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2 Features
This section summarizes features of the MPC7448 implementation.

Major features of the MPC7448 are as follows:

• High-performance, superscalar microprocessor

— Up to four instructions can be fetched from the instruction cache at a time.

— Up to three instructions plus a branch instruction can be dispatched to the issue queues at a 
time.

— Up to 12 instructions can be in the instruction queue (IQ).

— Up to 16 instructions can be at some stage of execution simultaneously.

— Single-cycle execution for most instructions

— One instruction per clock cycle throughput for most instructions

— Seven-stage pipeline control

• Eleven independent execution units and three register files

— Branch processing unit (BPU) features static and dynamic branch prediction

– 128-entry (32-set, four-way set-associative) branch target instruction cache (BTIC), a cache 
of branch instructions that have been encountered in branch/loop code sequences. If a target 
instruction is in the BTIC, it is fetched into the instruction queue a cycle sooner than it can 
be made available from the instruction cache. Typically, a fetch that hits the BTIC provides 
the first four instructions in the target stream.

– 2048-entry branch history table (BHT) with 2 bits per entry for four levels of 
prediction—not taken, strongly not taken, taken, and strongly taken

– Up to three outstanding speculative branches

– Branch instructions that do not update the count register (CTR) or link register (LR) are 
often removed from the instruction stream.

– Eight-entry link register stack to predict the target address of Branch Conditional to Link 
Register (bclr) instructions

— Four integer units (IUs) that share 32 GPRs for integer operands

– Three identical IUs (IU1a, IU1b, and IU1c) can execute all integer instructions except 
multiply, divide, and move to/from special-purpose register instructions.

– IU2 executes miscellaneous instructions, including the CR logical operations, integer 
multiplication and division instructions, and move to/from special-purpose register 
instructions.

— Five-stage FPU and 32-entry FPR file

– Fully IEEE Std. 754™-1985–compliant FPU for both single- and double-precision 
operations

– Supports non-IEEE mode for time-critical operations

– Hardware support for denormalized numbers

– Thirty-two 64-bit FPRs for single- or double-precision operands
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— Four vector units and 32-entry vector register file (VRs)

– Vector permute unit (VPU)

– Vector integer unit 1 (VIU1) handles short-latency AltiVec™ integer instructions, such as 
vector add instructions (for example, vaddsbs, vaddshs, and vaddsws).

– Vector integer unit 2 (VIU2) handles longer-latency AltiVec integer instructions, such as 
vector multiply add instructions (for example, vmhaddshs, vmhraddshs, and 
vmladduhm).

– Vector floating-point unit (VFPU)

— Three-stage load/store unit (LSU)

– Supports integer, floating-point, and vector instruction load/store traffic

– Four-entry vector touch queue (VTQ) supports all four architected AltiVec data stream 
operations

– Three-cycle GPR and AltiVec load latency (byte, half word, word, vector) with one-cycle 
throughput

– Four-cycle FPR load latency (single, double) with one-cycle throughput

– No additional delay for misaligned access within double-word boundary

– A dedicated adder calculates effective addresses (EAs).

– Supports store gathering 

– Performs alignment, normalization, and precision conversion for floating-point data

– Executes cache control and TLB instructions

– Performs alignment, zero padding, and sign extension for integer data

– Supports hits under misses (multiple outstanding misses)

– Supports both big- and little-endian modes, including misaligned little-endian accesses

• Three issue queues, FIQ, VIQ, and GIQ, can accept as many as one, two, and three instructions, 
respectively, in a cycle. Instruction dispatch requires the following:

— Instructions can only be dispatched from the three lowest IQ entries—IQ0, IQ1, and IQ2.

— A maximum of three instructions can be dispatched to the issue queues per clock cycle.

— Space must be available in the CQ for an instruction to dispatch (this includes instructions that 
are assigned a space in the CQ but not in an issue queue).

• Rename buffers

— 16 GPR rename buffers

— 16 FPR rename buffers

— 16 VR rename buffers

• Dispatch unit

— Decode/dispatch stage fully decodes each instruction

• Completion unit

— Retires an instruction from the 16-entry completion queue (CQ) when all instructions ahead of 
it have been completed, the instruction has finished executing, and no exceptions are pending

— Guarantees sequential programming model (precise exception model)
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Comparison with the MPC7447A, MPC7447, MPC7445, and MPC7441

Execution Unit Timings (Latency-Throughput)

