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— Four vector units and 32-entry vector register file (VRs)

– Vector permute unit (VPU)

– Vector integer unit 1 (VIU1) handles short-latency AltiVec™ integer instructions, such as 
vector add instructions (for example, vaddsbs, vaddshs, and vaddsws).

– Vector integer unit 2 (VIU2) handles longer-latency AltiVec integer instructions, such as 
vector multiply add instructions (for example, vmhaddshs, vmhraddshs, and 
vmladduhm).

– Vector floating-point unit (VFPU)

— Three-stage load/store unit (LSU)

– Supports integer, floating-point, and vector instruction load/store traffic

– Four-entry vector touch queue (VTQ) supports all four architected AltiVec data stream 
operations

– Three-cycle GPR and AltiVec load latency (byte, half word, word, vector) with one-cycle 
throughput

– Four-cycle FPR load latency (single, double) with one-cycle throughput

– No additional delay for misaligned access within double-word boundary

– A dedicated adder calculates effective addresses (EAs).

– Supports store gathering 

– Performs alignment, normalization, and precision conversion for floating-point data

– Executes cache control and TLB instructions

– Performs alignment, zero padding, and sign extension for integer data

– Supports hits under misses (multiple outstanding misses)

– Supports both big- and little-endian modes, including misaligned little-endian accesses

• Three issue queues, FIQ, VIQ, and GIQ, can accept as many as one, two, and three instructions, 
respectively, in a cycle. Instruction dispatch requires the following:

— Instructions can only be dispatched from the three lowest IQ entries—IQ0, IQ1, and IQ2.

— A maximum of three instructions can be dispatched to the issue queues per clock cycle.

— Space must be available in the CQ for an instruction to dispatch (this includes instructions that 
are assigned a space in the CQ but not in an issue queue).

• Rename buffers

— 16 GPR rename buffers

— 16 FPR rename buffers

— 16 VR rename buffers

• Dispatch unit

— Decode/dispatch stage fully decodes each instruction

• Completion unit

— Retires an instruction from the 16-entry completion queue (CQ) when all instructions ahead of 
it have been completed, the instruction has finished executing, and no exceptions are pending

— Guarantees sequential programming model (precise exception model)
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4 General Parameters
The following list summarizes the general parameters of the MPC7448:

Technology 90 nm CMOS SOI, nine-layer metal
Die size 8.0 mm × 7.3 mm
Transistor count 90 million
Logic design Mixed static and dynamic
Packages Surface mount 360 ceramic ball grid array (HCTE)

Surface mount 360 ceramic land grid array (HCTE)
Surface mount 360 ceramic ball grid array with lead-free spheres (HCTE)

Core power supply 1.30 V (1700 MHz device)
1.25 V (1600 MHz device)
1.20 V (1420 MHz device)

1.15 V (1000 MHz device)
I/O power supply 1.5 V, 1.8 V, or 2.5 V 

5 Electrical and Thermal Characteristics
This section provides the AC and DC electrical specifications and thermal characteristics for the 
MPC7448.

5.1 DC Electrical Characteristics
The tables in this section describe the MPC7448 DC electrical characteristics. Table 2 provides the 
absolute maximum ratings. See Section 9.2, “Power Supply Design and Sequencing,” for power 
sequencing requirements.

Table 2. Absolute Maximum Ratings 1

Characteristic Symbol Maximum Value Unit Notes

Core supply voltage VDD –0.3 to 1.4 V 2

PLL supply voltage AVDD –0.3 to 1.4 V 2

Processor bus supply voltage I/O Voltage Mode = 1.5 V OVDD –0.3 to 1.8 V 3

I/O Voltage Mode = 1.8 V –0.3 to 2.2 3

I/O Voltage Mode = 2.5 V –0.3 to 3.0 3

Input voltage Processor bus Vin –0.3 to OVDD + 0.3 V 4

JTAG signals Vin –0.3 to OVDD + 0.3 V

Storage temperature range Tstg – 55 to 150 •CC

Notes: 

1. Functional and tested operating conditions are given in Table 4. Absolute maximum ratings are stress ratings only and 
functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause 
permanent damage to the device.

2. See Section 9.2, “Power Supply Design and Sequencing” for power sequencing requirements.

3. Bus must be configured in the corresponding I/O voltage mode; see Table 3.

4. Caution: Vin must not exceed OVDD by more than 0.3 V at any time including during power-on reset except as allowed by 
the overshoot specifications. Vin may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2.
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Table 4 provides the recommended operating conditions for the MPC7448 part numbers described by this 
document; see Section 11.1, “Part Numbers Fully Addressed by This Document,” for more information. 
See Section 9.2, “Power Supply Design and Sequencing” for power sequencing requirements.

