant of the PLL filter circuit described in Section 9.2.2, “PLL Power Supply 
Filtering” (nominally 100 µs).

9.2.2 PLL Power Supply Filtering
The AVDD power signal is provided on the MPC7448 to provide power to the clock generation PLL. To 
ensure stability of the internal clock, the power supplied to the AVDD input signal should be filtered of any 
noise in the 500-KHz to 10-MHz resonant frequency range of the PLL. The circuit shown in Figure 18 
using surface mount capacitors with minimum effective series inductance (ESL) is strongly recommended. 
In addition to filtering noise from the AVDD input, it also provides the required delay between VDD and 
AVDD as described in Section 9.2.1, “Power Supply Sequencing.”

The circuit should be placed as close as possible to the AVDD pin to minimize noise coupled from nearby 
circuits. It is often possible to route directly from the capacitors to the AVDD pin, which is on the periphery 
of the device footprint.

Figure 18. PLL Power Supply Filter Circuit

VDD

OVDD

no restrictions between VDD and OVDD

SYSCLK

0.9 V
AVDD

no restrictions between VDD and AVDD

note also restrictions between SYSCLK and OVDD

0.9 V

limit imposed by VDD if VDD ramps down first

limit imposed by OVDD if OVDD ramps down first
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9.2.3 Transient Specifications
The ensure the long-term reliability of the device, the MPC7448 requires that transients on the core power 
rail (VDD) be constrained. The recommended operating voltage specifications provided in Table 4 are DC 
specifications. That is, the device may be operated continuously with VDD within the specified range 
without adversely affecting the device’s reliability. Excursions above the stated recommended operation 
range, including overshoot during power-up, can impact the long-term reliability of the device. Excursions 
are described by their amplitude and duration. Duration is defined as the time period during which the VDD 
power plane, as measured at the VDD_SENSE pins, will be within a specific voltage range, expressed as 
percentage of the total time the device will be powered up over the device lifetime. In practice, the period 
over which transients are measured can be any arbitrary period of time that accurately represents the 
expected range of processor and system activity. The voltage ranges and durations for normal operation 
and transients are described in Table 14.

Note that, to simplify transient measurements, the duration of the excursion into the High Transient region 
is also included in the Low Transient duration, so that only the time the voltage is above each threshold 
must be considered. Figure 19 shows an example of measuring voltage transients. 

Figure 19. Voltage Transient Example

Table 14. VDD Power Supply Transient Specifications
At recommended operating temperatures. See Table 4.

Voltage Region
Voltage Range (V)

Permitted 
Duration 1

Notes
Min Max

Normal VDD minimum VDD maximum 100% 2

Low Transient VDD maximum 1.35 V 10% 2, 3

High Transient 1.35 V 1.40 V 0.2% 4

Notes: 
1. Permitted duration is defined as the percentage of the total time the device is powered on that the VDD 

power supply voltage may exist within the specified voltage range.
2. See Table 4 for nominal VDD specifications.

3. To simplify measurement, excursions into the High Transient region are included in this duration.

4. Excursions above the absolute maximum rating of 1.4 V are not permitted; see Table 2.
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1.40 V

A + B < T • 10%

1.35 V
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A C

B

T
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9.2.4 Decoupling Recommendations
Due to the MPC7448 dynamic power management feature, large address and data buses, and high 
operating frequencies, the MPC7448 can generate transient power surges and high frequency noise in its 
power supply, especially while driving large capacitive loads. This noise must be prevented from reaching 
other components in the MPC7448 system, and the MPC7448 itself requires a clean, tightly regulated 
source of power. Therefore, it is recommended that the system designer use sufficient decoupling 
capacitors, typically one capacitor for every VDD pin, and a similar amount for the OVDD pins, placed as 
close as possible to the power pins of the MPC7448. It is also recommended that these decoupling 
capacitors receive their power from separate VDD, OVDD, and GND power planes in the PCB, using short 
traces to minimize inductance.

These capacitors should have a value of 0.01 or 0.1 µF. Only ceramic surface mount technology (SMT) 
capacitors should be used to minimize lead inductance. Orientations where connections are made along 
the length of the part, such as 0204, are preferable but not mandatory. Consistent with the 
recommendations of Dr. Howard Johnson in High Speed Digital Design: A Handbook of Black Magic 
(Prentice Hall, 1993) and contrary to previous recommendations for decoupling Freescale 
microprocessors, multiple small capacitors of equal value are recommended over using multiple values of 
capacitance.

In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB, 
feeding the VDD and OVDD planes, to enable quick recharging of the smaller chip capacitors. These bulk 
capacitors should have a low equivalent series resistance (ESR) rating to ensure the quick response time 
necessary. They should also be connected to the power and ground planes through two vias to minimize 
inductance. Suggested bulk capacitors are 100–330 µF (AVX TPS tantalum or Sanyo OSCON).

9.3 Connection Recommendations
To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal 
level. Unless otherwise noted, unused active low inputs should be tied to OVDD and unused active high 
inputs should be connected to GND. All NC (no connect) signals must remain unconnected.