Aligned load (integer, float, vector) 3-1, 4-1, 3-1

Misaligned load (integer, float, vector) 4-2, 5-2, 4-2

L1 miss, L2 hit latency with ECC (data/instruction) 12/16 —

L1 miss, L2 hit latency without ECC (data/instruction) 11/15 9/13

SFX (add, sub, shift, rot, cmp, logicals) 1-1

Integer multiply (32 × 8, 32 × 16, 32 × 32) 4-1, 4-1, 5-2

Scalar float 5-1

VSFX (vector simple) 1-1

VCFX (vector complex) 4-1

VFPU (vector float) 4-1

VPER (vector permute) 2-1

MMUs

TLBs (instruction and data) 128-entry, 2-way

Tablewalk mechanism Hardware + software

Instruction BATs/data BATs 8/8 8/8 8/8 8/8 4/4

L1 I Cache/D Cache Features

Size 32K/32K

Associativity 8-way

Locking granularity Way

Parity on I cache Word

Parity on D cache Byte

Number of D cache misses (load/store) 5/2 5/1

Data stream touch engines 4 streams

On-Chip Cache Features

Cache level L2

Size/associativity 1-Mbyte/
8-way

512-Kbyte/8-way 256-Kbyte/8-way

Access width 256 bits

Number of 32-byte sectors/line 2 2

Parity tag Byte Byte

Parity data Byte Byte

Data ECC 64-bit —

Thermal Control

Dynamic frequency switching divide-by-two mode Yes Yes No No No

Dynamic frequency switching divide-by-four mode Yes No No No No

Thermal diode Yes Yes No No No

Table 1. Microarchitecture Comparison (continued)

Microarchitectural Specs MPC7448 MPC7447A MPC7447 MPC7445 MPC7441
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when running a typical benchmark at temperatures in a typical system. The Full-Power Mode–Thermal 
value is intended to represent the sustained power consumption of the device when running a typical code 
sequence at high temperature and is recommended to be used as the basis for designing a thermal solution; 
see Section 9.7, “Power and Thermal Management Information” for more information on thermal 
solutions. The Full-Power Mode–Maximum value is recommended to be used for power supply design 
because this represents the maximum peak power draw of the device that a power supply must be capable 
of sourcing without voltage droop. For information on power consumption when dynamic frequency 
switching is enabled, see Section 9.7.5, “Dynamic Frequency Switching (DFS).” 

Table 7. Power Consumption for MPC7448 at Maximum Rated Frequency

Die Junction 
Temperature 

(Tj)

Maximum Processor Core Frequency (Speed Grade, MHz)
Unit Notes

1000 MHz 1420 MHz 1600 MHz 1700 MHz

Full-Power Mode

Typical 65 •CC 15.0 19.0 20.0 21.0 W 1, 2

Thermal 105 •CC 18.6 23.3 24.4 25.6 W 1, 5

Maximum 105 •CC 21.6 27.1 28.4 29.8 W 1, 3

Nap Mode

Typical 105 •CC 11.1 11.8 13.0 13.0 W 1, 6

Sleep Mode

Typical 105 •CC 10.8 11.4 12.5 12.5 W 1, 6

Deep Sleep Mode (PLL Disabled)

Typical 105 •CC 10.4 11.0 12.0 12.0 W 1, 6

Notes: 
1. These values specify the power consumption for the core power supply (VDD) at nominal voltage and apply to all valid 

processor bus frequencies and configurations. The values do not include I/O supply power (OVDD) or PLL supply power 
(AVDD). OVDD power is system dependent but is typically < 5% of VDD power. Worst case power consumption for 
AVDD < 13 mW. Freescale also offers MPC7448 part numbers that meet lower power consumption specifications; for 
more information on these devices, see Section 11.2, “Part Numbers Not Fully Addressed by This Document.”

2. Typical power consumption is an average value measured with the processor operating at its rated maximum processor 
core frequency (except for Deep Sleep Mode), at nominal recommended VDD (see Table 4) and 65°C while running the 
Dhrystone 2.1 benchmark and achieving 2.3 Dhrystone MIPs/MHz. This parameter is not 100% tested but periodically 
sampled.b 

3. Maximum power consumption is the average measured with the processor operating at its rated maximum processor core 
frequency, at nominal VDD and maximum operating junction temperature (see Table 4) while running an entirely 
cache-resident, contrived sequence of instructions to keep all the execution units maximally busy.

4. Doze mode is not a user-definable state; it is an intermediate state between full-power and either nap or sleep mode. As 
a result, power consumption for this mode is not tested.

5. Thermal power consumption is an average value measured at the nominal recommended VDD (see Table 4) and 105 °C 
while running the Dhrystone 2.1 benchmark and achieving 2.3 Dhrystone MIPs/MHz. This parameter is not 100% tested 
but periodically sampled.

6. Typical power consumption for these modes is measured at the nominal recommended VDD (see Table 4) and 105 °C in 
the mode described. This parameter is not 100% tested but is periodically sampled.
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5.2 AC Electrical Characteristics
This section provides the AC electrical characteristics for the MPC7448. After fabrication, functional parts 
are sorted by maximum processor core frequency as shown in Section 5.2.1, “Clock AC Specifications,” 
and tested for conformance to the AC specifications for that frequency. The processor core frequency, 
determined by the bus (SYSCLK) frequency and the settings of the PLL_CFG[0:5] signals, can be 
dynamically modified using dynamic frequency switching (DFS). Parts are sold by maximum processor 
core frequency; see Section 11, “Part Numbering and Marking,” for information on ordering parts. DFS is 
described in Section 9.7.5, “Dynamic Frequency Switching (DFS).”

