

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC G4
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	1.267GHz
Co-Processors/DSP	Multimedia; SIMD
RAM Controllers	-
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	1.5V, 1.8V, 2.5V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	360-CBGA, FCCBGA
Supplier Device Package	360-FCCBGA (25x25)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmc7448vu1267nd

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MPC7448 RISC Microprocessor Hardware Specifications, Rev. 4

Overview

NM

Comparison with the MPC7447A, MPC7447, MPC7445, and MPC7441

Microarchitectural Specs	MPC7448	MPC7447A	MPC7447	MPC7445	MPC7441			
Execution Unit Timings	Latency-Th	nroughput)						
Aligned load (integer, float, vector)	3-1, 4-1, 3-1							
Misaligned load (integer, float, vector)		4	-2, 5-2, 4-2					
L1 miss, L2 hit latency with ECC (data/instruction)	12/16			-				
L1 miss, L2 hit latency without ECC (data/instruction)	11/15		9/1	3				
SFX (add, sub, shift, rot, cmp, logicals)			1-1					
Integer multiply (32×8 , 32×16 , 32×32)		4	-1, 4-1, 5-2					
Scalar float			5-1					
VSFX (vector simple)			1-1					
VCFX (vector complex)			4-1					
VFPU (vector float)			4-1					
VPER (vector permute)			2-1					
MMUs								
TLBs (instruction and data)		128	3-entry, 2-wa	ıy				
Tablewalk mechanism		Hard	ware + softw	vare				
Instruction BATs/data BATs	8/8	8/8	8/8	8/8	4/4			
L1 I Cache/D Ca	che Featur	es						
Size			32K/32K					
Associativity			8-way					
Locking granularity			Way					
Parity on I cache			Word					
Parity on D cache			Byte					
Number of D cache misses (load/store)	5/2		5/-	1				
Data stream touch engines			4 streams					
On-Chip Cacl	ne Features							
Cache level			L2					
Size/associativity	1-Mbyte/ 8-way	512-Kbyt	e/8-way	256-Kby	te/8-way			
Access width			256 bits					
Number of 32-byte sectors/line	2		2					
Parity tag	Byte		Byt	e				
Parity data	Byte Byte							
Data ECC	64-bit —							
Thermal Control								
Dynamic frequency switching divide-by-two mode	Yes	Yes	No	No	No			
Dynamic frequency switching divide-by-four mode	Yes	No	No	No	No			
Thermal diode	Yes	Yes	No	No	No			

Table 1. Microarchitecture Comparison (continued)

Electrical and Thermal Characteristics

Table 5 provides the package thermal characteristics for the MPC7448. For more information regarding thermal management, see Section 9.7, "Power and Thermal Management Information."

Characteristic	Symbol	Value	Unit	Notes
Junction-to-ambient thermal resistance, natural convection, single-layer (1s) board	$R_{ extsf{ heta}JA}$	26	•C/W	2, 3
Junction-to-ambient thermal resistance, natural convection, four-layer (2s2p) board	R_{\thetaJMA}	19	•C/W	2, 4
Junction-to-ambient thermal resistance, 200 ft/min airflow, single-layer (1s) board	R_{\thetaJMA}	22	•C/W	2, 4
Junction-to-ambient thermal resistance, 200 ft/min airflow, four-layer (2s2p) board	R_{\thetaJMA}	16	•C/W	2, 4
Junction-to-board thermal resistance	$R_{ extsf{ heta}JB}$	11	•C/W	5
Junction-to-case thermal resistance	$R_{ extsf{ heta}JC}$	< 0.1	•C/W	6

Table 5. Package Thermal Characteristics¹

Notes:

- 1. Refer to Section 9.7, "Power and Thermal Management Information," for details about thermal management.
- Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, airflow, power dissipation of other components on the board, and board thermal resistance.
- 3. Per JEDEC JESD51-2 with the single-layer board horizontal
- 4. Per JEDEC JESD51-6 with the board horizontal
- 5. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 6. This is the thermal resistance between die and case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1) with the calculated case temperature. The actual value of R_{θJC} for the part is less than 0.1°C/W.

Table 6 provides the DC electrical characteristics for the MPC7448.

Table 6. DC Electrical Specifications

At recommended operating conditions. See Table 4.