Table 4. Recommended Operating Conditions1

Characteristic Symbol

Recommended Value
Unit Notes

1000 MHz 1420 MHz 1600 MHz 1700 MHz

Min Max Min Max Min Max Min Max

Core supply voltage VDD 1.15 V ± 50 mV 1.2 V ± 50 mV 1.25 V ± 50 mV 1.3 V +20/
– 50 mV

V 3, 4, 5

PLL supply voltage AVDD 1.15 V ± 50 mV 1.2 V ± 50 mV 1.25 V ± 50 mV 1.3 V +20/
– 50 mV

V 2, 3, 4

Processor 
bus 
supply 
voltage

I/O Voltage Mode = 1.5 V OVDD 1.5 V ± 5% 1.5 V ± 5% 1.5 V ± 5% 1.5 V ± 5% V 4

I/O Voltage Mode = 1.8 V 1.8 V ± 5% 1.8 V ± 5% 1.8 V ± 5% 1.8 V ± 5% 4

I/O Voltage Mode = 2.5 V 2.5 V ± 5% 2.5 V ± 5% 2.5 V ± 5% 2.5 V ± 5% 4

Input 
voltage

Processor bus Vin GND OVDD GND OVDD GND OVDD GND OVDD V

JTAG signals Vin GND OVDD GND OVDD GND OVDD GND OVDD

Die-junction temperature Tj 0 105 0 105 0 105 0 105 •CC 6

Notes: 
1. These are the recommended and tested operating conditions.

2. This voltage is the input to the filter discussed in Section 9.2.2, “PLL Power Supply Filtering,” and not necessarily the voltage 
at the AVDD pin, which may be reduced from VDD by the filter.

3.  Some early devices supported voltage and frequency derating whereby VDD (and AVDD) could be reduced to reduce power 
consumption. This feature has been superseded and is no longer supported. See Section 5.3, “Voltage and Frequency 
Derating,” for more information.

4. Caution: Power sequencing requirements must be met; see Section 9.2, “Power Supply Design and Sequencing”.

5. Caution: See Section 9.2.3, “Transient Specifications” for information regarding transients on this power supply.

6.  For information on extended temperature devices, see Section 11.2, “Part Numbers Not Fully Addressed by This Document.”
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Figure 11 provides the test access port timing diagram.

Figure 11. Test Access Port Timing Diagram

5.3 Voltage and Frequency Derating
Voltage and frequency derating is no longer supported for part numbers described by this document 
beginning with datecode 0613. (See Section 11, “Part Numbering and Marking,” for information on date 
code markings.) It is supported by some MPC7448 part numbers which target low-power applications; see 
Section 11.2, “Part Numbers Not Fully Addressed by This Document” and the referenced MPC7448 
Hardware Specification Addenda for more information on these low-power devices. For those devices 
which previously supported this feature, information has been archived in the Chip Errata for the 
MPC7448 (document order no. MPC7448CE). 
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8.2 Mechanical Dimensions for the MPC7448, 360 HCTE BGA
Figure 13 provides the mechanical dimensions and bottom surface nomenclature for the MPC7448, 360 
HCTE BGA package.

Figure 13. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC7448, 
360 HCTE BGA Package
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9 System Design Information
This section provides system and thermal design requirements and recommendations for successful 
application of the MPC7448.

9.1 Clocks
The following sections provide more detailed information regarding the clocking of the MPC7448. 

9.1.1 PLL Configuration
The MPC7448 PLL is configured by the PLL_CFG[0:5] signals. For a given SYSCLK (bus) frequency, 
the PLL configuration signals set the internal CPU and VCO frequency of operation. The PLL 
configuration for the MPC7448 is shown in Table 12. In this example, shaded cells represent settings that, 
for a given SYSCLK frequency, result in core and/or VCO frequencies that do not comply with Table 8. 
When enabled, dynamic frequency switching (DFS) also affects the core frequency by halving or 
quartering the bus-to-core multiplier; see Section 9.7.5, “Dynamic Frequency Switching (DFS),” for more 
information. Note that when DFS is enabled the resulting core frequency must meet the adjusted minimum 
core frequency requirements (fcore_DFS) described in Table 8. Note that the PLL_CFG[5] is currently used 
for factory test only and should be tied low, and that the MPC7448 PLL configuration settings are 
compatible with the MPC7447A PLL configuration settings when PLL_CFG[5] = 0.

Table 12. MPC7448 Microprocessor PLL Configuration Example

PLL_CFG[0:5]

Example Core and VCO Frequency in MHz

Bus-to-Core 
Multiplier 5

Core-to-VCO 
Multiplier 5

Bus (SYSCLK) Frequency

33.3
MHz

50
MHz

66.6
MHz

75
MHz

83
MHz

100
MHz

133
MHz

167
MHz

200
MHz

010000 2x 6 1x

100000 3x 6 1x 600

101000 4x 6 1x 667 800

101100 5x 1x 667 835 1000

100100 5.5x 1x 733 919 1100

110100 6x 1x 600 800 1002 1200

010100 6.5x 1x 650 866 1086 1300

001000 7x 1x 700 931 1169 1400

000100 7.5x 1x 623 750 1000 1253 1500

110000 8x 1x 600 664 800 1064 1336 1600

011000 8.5x 1x 638 706 850 1131 1417 1700

011110 9x 1x 600 675 747 900 1197 1500

011100 9.5x 1x 633 712 789 950 1264 1583

101010 10x 1x 667 750 830 1000 1333 1667

100010 10.5x 1x 700 938 872 1050 1397
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100110 11x 1x 733 825 913 1100 1467