5.2.1 Clock AC Specifications
Table 8 provides the clock AC timing specifications as defined in Figure 3 and represents the tested 
operating frequencies of the devices. The maximum system bus frequency, fSYSCLK, given in Table 8, is 
considered a practical maximum in a typical single-processor system. This does not exclude 
multi-processor systems, but these typically require considerably more design effort to achieve the 
maximum rated bus frequency. The actual maximum SYSCLK frequency for any application of the 
MPC7448 will be a function of the AC timings of the microprocessor(s), the AC timings for the system 
controller, bus loading, circuit board topology, trace lengths, and so forth, and may be less than the value 
given in Table 8.
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SYSCLK to output high impedance (all except TS, ARTRY, 
SHD0, SHD1)

tKHOZ — 1.8 ns 5

SYSCLK to TS high impedance after precharge tKHTSPZ — 1 tSYSCLK 3, 4, 5

Maximum delay to ARTRY/SHD0/SHD1 precharge tKHARP — 1 tSYSCLK 3, 5, 6, 7

SYSCLK to ARTRY/SHD0/SHD1 high impedance after 
precharge

tKHARPZ — 2 tSYSCLK 3, 5, 6, 7

Notes: 
1. All input specifications are measured from the midpoint of the signal in question to the midpoint of the rising edge of the input 

SYSCLK. All output specifications are measured from the midpoint of the rising edge of SYSCLK to the midpoint of the signal 
in question. All output timings assume a purely resistive 50-Ω load (see Figure 4). Input and output timings are measured at 
the pin; time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

2. The symbology used for timing specifications herein follows the pattern of t(signal)(state)(reference)(state) for inputs and 
t(reference)(state)(signal)(state) for outputs. For example, tIVKH symbolizes the time input signals (I) reach the valid state (V) 
relative to the SYSCLK reference (K) going to the high (H) state or input setup time. And tKHOV symbolizes the time from 
SYSCLK(K) going high (H) until outputs (O) are valid (V) or output valid time. Input hold time can be read as the time that the 
input signal (I) went invalid (X) with respect to the rising clock edge (KH) (note the position of the reference and its state for 
inputs) and output hold time can be read as the time from the rising edge (KH) until the output went invalid (OX).

3. tsysclk is the period of the external clock (SYSCLK) in ns. The numbers given in the table must be multiplied by the period of 
SYSCLK to compute the actual time duration (in ns) of the parameter in question.

4. According to the bus protocol, TS is driven only by the currently active bus master. It is asserted low and precharged high 
before returning to high impedance, as shown in Figure 6. The nominal precharge width for TS is tSYSCLK, that is, one clock 
period. Since no master can assert TS on the following clock edge, there is no concern regarding contention with the 
precharge. Output valid and output hold timing is tested for the signal asserted. Output valid time is tested for precharge.The 
high-impedance behavior is guaranteed by design.

5. Guaranteed by design and not tested

6. According to the bus protocol, ARTRY can be driven by multiple bus masters through the clock period immediately following 
AACK. Bus contention is not an issue because any master asserting ARTRY will be driving it low. Any master asserting it low 
in the first clock following AACK will then go to high impedance for a fraction of a cycle, then negated for up to an entire cycle 
(crossing a bus cycle boundary) before being three-stated again. The nominal precharge width for ARTRY is 1.0 tSYSCLK; 
that is, it should be high impedance as shown in Figure 6 before the first opportunity for another master to assert ARTRY. 
Output valid and output hold timing is tested for the signal asserted.The high-impedance behavior is guaranteed by design.

7. According to the MPX bus protocol, SHD0 and SHD1 can be driven by multiple bus masters beginning two cycles after TS. 
Timing is the same as ARTRY, that is, the signal is high impedance for a fraction of a cycle, then negated for up to an entire 
cycle (crossing a bus cycle boundary) before being three-stated again. The nominal precharge width for SHD0 and SHD1 is 
1.0 tSYSCLK. The edges of the precharge vary depending on the programmed ratio of core to bus (PLL configurations).

8. BMODE[0:1] and BVSEL[0:1] are mode select inputs. BMODE[0:1] are sampled before and after HRESET negation. 
BVSEL[0:1] are sampled before HRESET negation. These parameters represent the input setup and hold times for each 
sample. These values are guaranteed by design and not tested. BMODE[0:1] must remain stable after the second sample; 
BVSEL[0:1] must remain stable after the first (and only) sample. See Figure 5 for sample timing.

Table 9. Processor Bus AC Timing Specifications1 (continued)
At recommended operating conditions. See Table 4.