Characteristic	Nominal Bus Voltage ¹	Symbol	Min	Max	Unit	Notes
Input high voltage	1.5	V _{IH}	$OV_{DD} imes 0.65$	OV _{DD} + 0.3	V	2
(all inputs)	1.8		$OV_{DD} imes 0.65$	OV _{DD} + 0.3		
	2.5		1.7	OV _{DD} + 0.3		
Input low voltage	1.5	V _{IL}	-0.3	$\mathrm{OV}_\mathrm{DD} imes 0.35$	V	2
(all inputs)	1.8		-0.3	$\mathrm{OV}_\mathrm{DD} imes 0.35$		
	2.5		-0.3	0.7		
Input leakage current, all signals except BVSEL0, LSSD_MODE, TCK, TDI, TMS, TRST:	_	l _{in}	_	50	μA	2, 3
V _{in} = OV _{DD} V _{in} = GND				50 - 50		
Input leakage current, BVSEL0, LSSD_MODE, TCK, TDI, TMS, TRST:	—	l _{in}	—		μA	2, 6
$V_{in} = OV_{DD}$ $V_{in} = GND$				50 - 2000		

Figure 3 provides the SYSCLK input timing diagram.

 V_{M} = Midpoint Voltage (OV_{DD}/2)

Figure 3. SYSCLK Input Timing Diagram

5.2.2 **Processor Bus AC Specifications**

Table 9 provides the processor bus AC timing specifications for the MPC7448 as defined in Figure 4 and Figure 5.

Table 9. Processor Bus AC Timing Specifications¹

At recommended operating conditions. See Table 4.

Parameter		All Spee	d Grades	Unit	Notes
Falameter	Symbol	Min	Мах	Unit	Notes
Input setup times: A[0:35], AP[0:4] D[0:63], DP[0:7] AACK, ARTRY, BG, CKSTP_IN, DBG, DTI[0:3], GBL, TT[0:4], QACK, TA, TBEN, TEA, TS, EXT_QUAL, PMON_IN, SHD[0:1]	^t avkh t _D vkh ^t ivkh	1.5 1.5 1.5	—	ns	
BMODE[0:1], BVSEL[0:1]	t _{MVKH}	1.5	—		8
Input hold times: A[0:35], AP[0:4] D[0:63], DP[0:7] AACK, ARTRY, BG, CKSTP_IN, DBG, DTI[0:3], GBL, TT[0:4], QACK, TA, TBEN, TEA, TS, EXT_QUAL, PMON_IN,	t _{АХКН} t _{DXKH} tixkh	0 0 0	 	ns	
BMODE[0:1], BVSEL[0:1]	t _{MXKH}	0	—		8
Output valid times: A[0:35], AP[0:4] D[0:63], DP[0:7] BR, CI, DRDY, GBL, HIT, PMON_OUT, QREQ, TBST, SIZ[0:2], TT[0:4], WT	^t khav ^t khdv ^t khov		1.8 1.8 1.8	ns	
TS ARTRY, SHD[0:1]	t _{KHTSV} t _{KHARV}	_	1.8 1.8		
Output hold times: A[0:35], AP[0:4] D[0:63], DP[0:7] BR, CI, DRDY, GBL, HIT, PMON_OUT, QREQ, TBST, TSIZ[0:2], TT[0:4], WT TS	^t кнах ^t кндх ^t кнох ^t кнтsx	0.5 0.5 0.5	 	ns	
	^t KHARX	0.5	—		F
STOCK to output enable	^I KHOE	0.5	—	ns	5

Electrical and Thermal Characteristics

Figure 6. Input/Output Timing Diagram

Pin Assignments

6 Pin Assignments

Figure 12 (in Part A) shows the pinout of the MPC7448, 360 high coefficient of thermal expansion ceramic ball grid array (HCTE) package as viewed from the top surface. Part B shows the side profile of the HCTE package to indicate the direction of the top surface view.