Power and ground connections must be made to all external VDD, OVDD, and GND pins in the MPC7448. 
For backward compatibility with the MPC7447, MPC7445, and MP7441, or for migrating a system 
originally designed for one of these devices to the MPC7448, the new power and ground signals (formerly 
NC, see Table 11) may be left unconnected if the core frequency is 1 GHz or less. Operation above 1 GHz 
requires that these additional power and ground signals be connected, and it is strongly recommended that 
all new designs include the additional connections. See also Section 7, “Pinout Listings,” for additional 
information.

The MPC7448 provides VDD_SENSE, OVDD_SENSE, and GND_SENSE pins. These pins connect 
directly to the power/ground planes in the device package and are intended to allow an external device to 
measure the voltage present on the VDD, OVDD and GND planes in the device package. The most common 
use for these signals is as a feedback signal to a power supply regulator to allow it to compensate for board 
losses and supply the correct voltage at the device. (Note that all voltage parameters are specified at the 
pins of the device.) If not used for this purpose, it is recommended that these signals be connected to test 
points that can be used in the event that an accurate measurement of the voltage at the device is needed 
during system debug. Otherwise, these signals should be connected to the appropriate power/ground 
planes on the circuit board or left unconnected.
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9.4 Output Buffer DC Impedance
The MPC7448 processor bus drivers are characterized over process, voltage, and temperature. To measure 
Z0, an external resistor is connected from the chip pad to OVDD or GND. The value of each resistor is 
varied until the pad voltage is OVDD/2. Figure 20 shows the driver impedance measurement.

Figure 20. Driver Impedance Measurement

The output impedance is the average of two components—the resistances of the pull-up and pull-down 
devices. When data is held low, SW2 is closed (SW1 is open), and RN is trimmed until the voltage at the 
pad equals OVDD/2. RN then becomes the resistance of the pull-down devices. When data is held high, 
SW1 is closed (SW2 is open), and RP is trimmed until the voltage at the pad equals OVDD/2. RP then 
becomes the resistance of the pull-up devices. RP and RN are designed to be close to each other in value. 
Then, Z0 = (RP + RN)/2.

Table 15 summarizes the signal impedance results. The impedance increases with junction temperature 
and is relatively unaffected by bus voltage.

9.5 Pull-Up/Pull-Down Resistor Requirements
The MPC7448 requires high-resistive (weak: 4.7-KΩ) pull-up resistors on several control pins of the bus 
interface to maintain the control signals in the negated state after they have been actively negated and 
released by the MPC7448 or other bus masters. These pins are: TS, ARTRY, SHDO, and SHD1.

Some pins designated as being factory test pins must be pulled up to OVDD or down to GND to ensure 
proper device operation. The pins that must be pulled up to OVDD are LSSD_MODE and TEST[0:3]; the 
pins that must be pulled down to GND are L1_TSTCLK and TEST[4]. The CKSTP_IN signal should 

Table 15. Impedance Characteristics
At recommended operating conditions. See Table 4

Impedance Processor Bus Unit

Z0 Typical 33–42 Ω

Maximum 31–51 Ω

OVDD

OGND

RP

RN

Pad
Data

SW1

SW2
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to fully control the processor. If the target system has independent reset sources, such as voltage monitors, 
watchdog timers, power supply failures, or push-button switches, then the COP reset signals must be 
merged into these signals with logic.

The arrangement shown in Figure 21 allows the COP port to independently assert HRESET or TRST, 
while ensuring that the target can drive HRESET as well. If the JTAG interface and COP header will not 
be used, TRST should be tied to HRESET through a 0-Ω isolation resistor so that it is asserted when the 
system reset signal (HRESET) is asserted, ensuring that the JTAG scan chain is initialized during 
power-on. Although Freescale recommends that the COP header be designed into the system as shown in 
Figure 21, if this is not possible, the isolation resistor will allow future access to TRST in the case where 
a JTAG interface may need to be wired onto the system in debug situations.

The COP header shown in Figure 21 adds many benefits—breakpoints, watchpoints, register and memory 
examination/modification, and other standard debugger features are possible through this interface—and 
can be as inexpensive as an unpopulated footprint for a header to be added when needed.

The COP interface has a standard header for connection to the target system, based on the 0.025" 
square-post, 0.100" centered header assembly (often called a Berg header). The connector typically has 
pin 14 removed as a connector key.

There is no standardized way to number the COP header shown in Figure 21; consequently, many different 
pin numbers have been observed from emulator vendors. Some are numbered top-to-bottom then 
left-to-right, while others use left-to-right then top-to-bottom, while still others number the pins counter 
clockwise from pin 1 (as with an IC). Regardless of the numbering, the signal placement recommended in 
Figure 21 is common to all known emulators.