Parameter Symbol 2
All Speed Grades

Unit Notes
Min Max
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Figure 4 provides the AC test load for the MPC7448.

Figure 4. AC Test Load

Figure 5 provides the BMODE[0:1] input timing diagram for the MPC7448. These mode select inputs are 
sampled once before and once after HRESET negation.

Figure 5. BMODE[0:1] Input Sample Timing Diagram

Output Z0 = 50 Ω OVDD/2
RL = 50 Ω

HRESET

BMODE[0:1]

VM = Midpoint Voltage (OVDD/2)

SYSCLK

1st Sample 2nd Sample

VM VM
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5.2.3 IEEE Std. 1149.1 AC Timing Specifications
Table 10 provides the IEEE Std. 1149.1 (JTAG) AC timing specifications as defined in Figure 8 through 
Figure 11.

Table 10. JTAG AC Timing Specifications (Independent of SYSCLK)1

At recommended operating conditions. See Table 4.

Parameter Symbol Min Max Unit Notes

TCK frequency of operation fTCLK 0 33.3 MHz

TCK cycle time tTCLK 30 — ns

TCK clock pulse width measured at 1.4 V tJHJL 15 — ns

TCK rise and fall times tJR and tJF — 2 ns

TRST assert time tTRST 25 — ns 2

Input setup times:
Boundary-scan data
TMS, TDI 

tDVJH
tIVJH

4
0

—
—

ns 3

Input hold times:
Boundary-scan data
TMS, TDI 

tDXJH
tIXJH

20
25

—
—

ns 3

Valid times:
Boundary-scan data
TDO

tJLDV
tJLOV

4
4

20
25

ns 4

Output hold times:
Boundary-scan data
TDO

tJLDX
tJLOX

30
30

—
—

ns 4

TCK to output high impedance:
Boundary-scan data
TDO

tJLDZ
tJLOZ

3
3

19
9

ns 4, 5

Notes: 
1. All outputs are measured from the midpoint voltage of the falling/rising edge of TCLK to the midpoint of the signal in question. 

The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load (see Figure 7). 
Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

2. TRST is an asynchronous level sensitive signal. The time is for test purposes only.

3. Non-JTAG signal input timing with respect to TCK.

4. Non-JTAG signal output timing with respect to TCK.

5. Guaranteed by design and characterization.
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Figure 11 provides the test access port timing diagram.

Figure 11. Test Access Port Timing Diagram

5.3 Voltage and Frequency Derating
Voltage and frequency derating is no longer supported for part numbers described by this document 
beginning with datecode 0613. (See Section 11, “Part Numbering and Marking,” for information on date 
code markings.) It is supported by some MPC7448 part numbers which target low-power applications; see 
Section 11.2, “Part Numbers Not Fully Addressed by This Document” and the referenced MPC7448 
Hardware Specification Addenda for more information on these low-power devices. For those devices 
which previously supported this feature, information has been archived in the Chip Errata for the 
MPC7448 (document order no. MPC7448CE). 

VMTCK

TDI, TMS

TDO Output Data Valid

VM = Midpoint Voltage (OVDD/2)

tIXJH
tIVJH

tJLOV

tJLOZ

Input
Data Valid

TDO Output Data Valid

tJLOX

VM
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VDD_SENSE G13, N12 — — 18

Notes:
1. OVDD supplies power to the processor bus, JTAG, and all control signals, and is configurable. (VDD supplies power to the 

processor core, and AVDD supplies power to the PLL after filtering from VDD). To program the I/O voltage, see Table 3. If used, 
the pull-down resistor should be less than 250 Ω.  Because these settings may change in future products, it is recommended 
BVSEL[0:1] be configured using resistor options, jumpers, or some other flexible means, with the capability to reconfigure 
the termination of this signal in the future if necessary. For actual recommended value of Vin or supply voltages see Table 4. 

2. Unused address pins must be pulled down to GND and corresponding address parity pins pulled up to OVDD.

3. These pins require weak pull-up resistors (for example, 4.7 KΩ) to maintain the control signals in the negated state after they 
have been actively negated and released by the MPC7448 and other bus masters.

4. This signal selects between MPX bus mode (asserted) and 60x bus mode (negated) and will be sampled at HRESET going 
high.

5. This signal must be negated during reset, by pull-up resistor to OVDD or negation by ¬HRESET (inverse of HRESET), to 
ensure proper operation.

6. Internal pull up on die. 

7. Not used in 60x bus mode.

8. These signals must be pulled down to GND if unused, or if the MPC7448 is in 60x bus mode.

9. These input signals are for factory use only and must be pulled down to GND for normal machine operation.

10.This test signal is recommended to be tied to HRESET; however, other configurations will not adversely affect performance.

11.These signals are for factory use only and must be left unconnected for normal machine operation. Some pins that were 
NCs on the MPC7447, MPC7445, and MPC7441 have now been defined for other purposes.