Part B

Pinout Listings

Signal Name	Pin Number	Active	I/O	Notes
A[0:35]	E11, H1, C11, G3, F10, L2, D11, D1, C10, G2, D12, L3, G4, T2, F4, V1, J4, R2, K5, W2, J2, K4, N4, J3, M5, P5, N3, T1, V2, U1, N5, W1, B12, C4, G10, B11	High	I/O	2
AACK	R1	Low	Input	
AP[0:4]	C1, E3, H6, F5, G7	High	I/O	2
ARTRY	N2	Low	I/O	3
AV _{DD}	A8	_	Input	
BG	M1	Low	Input	
BMODE0	G9	Low	Input	4
BMODE1	F8	Low	Input	5
BR	D2	Low	Output	
BVSEL0	B7	High	Input	1,6
BVSEL1	E10	High	Input	1, 20
CI	J1	Low	Output	
CKSTP_IN	A3	Low	Input	
CKSTP_OUT	B1	Low	Output	
CLK_OUT	H2	High	Output	
D[0:63]	R15, W15, T14, V16, W16, T15, U15, P14, V13, W13, T13, P13, U14, W14, R12, T12, W12, V12, N11, N10, R11, U11, W11, T11, R10, N9, P10, U10, R9, W10, U9, V9, W5, U6, T5, U5, W7, R6, P7, V6, P17, R19, V18, R18, V19, T19, U19, W19, U18, W17, W18, T16, T18, T17, W3, V17, U4, U8, U7, R7, P6, R8, W8, T8	High	I/O	
DBG	M2	Low	Input	
DFS2	A12	Low	Input	20, 21
DFS4	B6	Low	Input	12, 20, 21
DP[0:7]	T3, W4, T4, W9, M6, V3, N8, W6	High	I/O	
DRDY	R3	Low	Output	7
DTI[0:3]	G1, K1, P1, N1	High	Input	8
EXT_QUAL	A11	High	Input	9
GBL	E2	Low	I/O	
GND	B5, C3, D6, D13, E17, F3, G17, H4, H7, H9, H11, H13, J6, J8, J10, J12, K7, K3, K9, K11, K13, L6, L8, L10, L12, M4, M7, M9, M11, M13, N7, P3, P9, P12, R5, R14, R17, T7, T10, U3, U13, U17, V5, V8, V11, V15		_	
GND	A17, A19, B13, B16, B18, E12, E19, F13, F16, F18, G19, H18, J14, L14, M15, M17, M19, N14, N16, P15, P19	_	—	15
GND_SENSE	G12, N13	—	—	19
ПТ	B2	Low	Output	7
HRESET	D8	Low	Input	
INT	D4	Low	Input	
L1_TSTCLK	G8	High	Input	9
L2_TSTCLK	B3	High	Input	10

Table 11. Pinout	Listing for the	e MPC7448, 36	0 HCTE Package

Signal Name	Pin Number	Active	I/O	Notes
LVRAM	B10	_	_	12, 20, 22
NC (no connect)	A6, A14, A15, B14, B15, C14, C15, C16, C17, C18, C19, D14, D15, D16, D17, D18, D19, E14, E15, F14, F15, G14, G15, H15, H16, J15, J16, J17, J18, J19, K15, K16, K17, K18, K19, L15, L16, L17, L18, L19	_	_	11
LSSD_MODE	E8	Low	Input	6, 12
MCP	C9	Low	Input	
OV _{DD}	B4, C2, C12, D5, F2, H3, J5, K2, L5, M3, N6, P2, P8, P11, R4, R13, R16, T6, T9, U2, U12, U16, V4, V7, V10, V14	—	—	
OVDD_SENSE	E18, G18		—	16
PLL_CFG[0:4]	B8, C8, C7, D7, A7	High	Input	
PLL_CFG[5]	D10	High	Input	9, 20
PMON_IN	D9	Low	Input	13
PMON_OUT	A9	Low	Output	
QACK	G5	Low	Input	
QREQ	P4	Low	Output	
SHD[0:1]	E4, H5	Low	I/O	3
SMI	F9	Low	Input	
SRESET	A2	Low	Input	
SYSCLK	A10		Input	
TA	К6	Low	Input	
TBEN	E1	High	Input	
TBST	F11	Low	Output	
ТСК	C6	High	Input	
TDI	B9	High	Input	6
TDO	A4	High	Output	
TEA	L1	Low	Input	
TEMP_ANODE	N18	—	—	17
TEMP_CATHODE	N19		—	17
TMS	F1	High	Input	6
TRST	A5	Low	Input	6, 14
TS	L4	Low	I/O	3
TSIZ[0:2]	G6, F7, E7	High	Output	
TT[0:4]	E5, E6, F6, E9, C5	High	I/O	
WT	D3	Low	Output	
V _{DD}	H8, H10, H12, J7, J9, J11, J13, K8, K10, K12, K14, L7, L9, L11, L13, M8, M10, M12	—	—	
V _{DD}	A13, A16, A18, B17, B19, C13, E13, E16, F12, F17, F19, G11, G16, H14, H17, H19, M14, M16, M18, N15, N17, P16, P18	_	_	15

Table 11. Pinout Listing for the MPC744	8, 360 HCTE Package (continued)
---	---------------------------------

Table 11. Pinout Listing for the MPC7448, 360 HCTE Package (continued)

Signal Name	Pin Number	Active	I/O	Notes
VDD_SENSE	G13, N12			18

Notes:

1. OV_{DD} supplies power to the processor bus, JTAG, and all control signals, and is configurable. (V_{DD} supplies power to the processor core, and AV_{DD} supplies power to the PLL after filtering from V_{DD}). To program the I/O voltage, see Table 3. If used, the pull-down resistor should be less than 250 Ω . Because these settings may change in future products, it is recommended BVSEL[0:1] be configured using resistor options, jumpers, or some other flexible means, with the capability to reconfigure the termination of this signal in the future if necessary. For actual recommended value of V_{in} or supply voltages see Table 4.

2. Unused address pins must be pulled down to GND and corresponding address parity pins pulled up to OV_{DD}.

3. These pins require weak pull-up resistors (for example, 4.7 KΩ) to maintain the control signals in the negated state after they have been actively negated and released by the MPC7448 and other bus masters.