000000 11.5x 1x 766 863 955 1150 1533

101110 12x 1x 600 800 900 996 1200 1600

111110 12.5x 1x 625 833 938 1038 1250 1667

010110 13x 1x 650 865 975 1079 1300

111000 13.5x 1x 675 900 1013 1121 1350

110010 14x 1x 700 933 1050 1162 1400

000110 15x 1x 750 1000 1125 1245 1500

110110 16x 1x 800 1066 1200 1328 1600

000010 17x 1x 850 1132 1275 1417 1700

001010 18x 1x 600 900 1200 1350 1500

001110 20x 1x 667 1000 1332 1500 1666

010010 21x 1x 700 1050 1399 1575

011010 24x 1x 800 1200 1600

111010 28x 1x 933 1400

001100 PLL bypass PLL off, SYSCLK clocks core circuitry directly

111100 PLL off PLL off, no core clocking occurs

Notes: 
1. PLL_CFG[0:5] settings not listed are reserved.

2. The sample bus-to-core frequencies shown are for reference only. Some PLL configurations may select bus, core, or VCO 
frequencies which are not useful, not supported, or not tested for by the MPC7448; see Section 5.2.1, “Clock AC 
Specifications,” for valid SYSCLK, core, and VCO frequencies. 

3. In PLL-bypass mode, the SYSCLK input signal clocks the internal processor directly and the PLL is disabled. However, the 
bus interface unit requires a 2x clock to function. Therefore, an additional signal, EXT_QUAL, must be driven at half the 
frequency of SYSCLK and offset in phase to meet the required input setup tIVKH and hold time tIXKH (see Table 9). The result 
will be that the processor bus frequency will be one-half SYSCLK, while the internal processor is clocked at SYSCLK 
frequency. This mode is intended for factory use and emulator tool use only. 
Note: The AC timing specifications given in this document do not apply in PLL-bypass mode.

4. In PLL-off mode, no clocking occurs inside the MPC7448 regardless of the SYSCLK input.

5. Applicable when DFS modes are disabled. These multipliers change when operating in a DFS mode. See Section 9.7.5, 
“Dynamic Frequency Switching (DFS)” for more information.

6. Bus-to-core multipliers less than 5x require that assertion of AACK be delayed by one or two bus cycles to allow the 
processor to generate a response to a snooped transaction. See the MPC7450 RISC Microprocessor Reference Manual for 
more information.

Table 12. MPC7448 Microprocessor PLL Configuration Example (continued)

PLL_CFG[0:5]

Example Core and VCO Frequency in MHz

Bus-to-Core 
Multiplier 5

Core-to-VCO 
Multiplier 5

Bus (SYSCLK) Frequency

33.3
MHz

50
MHz

66.6
MHz

75
MHz

83
MHz

100
MHz

133
MHz

167
MHz

200
MHz
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9.1.2 System Bus Clock (SYSCLK) and Spread Spectrum Sources
Spread spectrum clock sources are an increasingly popular way to control electromagnetic interference 
emissions (EMI) by spreading the emitted noise to a wider spectrum and reducing the peak noise 
magnitude in order to meet industry and government requirements. These clock sources intentionally add 
long-term jitter in order to diffuse the EMI spectral content. The jitter specification given in Table 8 
considers short-term (cycle-to-cycle) jitter only and the clock generator’s cycle-to-cycle output jitter 
should meet the MPC7448 input cycle-to-cycle jitter requirement. Frequency modulation and spread are 
separate concerns, and the MPC7448 is compatible with spread spectrum sources if the recommendations 
listed in Table 13 are observed.

It is imperative to note that the processor’s minimum and maximum SYSCLK, core, and VCO frequencies 
must not be exceeded regardless of the type of clock source. Therefore, systems in which the processor is 
operated at its maximum rated core or bus frequency should avoid violating the stated limits by using 
down-spreading only.

9.2 Power Supply Design and Sequencing
The following sections provide detailed information regarding power supply design for the MPC7448.

9.2.1 Power Supply Sequencing
The MPC7448 requires its power rails and clock to be applied in a specific sequence to ensure proper 
device operation and to prevent device damage. The power sequencing requirements are as follows:

• AVDD must be delayed with respect to VDD by the RC time constant of the PLL filter circuit 
described in Section 9.2.2, “PLL Power Supply Filtering”. This time constant is nominally 100 µs.

• OVDD may ramp anytime before or after VDD and AVDD.

Additionally, the following requirements exist regarding the application of SYSCLK:

• The voltage at the SYSCLK input must not exceed VDD until VDD has ramped to 0.9 V.

• The voltage at the SYSCLK input must not exceed OVDD by more 20% during transients (see 
overshoot/undershoot specifications in Figure 2) or 0.3 V DC (see Table 2) at any time.

Table 13. Spread Spectrum Clock Source Recommendations
At recommended operating conditions. See Table 4.