12.These input signals are for factory use only and must be pulled up to OVDD for normal machine operation.

13.This pin can externally cause a performance monitor event. Counting of the event is enabled through software.

14.This signal must be asserted during reset, by pull down to GND or assertion by HRESET, to ensure proper operation.

15.These pins were NCs on the MPC7447, MPC7445, and MPC7441. See Section 9.3, “Connection Recommendations,” for 
more information.

16.These pins were OVDD pins on the MPC7447, MPC7445, and MPC7441. These pins are internally connected to OVDD and 
are intended to allow an external device (such as a power supply) to detect the I/O voltage level present inside the device 
package. If unused, it is recommended they be connected to test points to facilitate system debug; otherwise, they may be 
connected directly to OVDD or left unconnected.

17.These pins provide connectivity to the on-chip temperature diode that can be used to determine the die junction temperature 
of the processor. These pins may be left unterminated if unused.

18.These pins are internally connected to VDD and are intended to allow an external device (such as a power supply) to detect 
the processor core voltage level present inside the device package. If unused, it is recommended they be connected to test 
points to facilitate system debug; otherwise, they may be connected directly to VDD or left unconnected.

19.These pins are internally connected to GND and are intended to allow an external device to detect the processor ground 
voltage level present inside the device package. If unused, it is recommended they be connected to test points to facilitate 
system debug; otherwise, they may be connected directly to GND or left unconnected.

20.These pins were in the TEST[0:4] factory test pin group on the MPC7447A, MPC7447, MPC7445, and MPC7441. They have 
been assigned new functions on the MPC7448.

21.These pins can be used to enable the supported dynamic frequency switching (DFS) modes via hardware. If both are pulled 
down, DFS mode is disabled completely and cannot be enabled via software. If unused, they should be pulled up to OVDD 
to allow software control of DFS. See the MPC7450 RISC Microprocessor Family Reference Manual for more information.

22.This pin is provided to allow operation of the L2 cache at low core voltages and is for factory use only. See the MPC7450 
RISC Microprocessor Family Reference Manual for more information.

Table 11. Pinout Listing for the MPC7448, 360 HCTE Package (continued)

Signal Name Pin Number Active I/O Notes
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8 Package Description
The following sections provide the package parameters and mechanical dimensions for the HCTE 
package. 

8.1 Package Parameters for the MPC7448, 360 HCTE BGA
The package parameters are as provided in the following list. The package type is 25 × 25 mm, 360-lead 
high coefficient of thermal expansion ceramic ball grid array (HCTE).

Package outline 25 × 25 mm
Interconnects 360 (19 × 19 ball array – 1)
Pitch 1.27 mm (50 mil)
Minimum module height 2.32 mm
Maximum module height 2.80 mm
Ball diameter 0.89 mm (35 mil)
Coefficient of thermal expansion12.3 ppm/°C 
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8.2 Mechanical Dimensions for the MPC7448, 360 HCTE BGA
Figure 13 provides the mechanical dimensions and bottom surface nomenclature for the MPC7448, 360 
HCTE BGA package.

Figure 13. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC7448, 
360 HCTE BGA Package

NOTES:
1. Dimensioning and 

tolerancing per ASME 
Y14.5M, 1994

2. Dimensions in millimeters.
3. Top side A1 corner index is a 

metalized feature with 
various shapes. Bottom side 
A1 corner is designated with 
a ball missing from the array.
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100110 11x 1x 733 825 913 1100 1467

000000 11.5x 1x 766 863 955 1150 1533

101110 12x 1x 600 800 900 996 1200 1600

111110 12.5x 1x 625 833 938 1038 1250 1667

010110 13x 1x 650 865 975 1079 1300

111000 13.5x 1x 675 900 1013 1121 1350

110010 14x 1x 700 933 1050 1162 1400

000110 15x 1x 750 1000 1125 1245 1500

110110 16x 1x 800 1066 1200 1328 1600

000010 17x 1x 850 1132 1275 1417 1700

001010 18x 1x 600 900 1200 1350 1500

001110 20x 1x 667 1000 1332 1500 1666

010010 21x 1x 700 1050 1399 1575

011010 24x 1x 800 1200 1600

111010 28x 1x 933 1400

001100 PLL bypass PLL off, SYSCLK clocks core circuitry directly

111100 PLL off PLL off, no core clocking occurs

Notes: 
1. PLL_CFG[0:5] settings not listed are reserved.

2. The sample bus-to-core frequencies shown are for reference only. Some PLL configurations may select bus, core, or VCO 
frequencies which are not useful, not supported, or not tested for by the MPC7448; see Section 5.2.1, “Clock AC 
Specifications,” for valid SYSCLK, core, and VCO frequencies. 