4. This signal selects between MPX bus mode (asserted) and 60x bus mode (negated) and will be sampled at HRESET going high.

5. This signal must be negated during reset, by pull-up resistor to OV_{DD} or negation by ¬HRESET (inverse of HRESET), to ensure proper operation.

6. Internal pull up on die.

7. Not used in 60x bus mode.

8. These signals must be pulled down to GND if unused, or if the MPC7448 is in 60x bus mode.

9. These input signals are for factory use only and must be pulled down to GND for normal machine operation.

10. This test signal is recommended to be tied to HRESET; however, other configurations will not adversely affect performance.

11. These signals are for factory use only and must be left unconnected for normal machine operation. Some pins that were NCs on the MPC7447, MPC7445, and MPC7441 have now been defined for other purposes.

- 12. These input signals are for factory use only and must be pulled up to OV_{DD} for normal machine operation.
- 13. This pin can externally cause a performance monitor event. Counting of the event is enabled through software.
- 14. This signal must be asserted during reset, by pull down to GND or assertion by HRESET, to ensure proper operation.
- 15. These pins were NCs on the MPC7447, MPC7445, and MPC7441. See Section 9.3, "Connection Recommendations," for more information.
- 16. These pins were OV_{DD} pins on the MPC7447, MPC7445, and MPC7441. These pins are internally connected to OV_{DD} and are intended to allow an external device (such as a power supply) to detect the I/O voltage level present inside the device package. If unused, it is recommended they be connected to test points to facilitate system debug; otherwise, they may be connected directly to OV_{DD} or left unconnected.
- 17. These pins provide connectivity to the on-chip temperature diode that can be used to determine the die junction temperature of the processor. These pins may be left unterminated if unused.
- 18. These pins are internally connected to V_{DD} and are intended to allow an external device (such as a power supply) to detect the processor core voltage level present inside the device package. If unused, it is recommended they be connected to test points to facilitate system debug; otherwise, they may be connected directly to V_{DD} or left unconnected.
- 19. These pins are internally connected to GND and are intended to allow an external device to detect the processor ground voltage level present inside the device package. If unused, it is recommended they be connected to test points to facilitate system debug; otherwise, they may be connected directly to GND or left unconnected.
- 20. These pins were in the TEST[0:4] factory test pin group on the MPC7447A, MPC7447, MPC7445, and MPC7441. They have been assigned new functions on the MPC7448.
- 21. These pins can be used to enable the supported dynamic frequency switching (DFS) modes via hardware. If both are pulled down, DFS mode is disabled completely and cannot be enabled via software. If unused, they should be pulled up to OV_{DD} to allow software control of DFS. See the *MPC7450 RISC Microprocessor Family Reference Manual* for more information.
- 22. This pin is provided to allow operation of the L2 cache at low core voltages and is for factory use only. See the MPC7450 RISC Microprocessor Family Reference Manual for more information.

Package Description

8.2 Mechanical Dimensions for the MPC7448, 360 HCTE BGA

Figure 13 provides the mechanical dimensions and bottom surface nomenclature for the MPC7448, 360 HCTE BGA package.

Figure 13. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC7448, 360 HCTE BGA Package

	Example Core and VCO Frequency in MHz										
PLL_CFG[0:5]	Buo to Coro	Corro to VCO				Bus (SY	SCLK) Fr	equency	/		
	Multiplier ⁵	Multiplier ⁵	33.3 MHz	50 MHz	66.6 MHz	75 MHz	83 MHz	100 MHz	133 MHz	167 MHz	200 MHz
100110	11x	1x			733	825	913	1100	1467		
000000	11.5x	1x			766	863	955	1150	1533		
101110	12x	1x		600	800	900	996	1200	1600		
111110	12.5x	1x		625	833	938	1038	1250	1667		
010110	13x	1x		650	865	975	1079	1300			
111000	13.5x	1x		675	900	1013	1121	1350			
110010	14x	1x		700	933	1050	1162	1400			
000110	15x	1x		750	1000	1125	1245	1500			
110110	16x	1x		800	1066	1200	1328	1600			
000010	17x	1x		850	1132	1275	1417	1700			
001010	18x	1x	600	900	1200	1350	1500				
001110	20x	1x	667	1000	1332	1500	1666				
010010	21x	1x	700	1050	1399	1575					
011010	24x	1x	800	1200	1600						
111010	28x	1x	933	1400							
001100	PLL b	oypass		PLL off, S	SYSCLK	clocks co	re circuit	ry directly	/		
111100	PLI	_ off		PL	L off, no	core cloc	king occu	urs			

Table 12. MPC7448 Microprocessor PLL Configuration Example (continued)

Notes:

1. PLL_CFG[0:5] settings not listed are reserved.

2. The sample bus-to-core frequencies shown are for reference only. Some PLL configurations may select bus, core, or VCO frequencies which are not useful, not supported, or not tested for by the MPC7448; see Section 5.2.1, "Clock AC Specifications," for valid SYSCLK, core, and VCO frequencies.