Parameter Min Max Unit Notes

Frequency modulation — 50 kHz 1

Frequency spread — 1.0 % 1, 2

Notes: 
1. Guaranteed by design
2. SYSCLK frequencies resulting from frequency spreading, and the resulting core and VCO 

frequencies, must meet the minimum and maximum specifications given in Table 8.
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Figure 17. MPC7448 Power Down Sequencing Requirements

There is no requirement regarding AVDD during power down, but it is recommended that AVDD track VDD 
within the RC time constant of the PLL filter circuit described in Section 9.2.2, “PLL Power Supply 
Filtering” (nominally 100 µs).

9.2.2 PLL Power Supply Filtering
The AVDD power signal is provided on the MPC7448 to provide power to the clock generation PLL. To 
ensure stability of the internal clock, the power supplied to the AVDD input signal should be filtered of any 
noise in the 500-KHz to 10-MHz resonant frequency range of the PLL. The circuit shown in Figure 18 
using surface mount capacitors with minimum effective series inductance (ESL) is strongly recommended. 
In addition to filtering noise from the AVDD input, it also provides the required delay between VDD and 
AVDD as described in Section 9.2.1, “Power Supply Sequencing.”

The circuit should be placed as close as possible to the AVDD pin to minimize noise coupled from nearby 
circuits. It is often possible to route directly from the capacitors to the AVDD pin, which is on the periphery 
of the device footprint.

Figure 18. PLL Power Supply Filter Circuit
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9.4 Output Buffer DC Impedance
The MPC7448 processor bus drivers are characterized over process, voltage, and temperature. To measure 
Z0, an external resistor is connected from the chip pad to OVDD or GND. The value of each resistor is 
varied until the pad voltage is OVDD/2. Figure 20 shows the driver impedance measurement.

Figure 20. Driver Impedance Measurement

The output impedance is the average of two components—the resistances of the pull-up and pull-down 
devices. When data is held low, SW2 is closed (SW1 is open), and RN is trimmed until the voltage at the 
pad equals OVDD/2. RN then becomes the resistance of the pull-down devices. When data is held high, 
SW1 is closed (SW2 is open), and RP is trimmed until the voltage at the pad equals OVDD/2. RP then 
becomes the resistance of the pull-up devices. RP and RN are designed to be close to each other in value. 
Then, Z0 = (RP + RN)/2.

Table 15 summarizes the signal impedance results. The impedance increases with junction temperature 
and is relatively unaffected by bus voltage.

9.5 Pull-Up/Pull-Down Resistor Requirements
The MPC7448 requires high-resistive (weak: 4.7-KΩ) pull-up resistors on several control pins of the bus 
interface to maintain the control signals in the negated state after they have been actively negated and 
released by the MPC7448 or other bus masters. These pins are: TS, ARTRY, SHDO, and SHD1.

Some pins designated as being factory test pins must be pulled up to OVDD or down to GND to ensure 
proper device operation. The pins that must be pulled up to OVDD are LSSD_MODE and TEST[0:3]; the 
pins that must be pulled down to GND are L1_TSTCLK and TEST[4]. The CKSTP_IN signal should 

Table 15. Impedance Characteristics
At recommended operating conditions. See Table 4

Impedance Processor Bus Unit

Z0 Typical 33–42 Ω

Maximum 31–51 Ω

OVDD

OGND

RP

RN

Pad
Data

SW1

SW2
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likewise be pulled up through a pull-up resistor (weak or stronger: 4.7–1 KΩ) to prevent erroneous 
assertions of this signal.

In addition, the MPC7448 has one open-drain style output that requires a pull-up resistor (weak or 
stronger: 4.7–1 KΩ) if it is used by the system. This pin is CKSTP_OUT. 

BVSEL0 and BVSEL1 should not be allowed to float, and should be configured either via pull-up or 
pull-down resistors or actively driven by external logic. If pull-down resistors are used to configure 
BVSEL0 or BVSEL1, the resistors should be less than 250 Ω (see Table 11). Because PLL_CFG[0:5] 
must remain stable during normal operation, strong pull-up and pull-down resistors (1 KΩ or less) are 
recommended to configure these signals in order to protect against erroneous switching due to ground 
bounce, power supply noise, or noise coupling.

During inactive periods on the bus, the address and transfer attributes may not be driven by any master and 
may, therefore, float in the high-impedance state for relatively long periods of time. Because the MPC7448 
must continually monitor these signals for snooping, this float condition may cause excessive power draw 
by the input receivers on the MPC7448 or by other receivers in the system. These signals can be pulled up 
through weak (10-KΩ) pull-up resistors by the system, address bus driven mode enabled (see the 
MPC7450 RISC Microprocessor Family Users’ Manual for more information on this mode), or they may 
be otherwise driven by the system during inactive periods of the bus to avoid this additional power draw. 
Preliminary studies have shown the additional power draw by the MPC7448 input receivers to be 
negligible and, in any event, none of these measures are necessary for proper device operation. The 
snooped address and transfer attribute inputs are: A[0:35], AP[0:4], TT[0:4], CI, WT, and GBL. 