3. In PLL-bypass mode, the SYSCLK input signal clocks the internal processor directly and the PLL is disabled. However, the 
bus interface unit requires a 2x clock to function. Therefore, an additional signal, EXT_QUAL, must be driven at half the 
frequency of SYSCLK and offset in phase to meet the required input setup tIVKH and hold time tIXKH (see Table 9). The result 
will be that the processor bus frequency will be one-half SYSCLK, while the internal processor is clocked at SYSCLK 
frequency. This mode is intended for factory use and emulator tool use only. 
Note: The AC timing specifications given in this document do not apply in PLL-bypass mode.

4. In PLL-off mode, no clocking occurs inside the MPC7448 regardless of the SYSCLK input.

5. Applicable when DFS modes are disabled. These multipliers change when operating in a DFS mode. See Section 9.7.5, 
“Dynamic Frequency Switching (DFS)” for more information.

6. Bus-to-core multipliers less than 5x require that assertion of AACK be delayed by one or two bus cycles to allow the 
processor to generate a response to a snooped transaction. See the MPC7450 RISC Microprocessor Reference Manual for 
more information.

Table 12. MPC7448 Microprocessor PLL Configuration Example (continued)

PLL_CFG[0:5]

Example Core and VCO Frequency in MHz

Bus-to-Core 
Multiplier 5

Core-to-VCO 
Multiplier 5

Bus (SYSCLK) Frequency

33.3
MHz

50
MHz

66.6
MHz

75
MHz

83
MHz

100
MHz

133
MHz

167
MHz

200
MHz
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These requirements are shown graphically in Figure 16.

Figure 16. MPC7448 Power Up Sequencing Requirements

Certain stipulations also apply to the manner in which the power rails of the MPC7448 power down, as 
follows:

• OVDD may ramp down any time before or after VDD.

• The voltage at the SYSCLK input must not exceed VDD once VDD has ramped down below 0.9 V.

• The voltage at the SYSCLK input must not exceed OVDD by more 20% during transients (see 
overshoot/undershoot specifications in Figure 2) or 0.3 V DC (see Table 2) at any time.

AVDD

VDD

OVDD

SYSCLK

0.9 V

no restrictions between OVDD and VDD

0.9 V

limit imposed by VDD if OVDD ramps up first

limit imposed by OVDD if VDD ramps up first

100 μs (nominal) delay from VDD to AVDD



MPC7448 RISC Microprocessor Hardware Specifications, Rev. 4

40 Freescale Semiconductor
 

System Design Information

9.2.3 Transient Specifications
The ensure the long-term reliability of the device, the MPC7448 requires that transients on the core power 
rail (VDD) be constrained. The recommended operating voltage specifications provided in Table 4 are DC 
specifications. That is, the device may be operated continuously with VDD within the specified range 
without adversely affecting the device’s reliability. Excursions above the stated recommended operation 
range, including overshoot during power-up, can impact the long-term reliability of the device. Excursions 
are described by their amplitude and duration. Duration is defined as the time period during which the VDD 
power plane, as measured at the VDD_SENSE pins, will be within a specific voltage range, expressed as 
percentage of the total time the device will be powered up over the device lifetime. In practice, the period 
over which transients are measured can be any arbitrary period of time that accurately represents the 
expected range of processor and system activity. The voltage ranges and durations for normal operation 
and transients are described in Table 14.

Note that, to simplify transient measurements, the duration of the excursion into the High Transient region 
is also included in the Low Transient duration, so that only the time the voltage is above each threshold 
must be considered. Figure 19 shows an example of measuring voltage transients. 

Figure 19. Voltage Transient Example

Table 14. VDD Power Supply Transient Specifications
At recommended operating temperatures. See Table 4.

Voltage Region
Voltage Range (V)

Permitted 
Duration 1

Notes
Min Max

Normal VDD minimum VDD maximum 100% 2

Low Transient VDD maximum 1.35 V 10% 2, 3

High Transient 1.35 V 1.40 V 0.2% 4

Notes: 
1. Permitted duration is defined as the percentage of the total time the device is powered on that the VDD 

power supply voltage may exist within the specified voltage range.
2. See Table 4 for nominal VDD specifications.

3. To simplify measurement, excursions into the High Transient region are included in this duration.

4. Excursions above the absolute maximum rating of 1.4 V are not permitted; see Table 2.

VDD (nominal)

1.40 V

A + B < T • 10%

1.35 V

VDD (maximum)

A C

B

T

C < T • 0.2%

VDD (minimum)

Normal

Low Transient

High Transient
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likewise be pulled up through a pull-up resistor (weak or stronger: 4.7–1 KΩ) to prevent erroneous 
assertions of this signal.

In addition, the MPC7448 has one open-drain style output that requires a pull-up resistor (weak or 
stronger: 4.7–1 KΩ) if it is used by the system. This pin is CKSTP_OUT. 