3. In PLL-bypass mode, the SYSCLK input signal clocks the internal processor directly and the PLL is disabled. However, the bus interface unit requires a 2x clock to function. Therefore, an additional signal, EXT_QUAL, must be driven at half the frequency of SYSCLK and offset in phase to meet the required input setup t_{IVKH} and hold time t_{IXKH} (see Table 9). The result will be that the processor bus frequency will be one-half SYSCLK, while the internal processor is clocked at SYSCLK frequency. This mode is intended for factory use and emulator tool use only.

Note: The AC timing specifications given in this document do not apply in PLL-bypass mode.

- 4. In PLL-off mode, no clocking occurs inside the MPC7448 regardless of the SYSCLK input.
- 5. Applicable when DFS modes are disabled. These multipliers change when operating in a DFS mode. See Section 9.7.5, "Dynamic Frequency Switching (DFS)" for more information.
- 6. Bus-to-core multipliers less than 5x require that assertion of AACK be delayed by one or two bus cycles to allow the processor to generate a response to a snooped transaction. See the *MPC7450 RISC Microprocessor Reference Manual* for more information.

These requirements are shown graphically in Figure 16.

Figure 16. MPC7448 Power Up Sequencing Requirements

Certain stipulations also apply to the manner in which the power rails of the MPC7448 power down, as follows:

- OV_{DD} may ramp down any time before or after V_{DD}.
- The voltage at the SYSCLK input must not exceed V_{DD} once V_{DD} has ramped down below 0.9 V.
- The voltage at the SYSCLK input must not exceed OV_{DD} by more 20% during transients (see overshoot/undershoot specifications in Figure 2) or 0.3 V DC (see Table 2) at any time.

9.7 Power and Thermal Management Information

This section provides thermal management information for the high coefficient of thermal expansion (HCTE) package for air-cooled applications. Proper thermal control design is primarily dependent on the system-level design—the heat sink, airflow, and thermal interface material. The MPC7448 implements several features designed to assist with thermal management, including DFS and the temperature diode. DFS reduces the power consumption of the device by reducing the core frequency; see Section 9.7.5.1, "Power Consumption with DFS Enabled," for specific information regarding power reduction and DFS. The temperature diode allows an external device to monitor the die temperature in order to detect excessive temperature conditions and alert the system; see Section 9.7.4, "Temperature Diode," for more information.

To reduce the die-junction temperature, heat sinks may be attached to the package by several methods—spring clip to holes in the printed-circuit board or package, and mounting clip and screw assembly (see Figure 22); however, due to the potential large mass of the heat sink, attachment through the printed-circuit board is suggested. In any implementation of a heat sink solution, the force on the die should not exceed ten pounds (45 Newtons).

Figure 22. BGA Package Exploded Cross-Sectional View with Several Heat Sink Options

NOTE

A clip on heat sink is not recommended for LGA because there may not be adequate clearance between the device and the circuit board. A through-hole solution is recommended, as shown in Figure 23.

Shin-Etsu MicroSi, Inc.888-642-767410028 S. 51st St.Phoenix, AZ 85044Internet: www.microsi.comInternet: www.microsi.comLaird Technologies - Thermal888-246-905(formerly Thermagon Inc.)4707 Detroit Ave.Cleveland, OH 44102Internet: www.lairdtech.com

The following section provides a heat sink selection example using one of the commercially available heat sinks.

9.7.3 Heat Sink Selection Example

For preliminary heat sink sizing, the die-junction temperature can be expressed as follows:

$$T_j = T_i + T_r + (R_{\theta JC} + R_{\theta int} + R_{\theta sa}) \times P_d$$

where:

 T_j is the die-junction temperature

T_i is the inlet cabinet ambient temperature

 T_r is the air temperature rise within the computer cabinet

 $R_{\theta JC}$ is the junction-to-case thermal resistance

 $R_{\theta int}$ is the adhesive or interface material thermal resistance

 $R_{\theta sa}$ is the heat sink base-to-ambient thermal resistance

P_d is the power dissipated by the device

During operation, the die-junction temperatures (T_j) should be maintained less than the value specified in Table 4. The temperature of air cooling the component greatly depends on the ambient inlet air temperature and the air temperature rise within the electronic cabinet. An electronic cabinet inlet-air temperature (T_i) may range from 30 to 40 C. The air temperature rise within a cabinet (T_r) may be in the range of 5 to 10 C. The thermal resistance of the thermal interface material $(R_{\theta int})$ is typically about 1.1 C/W. For example, assuming a T_i of 30 C, a T_r of 5 C, an HCTE package $R_{\theta JC} = 0.1$, and a power consumption (P_d) of 25.6 W, the following expression for T_j is obtained:

Die-junction temperature: $T_i = 30$ C + 5 C + (0.1 C/W + 1.1 C/W + θ_{sa}) × 25.6

For this example, a $R_{\theta sa}$ value of 1.53 C/W or less is required to maintain the die junction temperature below the maximum value of Table 4.