If address or data parity is not used by the system, and respective parity checking is disabled through HID1, 
the input receivers for those pins are disabled and do not require pull-up resistors, therefore they may be 
left unconnected by the system. If extended addressing is not used (HID0[XAEN] = 0), A[0:3] are unused 
and must be pulled low to GND through weak pull-down resistors; additionally, if address parity checking 
is enabled (HID1[EBA] = 1) and extended addressing is not used, AP[0] must be pulled up to OVDD 
through a weak pull-up resistor. If the MPC7448 is in 60x bus mode, DTI[0:3] must be pulled low to GND 
through weak pull-down resistors.

The data bus input receivers are normally turned off when no read operation is in progress and, therefore, 
do not require pull-up resistors on the bus. Other data bus receivers in the system, however, may require 
pull-ups or require that those signals be otherwise driven by the system during inactive periods. The data 
bus signals are D[0:63] and DP[0:7].

9.6 JTAG Configuration Signals
Boundary-scan testing is enabled through the JTAG interface signals. The TRST signal is optional in the 
IEEE 1149.1 standard specification, but is typically provided on all processors that implement the 
PowerPC architecture. While it is possible to force the TAP controller to the reset state using only the TCK 
and TMS signals, more reliable power-on reset performance will be obtained if the TRST signal is asserted 
during power-on reset. Because the JTAG interface is also used for accessing the common on-chip 
processor (COP) function, simply tying TRST to HRESET is not practical.

The COP function of these processors allows a remote computer system (typically a PC with dedicated 
hardware and debugging software) to access and control the internal operations of the processor. The COP 
interface connects primarily through the JTAG port of the processor, with some additional status 
monitoring signals. The COP port requires the ability to independently assert HRESET or TRST in order 
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Figure 21. JTAG Interface Connection
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No Pin
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Physical Pin Out

10 KΩ 4
OVDD

1

2 KΩ 3

0 Ω 5

 

Notes:
1. RUN/STOP, normally found on pin 5 of the COP header, is not implemented on the MPC7448. Connect 

pin 5 of the COP header to OVDD with a 10-KΩ pull-up resistor.

2. Key location; pin 14 is not physically present on the COP header.

3. Component not populated. Populate only if debug tool does not drive QACK.

4. Populate only if debug tool uses an open-drain type output and does not actively negate QACK.

5. If the JTAG interface is implemented, connect HRESET from the target source to TRST from the COP 
header though an AND gate to TRST of the part. If the JTAG interface is not implemented, connect 
HRESET from the target source to TRST of the part through a 0-Ω isolation resistor.

6. The COP port and target board should be able to independently assert HRESET and TRST to the 
processor in order to fully control the processor as shown above.

TRST 6

10 KΩ
OVDD
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Figure 23. LGA Package Exploded Cross-Sectional View with Several Heat Sink Options

There are several commercially-available heat sinks for the MPC7448 provided by the following vendors:

Aavid Thermalloy 603-224-9988
80 Commercial St.
Concord, NH 03301
Internet: www.aavidthermalloy.com

Alpha Novatech 408-567-8082
473 Sapena Ct. #12
Santa Clara, CA 95054
Internet: www.alphanovatech.com

Calgreg Thermal Solutions 888-732-6100
60 Alhambra Road, Suite 1
Warwick, RI 02886
Internet: www.calgregthermalsolutions.com

International Electronic Research Corporation (IERC) 818-842-7277
413 North Moss St.
Burbank, CA 91502
Internet: www.ctscorp.com

Tyco Electronics 800-522-6752
Chip Coolers™
P.O. Box 3668
Harrisburg, PA 17105-3668
Internet: www.tycoelectronics.com

Wakefield Engineering 603-635-2800
33 Bridge St.
Pelham, NH 03076
Internet: www.wakefield.com

Ultimately, the final selection of an appropriate heat sink depends on many factors, such as thermal 
performance at a given air velocity, spatial volume, mass, attachment method, assembly, and cost. 

Thermal

Heat Sink
HCTE LGA Package

Heat Sink
Clip

Printed-Circuit Board

Interface Material
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9.7.1 Internal Package Conduction Resistance
For the exposed-die packaging technology described in Table 5, the intrinsic conduction thermal resistance 
paths are as follows:

• The die junction-to-case thermal resistance (the case is actually the top of the exposed silicon die)

• The die junction-to-board thermal resistance

Figure 24 depicts the primary heat transfer path for a package with an attached heat sink mounted to a 
printed-circuit board.

Figure 24. C4 Package with Heat Sink Mounted to a Printed-Circuit Board

Heat generated on the active side of the chip is conducted through the silicon, through the heat sink attach 
material (or thermal interface material), and, finally, to the heat sink, where it is removed by forced-air 
convection.

Because the silicon thermal resistance is quite small, the temperature drop in the silicon may be neglected 
for a first-order analysis. Thus, the thermal interface material and the heat sink conduction/convective 
thermal resistances are the dominant terms.

9.7.2 Thermal Interface Materials
A thermal interface material is recommended at the package lid-to-heat sink interface to minimize the 
thermal contact resistance. For those applications where the heat sink is attached by spring clip 
mechanism, Figure 25 shows the thermal performance of three thin-sheet thermal-interface materials 
(silicone, graphite/oil, fluoroether oil), a bare joint, and a joint with thermal grease as a function of contact 
pressure. As shown, the performance of these thermal interface materials improves with increasing contact 
pressure. The use of thermal grease significantly reduces the interface thermal resistance. That is, the bare 
joint results in a thermal resistance approximately seven times greater than the thermal grease joint. 