BVSEL0 and BVSEL1 should not be allowed to float, and should be configured either via pull-up or 
pull-down resistors or actively driven by external logic. If pull-down resistors are used to configure 
BVSEL0 or BVSEL1, the resistors should be less than 250 Ω (see Table 11). Because PLL_CFG[0:5] 
must remain stable during normal operation, strong pull-up and pull-down resistors (1 KΩ or less) are 
recommended to configure these signals in order to protect against erroneous switching due to ground 
bounce, power supply noise, or noise coupling.

During inactive periods on the bus, the address and transfer attributes may not be driven by any master and 
may, therefore, float in the high-impedance state for relatively long periods of time. Because the MPC7448 
must continually monitor these signals for snooping, this float condition may cause excessive power draw 
by the input receivers on the MPC7448 or by other receivers in the system. These signals can be pulled up 
through weak (10-KΩ) pull-up resistors by the system, address bus driven mode enabled (see the 
MPC7450 RISC Microprocessor Family Users’ Manual for more information on this mode), or they may 
be otherwise driven by the system during inactive periods of the bus to avoid this additional power draw. 
Preliminary studies have shown the additional power draw by the MPC7448 input receivers to be 
negligible and, in any event, none of these measures are necessary for proper device operation. The 
snooped address and transfer attribute inputs are: A[0:35], AP[0:4], TT[0:4], CI, WT, and GBL. 

If address or data parity is not used by the system, and respective parity checking is disabled through HID1, 
the input receivers for those pins are disabled and do not require pull-up resistors, therefore they may be 
left unconnected by the system. If extended addressing is not used (HID0[XAEN] = 0), A[0:3] are unused 
and must be pulled low to GND through weak pull-down resistors; additionally, if address parity checking 
is enabled (HID1[EBA] = 1) and extended addressing is not used, AP[0] must be pulled up to OVDD 
through a weak pull-up resistor. If the MPC7448 is in 60x bus mode, DTI[0:3] must be pulled low to GND 
through weak pull-down resistors.

The data bus input receivers are normally turned off when no read operation is in progress and, therefore, 
do not require pull-up resistors on the bus. Other data bus receivers in the system, however, may require 
pull-ups or require that those signals be otherwise driven by the system during inactive periods. The data 
bus signals are D[0:63] and DP[0:7].

9.6 JTAG Configuration Signals
Boundary-scan testing is enabled through the JTAG interface signals. The TRST signal is optional in the 
IEEE 1149.1 standard specification, but is typically provided on all processors that implement the 
PowerPC architecture. While it is possible to force the TAP controller to the reset state using only the TCK 
and TMS signals, more reliable power-on reset performance will be obtained if the TRST signal is asserted 
during power-on reset. Because the JTAG interface is also used for accessing the common on-chip 
processor (COP) function, simply tying TRST to HRESET is not practical.

The COP function of these processors allows a remote computer system (typically a PC with dedicated 
hardware and debugging software) to access and control the internal operations of the processor. The COP 
interface connects primarily through the JTAG port of the processor, with some additional status 
monitoring signals. The COP port requires the ability to independently assert HRESET or TRST in order 
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Due to the complexity and variety of system-level boundary conditions for today's microelectronic 
equipment, the combined effects of the heat transfer mechanisms (radiation, convection, and conduction) 
may vary widely. For these reasons, we recommend using conjugate heat transfer models for the board as 
well as system-level designs.

For system thermal modeling, the MPC7448 thermal model is shown in Figure 26. Four volumes represent 
this device. Two of the volumes, solder ball-air and substrate, are modeled using the package outline size 
of the package. The other two, die and bump-underfill, have the same size as the die. The silicon die should 
be modeled 8.0 × 7.3 × 0.86 mm3 with the heat source applied as a uniform source at the bottom of the 
volume. The bump and underfill layer is modeled as 8.0 × 7.3 × 0.07 mm3collapsed in the z-direction with 
a thermal conductivity of 5.0 W/(m • K) in the z-direction. The substrate volume is 25 × 25 × 1.14 mm3 
and has 9.9 W/(m • K) isotropic conductivity in the xy-plane and 2.95 W/(m • K) in the direction of the 
z-axis. The solder ball and air layer are modeled with the same horizontal dimensions as the substrate and 
is 0.8 mm thick. For the LGA package the solder and air layer is 0.1 mm thick, but the material properties 
are the same. It can also be modeled as a collapsed volume using orthotropic material properties: 
0.034 W/(m • K) in the xy-plane direction and 11.2 W/(m • K) in the direction of the z-axis.