Though the die junction-to-ambient and the heat sink-to-ambient thermal resistances are a common figure-of-merit used for comparing the thermal performance of various microelectronic packaging technologies, one should exercise caution when only using this metric in determining thermal management because no single parameter can adequately describe three-dimensional heat flow. The final die-junction operating temperature is not only a function of the component-level thermal resistance, but the system-level design and its operating conditions. In addition to the component's power consumption, a number of factors affect the final operating die-junction temperature—airflow, board population (local heat flux of adjacent components), heat sink efficiency, heat sink attach, heat sink placement, next-level interconnect technology, system air temperature rise, altitude, and so on.

Due to the complexity and variety of system-level boundary conditions for today's microelectronic equipment, the combined effects of the heat transfer mechanisms (radiation, convection, and conduction) may vary widely. For these reasons, we recommend using conjugate heat transfer models for the board as well as system-level designs.

For system thermal modeling, the MPC7448 thermal model is shown in Figure 26. Four volumes represent this device. Two of the volumes, solder ball-air and substrate, are modeled using the package outline size of the package. The other two, die and bump-underfill, have the same size as the die. The silicon die should be modeled $8.0 \times 7.3 \times 0.86$ mm³ with the heat source applied as a uniform source at the bottom of the volume. The bump and underfill layer is modeled as $8.0 \times 7.3 \times 0.07$ mm³ collapsed in the z-direction with a thermal conductivity of 5.0 W/(m • K) in the z-direction. The substrate volume is $25 \times 25 \times 1.14$ mm³ and has 9.9 W/(m • K) isotropic conductivity in the xy-plane and 2.95 W/(m • K) in the direction of the z-axis. The solder ball and air layer are modeled with the same horizontal dimensions as the substrate and is 0.8 mm thick. For the LGA package the solder and air layer is 0.1 mm thick, but the material properties are the same. It can also be modeled as a collapsed volume using orthotropic material properties: 0.034 W/(m • K) in the xy-plane direction and 11.2 W/(m • K) in the direction of the z-axis.

Conductivity	Value	Unit				
Die (8	$.0 \times 7.3 \times 0.86 \text{ mm}^3$)			Die		
- (-	,	[z		Bump and Underfill	
Silicon	Temperature- dependent	W/(m ∙ K)			Substrate	
Bump and Un	derfill (8.0 × 7.3 × 0.07)	mm ³)	-		Solder and Air	
		····· ,	-	Side	View of Model (Not to Scale)	
kz	5.0	W/(m ∙ K)				
Substrat	e (25 $ imes$ 25 $ imes$ 1.14 mm ³)			<u> </u>	→	
k _x	9.9	W/(m • K)			Outrature to	
k _y	9.9				Substrate	
k _z	2.95					
Solder Ball a	and Air (25 $ imes$ 25 $ imes$ 0.8 m	ım ³)			Die	
k _x	0.034	W/(m ∙ K)	1 ↑			
k _y	0.034					
k _z	11.2		У			

Top View of Model (Not to Scale)

Figure 26. Recommended Thermal Model of MPC7448

Solving for T, the equation becomes:

$$\mathbf{nT} = \frac{\mathbf{V}_{\mathrm{H}} - \mathbf{V}_{\mathrm{L}}}{1.986 \times 10^{-4}}$$

9.7.5 Dynamic Frequency Switching (DFS)

The DFS feature in the MPC7448 adds the ability to divide the processor-to-system bus ratio by two or four during normal functional operation. Divide-by-two mode is enabled by setting the HID1[DFS2] bit in software or by asserting the $\overline{DFS2}$ pin via hardware. The MPC7448 can be returned for full speed by clearing HID1[DFS2] or negating $\overline{DFS2}$. Similarly, divide-by-four mode is enabled by setting HID1[DFS4] in software or by asserting the $\overline{DFS4}$ pin. In all cases, the frequency change occurs in 1 clock cycle and no idle waiting period is required to switch between modes. Note that asserting either $\overline{DFS2}$ or $\overline{DFS4}$ overrides software control of DFS, and that asserting both $\overline{DFS2}$ and $\overline{DFS4}$ disables DFS completely, including software control. Additional information regarding DFS can be found in the *MPC7450 RISC Microprocessor Family Reference Manual*. Note that minimum core frequency requirements must be observed when enabling DFS, and the resulting core frequency must meet the requirements for f_{core DFS} given in Table 8.