Often, heat sinks are attached to the package by means of a spring clip to holes in the printed-circuit board 
(see Figure 22). Therefore, synthetic grease offers the best thermal performance due to the low interface 
pressure and is recommended due to the high power dissipation of the MPC7448. Of course, the selection 

External Resistance

External Resistance

Internal Resistance

Radiation Convection

Radiation Convection

Heat Sink

Printed-Circuit Board

Thermal Interface Material

Package/Leads
Die Junction
Die/Package

(Note the internal versus external package resistance.)
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Due to the complexity and variety of system-level boundary conditions for today's microelectronic 
equipment, the combined effects of the heat transfer mechanisms (radiation, convection, and conduction) 
may vary widely. For these reasons, we recommend using conjugate heat transfer models for the board as 
well as system-level designs.

For system thermal modeling, the MPC7448 thermal model is shown in Figure 26. Four volumes represent 
this device. Two of the volumes, solder ball-air and substrate, are modeled using the package outline size 
of the package. The other two, die and bump-underfill, have the same size as the die. The silicon die should 
be modeled 8.0 × 7.3 × 0.86 mm3 with the heat source applied as a uniform source at the bottom of the 
volume. The bump and underfill layer is modeled as 8.0 × 7.3 × 0.07 mm3collapsed in the z-direction with 
a thermal conductivity of 5.0 W/(m • K) in the z-direction. The substrate volume is 25 × 25 × 1.14 mm3 
and has 9.9 W/(m • K) isotropic conductivity in the xy-plane and 2.95 W/(m • K) in the direction of the 
z-axis. The solder ball and air layer are modeled with the same horizontal dimensions as the substrate and 
is 0.8 mm thick. For the LGA package the solder and air layer is 0.1 mm thick, but the material properties 
are the same. It can also be modeled as a collapsed volume using orthotropic material properties: 
0.034 W/(m • K) in the xy-plane direction and 11.2 W/(m • K) in the direction of the z-axis.

Figure 26. Recommended Thermal Model of MPC7448

Bump and Underfill

Die

Substrate

Solder and Air

Die

Substrate

Side View of Model (Not to Scale)

Top View of Model (Not to Scale)

x

y

z

Conductivity Value Unit

Die (8.0 × 7.3 × 0.86 mm3)

Silicon
Temperature- 

dependent
W/(m • K)

Bump and Underfill (8.0 × 7.3 × 0.07 mm3)

kz 5.0 W/(m • K)

Substrate (25 × 25 × 1.14 mm3)

kx 9.9 W/(m • K)

ky 9.9

kz 2.95

Solder Ball and Air (25 × 25 × 0.8 mm3)

kx 0.034 W/(m • K)

ky 0.034

kz 11.2
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Solving for T, the equation becomes:

9.7.5 Dynamic Frequency Switching (DFS)
The DFS feature in the MPC7448 adds the ability to divide the processor-to-system bus ratio by two or 
four during normal functional operation. Divide-by-two mode is enabled by setting the HID1[DFS2] bit 
in software or by asserting the DFS2 pin via hardware. The MPC7448 can be returned for full speed by 
clearing HID1[DFS2] or negating DFS2. Similarly, divide-by-four mode is enabled by setting 
HID1[DFS4] in software or by asserting the DFS4 pin. In all cases, the frequency change occurs in 1 clock 
cycle and no idle waiting period is required to switch between modes. Note that asserting either DFS2 or 
DFS4 overrides software control of DFS, and that asserting both DFS2 and DFS4 disables DFS 
completely, including software control. Additional information regarding DFS can be found in the 
MPC7450 RISC Microprocessor Family Reference Manual. Note that minimum core frequency 
requirements must be observed when enabling DFS, and the resulting core frequency must meet the 
requirements for fcore_DFS given in Table 8.

9.7.5.1 Power Consumption with DFS Enabled
Power consumption with DFS enabled can be approximated using the following formula:

Where:

PDFS = Power consumption with DFS enabled

fDFS = Core frequency with DFS enabled

f = Core frequency prior to enabling DFS

P = Power consumption prior to enabling DFS (see Table 7)

PDS = Deep sleep mode power consumption (see Table 7)

The above is an approximation only. Power consumption with DFS enabled is not tested or guaranteed.