Figure 26. Recommended Thermal Model of MPC7448

Bump and Underfill

Die

Substrate

Solder and Air

Die

Substrate

Side View of Model (Not to Scale)

Top View of Model (Not to Scale)

x

y

z

Conductivity Value Unit

Die (8.0 × 7.3 × 0.86 mm3)

Silicon
Temperature- 

dependent
W/(m • K)

Bump and Underfill (8.0 × 7.3 × 0.07 mm3)

kz 5.0 W/(m • K)

Substrate (25 × 25 × 1.14 mm3)

kx 9.9 W/(m • K)

ky 9.9

kz 2.95

Solder Ball and Air (25 × 25 × 0.8 mm3)

kx 0.034 W/(m • K)

ky 0.034

kz 11.2
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Solving for T, the equation becomes:

9.7.5 Dynamic Frequency Switching (DFS)
The DFS feature in the MPC7448 adds the ability to divide the processor-to-system bus ratio by two or 
four during normal functional operation. Divide-by-two mode is enabled by setting the HID1[DFS2] bit 
in software or by asserting the DFS2 pin via hardware. The MPC7448 can be returned for full speed by 
clearing HID1[DFS2] or negating DFS2. Similarly, divide-by-four mode is enabled by setting 
HID1[DFS4] in software or by asserting the DFS4 pin. In all cases, the frequency change occurs in 1 clock 
cycle and no idle waiting period is required to switch between modes. Note that asserting either DFS2 or 
DFS4 overrides software control of DFS, and that asserting both DFS2 and DFS4 disables DFS 
completely, including software control. Additional information regarding DFS can be found in the 
MPC7450 RISC Microprocessor Family Reference Manual. Note that minimum core frequency 
requirements must be observed when enabling DFS, and the resulting core frequency must meet the 
requirements for fcore_DFS given in Table 8.

9.7.5.1 Power Consumption with DFS Enabled
Power consumption with DFS enabled can be approximated using the following formula:

Where:

PDFS = Power consumption with DFS enabled

fDFS = Core frequency with DFS enabled

f = Core frequency prior to enabling DFS

P = Power consumption prior to enabling DFS (see Table 7)

PDS = Deep sleep mode power consumption (see Table 7)

The above is an approximation only. Power consumption with DFS enabled is not tested or guaranteed.

9.7.5.2 Bus-to-Core Multiplier Constraints with DFS
DFS is not available for all bus-to-core multipliers as configured by PLL_CFG[0:5] during hard reset. The 
complete listing is shown in Table 16. Shaded cells represent DFS modes that are not available for a 
particular PLL_CFG[0:5] setting. Should software or hardware attempt to transition to a multiplier that is 
not supported, the device will remain at its current multiplier. For example, if a transition from 
DFS-disabled to an unsupported divide-by-2 or divide-by-4 setting is attempted, the bus-to-core multiplier 
will remain at the setting configured by the PLL_CFG[0:5] pins. In the case of an attempted transition from 
a supported divide-by-2 mode to an unsupported divide-by-4 mode, the device will remain in divide-by-2 
mode. In all cases, the HID1[PC0-5] bits will correctly reflect the current bus-to-core frequency multiplier.

 nT =   
 VH – VL__________

1.986 × 10–4

 PDFS =   (P – PDS)  + PDS
fDFS___

f
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11.2 Part Numbers Not Fully Addressed by This Document
Parts with application modifiers or revision levels not fully addressed in this specification document are 
described in separate hardware specification addenda which supplement and supersede this document. As 
such parts are released, these specifications will be listed in this section.

Table 19. Part Numbers Addressed by MC7448xxnnnnNx Series Hardware Specification Addendum
(Document Order No. MPC7448ECS01AD)

xx 7448 xx nnnn N x
Product 

Code
Part 

Identifier
Package

Processor 
Frequency

Application Modifier Revision Level

MC 7448 HX = HCTE BGA
VS = RoHS LGA
VU = RoHS BGA

1400 N: 1.15 V ± 50 mV 
0 to 105 °C

(date code 0613 and later) 2

C: 2.1; PVR = 0x8004_0201
D: 2.2; PVR = 0x8004_0202

MC
PPC1

1400 N: 1.1 V ± 50 mV 
0 to 105 °C

(date code 0612 and prior) 2

MC
PPC1

1267
Revision C only

N: 1.1 V ± 50 mV 
0 to 105 °C

MC
PPC1

1267
Revision D only

N: 1.05 V ± 50 mV 
0 to 105 °C

MC
PPC1

1250 N: 1.1 V ± 50 mV 
0 to 105 °C

MC
PPC1

1000
867
800
667
600

N: 1.0 V ± 50 mV 
0 to 105 °C

Notes: 
1. The P prefix in a Freescale part number designates a “Pilot Production Prototype” as defined by Freescale SOP 3-13. These 

parts have only preliminary reliability and characterization data. Before pilot production prototypes can be shipped, written 
authorization from the customer must be on file in the applicable sales office acknowledging the qualification status and the 
fact that product changes may still occur as pilot production prototypes are shipped.

2. Core voltage for 1400 MHz devices currently in production (date code of 0613 and later) is 1.15 V ± 50 mV; all such devices 
have the MC product code. The 1400 MHz devices with date code of 0612 and prior specified core voltage of 1.1 V ± 50 mV; 
this includes all 1400 MHz devices with the PPC product code. See Section 11.3, “Part Marking,” for information on part 
marking.
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