9.7.5.1 Power Consumption with DFS Enabled

Power consumption with DFS enabled can be approximated using the following formula:

$$\mathbf{P}_{\mathbf{DFS}} = \begin{bmatrix} \overline{\mathbf{f}_{\mathbf{DFS}}} & (\mathbf{P} - \mathbf{P}_{\mathbf{DS}}) \end{bmatrix} + \mathbf{P}_{\mathbf{DS}}$$

Where:

 P_{DFS} = Power consumption with DFS enabled

 f_{DFS} = Core frequency with DFS enabled

f = Core frequency prior to enabling DFS

P = Power consumption prior to enabling DFS (see Table 7)

 P_{DS} = Deep sleep mode power consumption (see Table 7)

The above is an approximation only. Power consumption with DFS enabled is not tested or guaranteed.

9.7.5.2 Bus-to-Core Multiplier Constraints with DFS

DFS is not available for all bus-to-core multipliers as configured by PLL_CFG[0:5] during hard reset. The complete listing is shown in Table 16. Shaded cells represent DFS modes that are not available for a particular PLL_CFG[0:5] setting. Should software or hardware attempt to transition to a multiplier that is not supported, the device will remain at its current multiplier. For example, if a transition from DFS-disabled to an unsupported divide-by-2 or divide-by-4 setting is attempted, the bus-to-core multiplier will remain at the setting configured by the PLL_CFG[0:5] pins. In the case of an attempted transition from a supported divide-by-2 mode to an unsupported divide-by-4 mode, the device will remain in divide-by-2 mode. In all cases, the HID1[PC0-5] bits will correctly reflect the current bus-to-core frequency multiplier.

DFS mode disabled		DFS divide-by-2 ((HID1[DFS2] = 1	mode enabled or DFS2 = 0)	DFS divide-by-4 mode enabled (HID1[DFS4] = 1 or DFS4 = 0)		
Bus-to-Core Multiplier Configured by PLL_CFG[0:5] (see Table 12)		Bus-to-Core Multiplier HID1[PC0-5] ³		Bus-to-Core Multiplier	HID1[PC0-5] ³	
2x ⁴	010000	N/A (unchanged) ¹	unchanged ¹	N/A (unchanged) ¹	unchanged ¹	
3x ⁴	100000	N/A (unchanged) ¹	unchanged ¹	N/A (unchanged) ¹	unchanged ¹	
4x ⁴	101000	2x ⁴	010000	N/A (unchanged) ¹	unchanged ¹	
5x	101100	2.5x ⁴	010101	N/A (unchanged) ¹	unchanged ¹	
5.5x	100100	2.75x ⁴	110101 ²	N/A (unchanged) ¹ unchange		
6x	110100	3x ⁴	100000	N/A (unchanged) ¹	unchanged ¹	
6.5x	010100	3.25x ⁴	100000 ²	N/A (unchanged) ¹	unchanged ¹	
7x	001000	3.5x ⁴	110101	N/A (unchanged) ¹	unchanged ¹	
7.5x	000100	3.75x ⁴	110101 ²	N/A (unchanged) ¹	unchanged ¹	
8x	110000	4x ⁴	101000 ⁴	2x ⁴	010000	
8.5x	011000	4.25x ⁴	101000 ²	N/A (unchanged) ¹	unchanged ¹	
9x	011110	4.5x ⁴	011101	2.25x ⁴	010000 ²	
9.5x	011100	4.75x ⁴	011101 ²	N/A (unchanged) ¹	unchanged ¹	
10x	101010	5x	101100	2.5x ⁴	010101	
10.5x	100010	5.25x	101100 ²	N/A (unchanged) ¹	unchanged ¹	
11x	100110	5.5x	100100 2.75x ⁴		010101 ²	
11.5x	000000	5.75x	100100 ²	N/A (unchanged) ¹	unchanged ¹	
12x	101110	6x	110100 3x ⁴		100000	
12.5x	111110	6.25x	110100 ² N/A (unchanged)		unchanged ¹	
13x	010110	6.5x	010100	3.25x ⁴	100000 ²	
13.5x	111000	6.75	010100 ²	N/A (unchanged) ¹	unchanged ¹	
14x	110010	7x	001000	3.5x ⁴	110101	
15x	000110	7.5x	000100	3.75x ⁴	110101 ²	
16x	110110	8x	110000	4x ⁴	101000	
17x	000010	8.5x	011000	4.25x ⁴	101000 ²	
18x	001010	9x	011110	4.5x ⁴	011101	
20x	001110	10x	101010	5x	101100	
21x	010010	10.5x	100010	5.25x	101100 ²	