9.7.5.2 Bus-to-Core Multiplier Constraints with DFS
DFS is not available for all bus-to-core multipliers as configured by PLL_CFG[0:5] during hard reset. The 
complete listing is shown in Table 16. Shaded cells represent DFS modes that are not available for a 
particular PLL_CFG[0:5] setting. Should software or hardware attempt to transition to a multiplier that is 
not supported, the device will remain at its current multiplier. For example, if a transition from 
DFS-disabled to an unsupported divide-by-2 or divide-by-4 setting is attempted, the bus-to-core multiplier 
will remain at the setting configured by the PLL_CFG[0:5] pins. In the case of an attempted transition from 
a supported divide-by-2 mode to an unsupported divide-by-4 mode, the device will remain in divide-by-2 
mode. In all cases, the HID1[PC0-5] bits will correctly reflect the current bus-to-core frequency multiplier.

 nT =   
 VH – VL__________

1.986 × 10–4

 PDFS =   (P – PDS)  + PDS
fDFS___

f
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Table 16. Valid Divide Ratio Configurations

DFS mode disabled
DFS divide-by-2 mode enabled
(HID1[DFS2] = 1 or DFS2 = 0)

DFS divide-by-4 mode enabled
(HID1[DFS4] = 1 or DFS4 = 0)

Bus-to-Core Multiplier 
Configured by 
PLL_CFG[0:5]
(see Table 12)

HID1[PC0-5] 3
Bus-to-Core 

Multiplier 
HID1[PC0-5] 3

Bus-to-Core 
Multiplier HID1[PC0-5] 3

2x 4 010000 N/A (unchanged) 1 unchanged 1 N/A (unchanged) 1 unchanged 1

3x 4 100000 N/A (unchanged) 1 unchanged 1 N/A (unchanged) 1 unchanged 1 

4x 4 101000 2x 4 010000 N/A (unchanged) 1 unchanged 1 

 5x 101100 2.5x 4 010101 N/A (unchanged) 1 unchanged 1

5.5x 100100 2.75x 4 110101 2 N/A (unchanged) 1 unchanged 1

 6x 110100 3x 4 100000 N/A (unchanged) 1 unchanged 1

6.5x 010100 3.25x 4  100000 2 N/A (unchanged) 1 unchanged 1

7x 001000 3.5x 4 110101 N/A (unchanged) 1 unchanged 1

7.5x 000100 3.75x 4 110101 2 N/A (unchanged) 1 unchanged 1

8x 110000 4x 4 101000 4 2x 4 010000

8.5x 011000 4.25x 4 101000 2 N/A (unchanged) 1 unchanged 1

9x 011110 4.5x 4 011101 2.25x 4 010000 2

9.5x 011100 4.75x 4 011101 2 N/A (unchanged) 1 unchanged 1

10x 101010 5x 101100 2.5x 4 010101

10.5x 100010 5.25x 101100 2 N/A (unchanged) 1 unchanged 1

11x 100110 5.5x 100100 2.75x 4 010101 2

11.5x 000000 5.75x 100100 2 N/A (unchanged) 1 unchanged 1

12x 101110 6x 110100 3x 4 100000

12.5x 111110 6.25x 110100 2 N/A (unchanged) 1 unchanged 1

13x 010110 6.5x 010100 3.25x 4 100000 2

13.5x 111000 6.75 010100 2 N/A (unchanged) 1 unchanged 1

14x 110010 7x 001000 3.5x 4 110101

15x 000110 7.5x 000100 3.75x 4 110101 2

16x 110110 8x 110000 4x 4 101000

17x 000010 8.5x 011000 4.25x 4 101000 2

18x 001010 9x 011110 4.5x 4 011101

20x 001110 10x 101010 5x 101100

21x 010010 10.5x 100010 5.25x 101100 2
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2 Table 6: Added separate input leakage specification for BVSEL0, LSSD_MODE, TCK, TDI, TMS, TRST 
signals to correctly indicate leakage current for signals with internal pull-up resistors.

Section 5.1: Added paragraph preceding Table 7 and edited notes in Table 7 to clarify core frequencies at 
which power consumption is measured.

Section 5.3: Removed voltage derating specifications; this feature has been made redundant by new 
device offerings and is no longer supported.

Changed names of “Typical–Nominal” and “Typical–Thermal” power consumption parameters to “Typical” 
and “Thermal”, respectively. (Name change only–no specifications were changed.)

Table 11: Revised Notes 16, 18, and 19 to reflect current recommendations for connection of SENSE pins.

Section 9.3: Added paragraph explaining connection recommendations for SENSE pins. (See also Table 
11 entry above.)

Table 19: Updated table to reflect changes in specifications for MC7448xxnnnnNC devices.

Table 9: Changed all instances of TT[0:3] to TT[0:4]

Removed mention of these input signals from output valid times and output hold times:

 • AACK, CKSTP_IN, DT[0:3]
Figure 17: Modified diagram slightly to correctly show constraint on SYSCLK ramping is related to VDD 
voltage, not AVDD voltage. (Diagram clarification only; no change in power sequencing requirements.)

Added Table 20 to reflect introduction of extended temperature devices and associated hardware 
specification addendum.

1 Added 1600 MHz, 1420 MHz, and 1000 MHz devices

Section 4: corrected die size

Table 2: Revised Note 4 to consider overshoot/undershoot and combined with Note 5.

Table 4: Revised operating voltage for 1700 MHz device from ± 50 mV to +20 mV / –50 mV.

Table 7: Updated and expanded table to include Typical – Nominal power consumption.

Table 11: Added voltage derating information for 1700 MHz devices; this feature is not supported at this 
time for other speed grades.