The QACK signal shown in Figure 21 is usually connected to the bridge chip or other system control logic 
in a system and is an input to the MPC7448 informing it that it can go into the quiescent state. Under 
normal operation this occurs during a low-power mode selection. In order for COP to work, the MPC7448 
must see this signal asserted (pulled down). While shown on the COP header, not all emulator products 
drive this signal. If the product does not, a pull-down resistor can be populated to assert this signal. 
Additionally, some emulator products implement open-drain type outputs and can only drive QACK 
asserted; for these tools, a pull-up resistor can be implemented to ensure this signal is negated when it is 
not being driven by the tool. Note that the pull-up and pull-down resistors on the QACK signal are 
mutually exclusive and it is never necessary to populate both in a system. To preserve correct power-down 
operation, QACK should be merged through logic so that it also can be driven by the bridge or system 
logic.
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of any thermal interface material depends on many factors—thermal performance requirements, 
manufacturability, service temperature, dielectric properties, cost, and so on.

Figure 25. Thermal Performance of Select Thermal Interface Material

The board designer can choose between several types of thermal interfaces. Heat sink adhesive materials 
should be selected based on high conductivity and mechanical strength to meet equipment shock/vibration 
requirements. There are several commercially available thermal interfaces and adhesive materials 
provided by the following vendors:

The Bergquist Company 800-347-4572
18930 West 78th St.
Chanhassen, MN 55317
Internet: www.bergquistcompany.com

Chomerics, Inc. 781-935-4850
77 Dragon Ct.
Woburn, MA 01801
Internet: www.chomerics.com

Dow-Corning Corporation 800-248-2481
Corporate Center  
P.O. Box 994.
Midland, MI 48686-0994
Internet: www.dowcorning.com
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Due to the complexity and variety of system-level boundary conditions for today's microelectronic 
equipment, the combined effects of the heat transfer mechanisms (radiation, convection, and conduction) 
may vary widely. For these reasons, we recommend using conjugate heat transfer models for the board as 
well as system-level designs.

For system thermal modeling, the MPC7448 thermal model is shown in Figure 26. Four volumes represent 
this device. Two of the volumes, solder ball-air and substrate, are modeled using the package outline size 
of the package. The other two, die and bump-underfill, have the same size as the die. The silicon die should 
be modeled 8.0 × 7.3 × 0.86 mm3 with the heat source applied as a uniform source at the bottom of the 
volume. The bump and underfill layer is modeled as 8.0 × 7.3 × 0.07 mm3collapsed in the z-direction with 
a thermal conductivity of 5.0 W/(m • K) in the z-direction. The substrate volume is 25 × 25 × 1.14 mm3 
and has 9.9 W/(m • K) isotropic conductivity in the xy-plane and 2.95 W/(m • K) in the direction of the 
z-axis. The solder ball and air layer are modeled with the same horizontal dimensions as the substrate and 
is 0.8 mm thick. For the LGA package the solder and air layer is 0.1 mm thick, but the material properties 
are the same. It can also be modeled as a collapsed volume using orthotropic material properties: 
0.034 W/(m • K) in the xy-plane direction and 11.2 W/(m • K) in the direction of the z-axis.

Figure 26. Recommended Thermal Model of MPC7448

Bump and Underfill

Die

Substrate

Solder and Air

Die

Substrate

Side View of Model (Not to Scale)

Top View of Model (Not to Scale)

x

y

z

Conductivity Value Unit

Die (8.0 × 7.3 × 0.86 mm3)

Silicon
Temperature- 

dependent
W/(m • K)

Bump and Underfill (8.0 × 7.3 × 0.07 mm3)

kz 5.0 W/(m • K)

Substrate (25 × 25 × 1.14 mm3)

kx 9.9 W/(m • K)

ky 9.9

kz 2.95

Solder Ball and Air (25 × 25 × 0.8 mm3)

kx 0.034 W/(m • K)

ky 0.034

kz 11.2



MPC7448 RISC Microprocessor Hardware Specifications, Rev. 4

52 Freescale Semiconductor
 

System Design Information

9.7.4 Temperature Diode
The MPC7448 has a temperature diode on the microprocessor that can be used in conjunction with other 
system temperature monitoring devices (such as Analog Devices, ADT7461™). These devices use the 
negative temperature coefficient of a diode operated at a constant current to determine the temperature of 
the microprocessor and its environment. For proper operation, the monitoring device used should 
auto-calibrate the device by canceling out the VBE variation of each MPC7448’s internal diode.

The following are the specifications of the MPC7448 on-board temperature diode:

Vf > 0.40 V 

Vf < 0.90 V

Operating range 2–300 μA

Diode leakage < 10 nA @ 125°C

Ideality factor over 5–150 μA at 60°C: n = 1.0275 ± 0.9%

Ideality factor is defined as the deviation from the ideal diode equation:

Another useful equation is:

Where:

Ifw = Forward current

Is = Saturation current

Vd = Voltage at diode

Vf = Voltage forward biased

VH = Diode voltage while IH is flowing

VL = Diode voltage while IL is flowing

IH = Larger diode bias current

IL = Smaller diode bias current

q = Charge of electron (1.6 x 10 –19 C)

n = Ideality factor (normally 1.0)

K = Boltzman’s constant (1.38 x 10–23 Joules/K)

T = Temperature (Kelvins)

The ratio of IH to IL is usually selected to be 10:1. The previous equation simplifies to the following:

 Ifw = Is e  – 1 

 qVf___
nKT

 VH – VL = n ln  – 1 
KT__
q

 IH__
IL

 VH – VL = 1.986 × 10–4 × nT 