Table 16. Valid Divide Ratio Configurations

Document Revision History

Revision	Date	Substantive Change(s)				
2		Table 6: Added separate input leakage specification for BVSEL0, <u>LSSD_MODE</u> , <u>TCK</u> , TDI, TMS, <u>TRST</u> signals to correctly indicate leakage current for signals with internal pull-up resistors.				
		Section 5.1: Added paragraph preceding Table 7 and edited notes in Table 7 to clarify core frequencies at which power consumption is measured.				
		Section 5.3: Removed voltage derating specifications; this feature has been made redundant by new device offerings and is no longer supported.				
		Changed names of "Typical–Nominal" and "Typical–Thermal" power consumption parameters to "Typical" and "Thermal", respectively. (Name change only–no specifications were changed.)				
		Table 11: Revised Notes 16, 18, and 19 to reflect current recommendations for connection of SENSE pins.				
		Section 9.3: Added paragraph explaining connection recommendations for SENSE pins. (See also Table 11 entry above.)				
		Table 19: Updated table to reflect changes in specifications for MC7448xxnnnnNC devices. Table 9: Changed all instances of TT[0:3] to TT[0:4]				
		Removed mention of these input signals from output valid times and output hold times:				
		• AACK, CKSTP_IN, DT[0:3]				
		Figure 17: Modified diagram slightly to correctly snow constraint on SYSCLK ramping is related to V _{DD}				
		Added Table 20 to reflect introduction of extended temperature devices and associated hardware				
		specification addendum.				
1		Added 1600 MHz, 1420 MHz, and 1000 MHz devices				
		Section 4: corrected die size				
		Table 2: Revised Note 4 to consider overshoot/undershoot and combined with Note 5.				
		Table 4. Revised operating voltage for 1700 MHz device from \pm 50 mV to \pm 20 mV $/$ =50 mV.				
		Table 11: Added voltage derating information for 1700 MHz devices: this feature is not supported at this				
		time for other speed grades.				
		Added transient specifications for VDD power supply in Section 9.2.3, added Table 15 and Figure 19 and renumbered subsequent tables and figures.				
		Moved Decoupling Recommendations from Section 9.4 to Section 9.2.4 and renumbered subsequent sections.				
		Section 9.2.1: Revised power sequencing requirements.				
		Section 9.7.4: Added thermal diode ideality factor information (previously TBD).				
		Table 17: Expanded table to show HID1 register values when DFS modes are enabled.				
		Section 11.2: updated to include additional N-spec device speed grades				
		Tables 18 and 19: corrected PVR values and added "MC" product code prefix				
0		Initial public release.				

Table 17. Document Revision History (continued)

Table 20. Part Numbers Addressed by MC7448TxxnnnnNx Series Hardware Specification Addendum (Document Order No. MPC7448ECS02AD)

XX	7448	т	XX	nnnn	Ν	X
Product Code	Part Identifier	Specificatio n Modifier	Package	Processor Frequency	Application Modifier	Revision Level
MC PPC ¹	MC 7448 PPC ¹	T = Extended Temperature	HX = HCTE BGA	1400	N: 1.15 V ± 50 mV - 40 to 105 °C	C: 2.1; PVR = 0x8004_0201 D: 2.2; PVR = 0x8004_0202
	Device		1267 Revision C only	N: 1.1 V ± 50 mV - 40 to 105 °C		
				1267 Revision D only	N: 1.05 V ± 50 mV - 40 to 105 °C	
				1000	N: 1.0 V ± 50 mV - 40 to 105 °C	

Notes:

 The P prefix in a Freescale part number designates a "Pilot Production Prototype" as defined by Freescale SOP 3-13. These parts have only preliminary reliability and characterization data. Before pilot production prototypes can be shipped, written authorization from the customer must be on file in the applicable sales office acknowledging the qualification status and the fact that product changes may still occur as pilot production prototypes are shipped.

11.3 Part Marking

Parts are marked as the example shown in Figure 27.

Notes:

AWLYYWW is the test code, where YYWW is the date code (YY = year, WW = work week) MMMMMM is the M00 (mask) number. YWWLAZ is the assembly traceability code.

Figure 27. Part Marking for BGA and LGA Device

How to Reach Us:

Home Page: www.freescale.com

email: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 1-800-521-6274 480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064, Japan 0120 191014 +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate, Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com

Document Number: MPC7448EC Rev. 4 3/2007 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. The described product is a PowerPC microprocessor. The PowerPC name is a trademark of IBM Corp. and is used under license. IEEE Stds. 1149.1[™] and 754[™] are trademarks of the Institute of Electrical and Electronics Engineers, Inc., (IEEE). This product is not endosed or approved by the IEEE. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2005, 2007.