Added transient specifications for VDD power supply in Section 9.2.3, added Table 15 and Figure 19 and 
renumbered subsequent tables and figures.

Moved Decoupling Recommendations from Section 9.4 to Section 9.2.4 and renumbered subsequent 
sections.

Section 9.2.1: Revised power sequencing requirements.

Section 9.7.4: Added thermal diode ideality factor information (previously TBD).

Table 17: Expanded table to show HID1 register values when DFS modes are enabled.

Section 11.2: updated to include additional N-spec device speed grades

Tables 18 and 19: corrected PVR values and added “MC” product code prefix

0 Initial public release.

Table 17. Document Revision History (continued)

 Revision Date Substantive Change(s)
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11 Part Numbering and Marking
Ordering information for the part numbers fully covered by this specification document is provided in 
Section 11.1, “Part Numbers Fully Addressed by This Document.” Note that the individual part numbers 
correspond to a maximum processor core frequency. For available frequencies, contact a local Freescale 
sales office. In addition to the processor frequency, the part numbering scheme also includes an application 
modifier that may specify special application conditions. An optional specification modifier may also 
apply for parts to indicate a specific change in specifications, such as support for an extended temperature 
range. Finally, each part number contains a revision level code that refers to the die mask revision number. 
Section 11.2, “Part Numbers Not Fully Addressed by This Document,” lists the part numbers that do not 
fully conform to the specifications of this document. These special part numbers require an additional 
document called a hardware specification addendum.

11.1 Part Numbers Fully Addressed by This Document
Table 18 provides the Freescale part numbering nomenclature for the MPC7448 part numbers fully 
addressed by this document. For information regarding other MPC7448 part numbers, see Section 11.2, 
“Part Numbers Not Fully Addressed by This Document.”

Table 18. Part Numbering Nomenclature

xx 7448 xx nnnn L x

Product 
Code

Part 
Identifier

Package
Processor 
Frequency

Application
Modifier

Revision Level

MC
PPC 1

7448 HX = HCTE BGA
VS = RoHS LGA
VU = RoHS BGA

1700 L: 1.3 V +20/–50 mV 
0 to 105 °C

C: 2.1; PVR = 0x8004_0201
D: 2.2; PVR = 0x8004_0202

1600 L: 1.25 V ± 50 mV 
0 to 105 °C

1420 L: 1.2 V ± 50 mV 
0 to 105 °C

1000 L: 1.15 V ± 50 mV 
0 to 105 °C

Notes: 
1. The P prefix in a Freescale part number designates a “Pilot Production Prototype” as defined by Freescale SOP 3-13. These 

parts have only preliminary reliability and characterization data. Before pilot production prototypes may be shipped, written 
authorization from the customer must be on file in the applicable sales office acknowledging the qualification status and the 
fact that product changes may still occur as pilot production prototypes are shipped.



MPC7448 RISC Microprocessor Hardware Specifications, Rev. 4

58 Freescale Semiconductor
 

Part Numbering and Marking

11.2 Part Numbers Not Fully Addressed by This Document
Parts with application modifiers or revision levels not fully addressed in this specification document are 
described in separate hardware specification addenda which supplement and supersede this document. As 
such parts are released, these specifications will be listed in this section.

Table 19. Part Numbers Addressed by MC7448xxnnnnNx Series Hardware Specification Addendum
(Document Order No. MPC7448ECS01AD)

xx 7448 xx nnnn N x
Product 

Code
Part 

Identifier
Package

Processor 
Frequency

Application Modifier Revision Level

MC 7448 HX = HCTE BGA
VS = RoHS LGA
VU = RoHS BGA

1400 N: 1.15 V ± 50 mV 
0 to 105 °C

(date code 0613 and later) 2

C: 2.1; PVR = 0x8004_0201
D: 2.2; PVR = 0x8004_0202

MC
PPC1

1400 N: 1.1 V ± 50 mV 
0 to 105 °C

(date code 0612 and prior) 2

MC
PPC1

1267
Revision C only

N: 1.1 V ± 50 mV 
0 to 105 °C

MC
PPC1

1267
Revision D only

N: 1.05 V ± 50 mV 
0 to 105 °C

MC
PPC1

1250 N: 1.1 V ± 50 mV 
0 to 105 °C

MC
PPC1

1000
867
800
667
600

N: 1.0 V ± 50 mV 
0 to 105 °C

Notes: 
1. The P prefix in a Freescale part number designates a “Pilot Production Prototype” as defined by Freescale SOP 3-13. These 

parts have only preliminary reliability and characterization data. Before pilot production prototypes can be shipped, written 
authorization from the customer must be on file in the applicable sales office acknowledging the qualification status and the 
fact that product changes may still occur as pilot production prototypes are shipped.

2. Core voltage for 1400 MHz devices currently in production (date code of 0613 and later) is 1.15 V ± 50 mV; all such devices 
have the MC product code. The 1400 MHz devices with date code of 0612 and prior specified core voltage of 1.1 V ± 50 mV; 
this includes all 1400 MHz devices with the PPC product code. See Section 11.3, “Part Marking,” for information on part 
marking.


