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Figure 2 shows the undershoot and overshoot voltage on the MPC7448.

Figure 2. Overshoot/Undershoot Voltage

The MPC7448 provides several I/O voltages to support both compatibility with existing systems and 
migration to future systems. The MPC7448 core voltage must always be provided at the nominal voltage 
(see Table 4). The input voltage threshold for each bus is selected by sampling the state of the voltage 
select pins at the negation of the signal HRESET. The output voltage will swing from GND to the 
maximum voltage applied to the OVDD power pins. Table 3 provides the input threshold voltage settings. 
Because these settings may change in future products, it is recommended that BVSEL[0:1] be configured 
using resistor options, jumpers, or some other flexible means, with the capability to reconfigure the 
termination of this signal in the future, if necessary.

Table 3. Input Threshold Voltage Setting

BVSEL0 BVSEL1 I/O Voltage Mode1 Notes

0 0 1.8 V 2, 3

0 1 2.5 V 2, 4

1 0 1.5 V 2

1 1 2.5 V 4

Notes:
1. Caution: The I/O voltage mode selected must agree with the OVDD voltages 

supplied. See Table 4.

2. If used, pull-down resistors should be less than 250 Ω.

3. The pin configuration used to select 1.8V mode on the MPC7448 is not compatible 
with the pin configuration used to select 1.8V mode on the MPC7447A and earlier 
devices.

4. The pin configuration used to select 2.5V mode on the MPC7448 is fully compatible 
with the pin configuration used to select 2.5V mode on the MPC7447A and earlier 
devices.

VIH

GND
GND – 0.3 V

GND – 0.7 V
Not to Exceed 10%

OVDD + 20%

VIL

OVDD

OVDD + 5%

of tSYSCLK
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Table 5 provides the package thermal characteristics for the MPC7448. For more information regarding 
thermal management, see Section 9.7, “Power and Thermal Management Information.”

Table 6 provides the DC electrical characteristics for the MPC7448.

Table 5. Package Thermal Characteristics1

Characteristic Symbol Value Unit Notes

Junction-to-ambient thermal resistance, natural convection, single-layer (1s) board RθJA 26 •C/WC/W 2, 3

Junction-to-ambient thermal resistance, natural convection, four-layer (2s2p) board RθJMA 19 •C/WC/W 2, 4

Junction-to-ambient thermal resistance, 200 ft/min airflow, single-layer (1s) board RθJMA 22 •C/WC/W 2, 4

Junction-to-ambient thermal resistance, 200 ft/min airflow, four-layer (2s2p) board RθJMA 16 •C/WC/W 2, 4

Junction-to-board thermal resistance RθJB 11 •C/WC/W 5

Junction-to-case thermal resistance RθJC < 0.1 •C/WC/W 6

Notes: 

1. Refer to Section 9.7, “Power and Thermal Management Information,” for details about thermal management.

2. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) 
temperature, ambient temperature, airflow, power dissipation of other components on the board, and board thermal 
resistance.

3. Per JEDEC JESD51-2 with the single-layer board horizontal

4. Per JEDEC JESD51-6 with the board horizontal

5. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on 
the top surface of the board near the package.

6. This is the thermal resistance between die and case top surface as measured by the cold plate method (MIL SPEC-883 
Method 1012.1) with the calculated case temperature. The actual value of RθJC for the part is less than 0.1°C/W.

Table 6. DC Electrical Specifications
At recommended operating conditions. See Table 4. 

Characteristic Nominal Bus
Voltage 1

Symbol Min Max Unit Notes

Input high voltage
(all inputs)

1.5 VIH OVDD × 0.65  OVDD + 0.3 V 2

1.8 OVDD × 0.65  OVDD + 0.3

2.5 1.7  OVDD + 0.3

Input low voltage
(all inputs)

1.5 VIL –0.3 OVDD × 0.35 V 2

1.8 –0.3 OVDD × 0.35

2.5 –0.3 0.7

Input leakage current, all signals except 
BVSEL0, LSSD_MODE, TCK, TDI, TMS, 
TRST:
Vin = OVDD 
Vin = GND

— Iin —
 

50
– 50

µA 2, 3

Input leakage current, BVSEL0, 
LSSD_MODE, TCK, TDI, TMS, TRST:
Vin = OVDD 
Vin = GND

— Iin —

 50
– 2000

µA 2, 6
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when running a typical benchmark at temperatures in a typical system. The Full-Power Mode–Thermal 
value is intended to represent the sustained power consumption of the device when running a typical code 
sequence at high temperature and is recommended to be used as the basis for designing a thermal solution; 
see Section 9.7, “Power and Thermal Management Information” for more information on thermal 
solutions. The Full-Power Mode–Maximum value is recommended to be used for power supply design 
because this represents the maximum peak power draw of the device that a power supply must be capable 
of sourcing without voltage droop. For information on power consumption when dynamic frequency 
switching is enabled, see Section 9.7.5, “Dynamic Frequency Switching (DFS).” 

Table 7. Power Consumption for MPC7448 at Maximum Rated Frequency

Die Junction 
Temperature 

(Tj)

Maximum Processor Core Frequency (Speed Grade, MHz)
Unit Notes

1000 MHz 1420 MHz 1600 MHz 1700 MHz

Full-Power Mode

Typical 65 •CC 15.0 19.0 20.0 21.0 W 1, 2

Thermal 105 •CC 18.6 23.3 24.4 25.6 W 1, 5

Maximum 105 •CC 21.6 27.1 28.4 29.8 W 1, 3

Nap Mode

Typical 105 •CC 11.1 11.8 13.0 13.0 W 1, 6

Sleep Mode

Typical 105 •CC 10.8 11.4 12.5 12.5 W 1, 6

Deep Sleep Mode (PLL Disabled)

Typical 105 •CC 10.4 11.0 12.0 12.0 W 1, 6

Notes: 
1. These values specify the power consumption for the core power supply (VDD) at nominal voltage and apply to all valid 

processor bus frequencies and configurations. The values do not include I/O supply power (OVDD) or PLL supply power 
(AVDD). OVDD power is system dependent but is typically < 5% of VDD power. Worst case power consumption for 
AVDD < 13 mW. Freescale also offers MPC7448 part numbers that meet lower power consumption specifications; for 
more information on these devices, see Section 11.2, “Part Numbers Not Fully Addressed by This Document.”

2. Typical power consumption is an average value measured with the processor operating at its rated maximum processor 
core frequency (except for Deep Sleep Mode), at nominal recommended VDD (see Table 4) and 65°C while running the 
Dhrystone 2.1 benchmark and achieving 2.3 Dhrystone MIPs/MHz. This parameter is not 100% tested but periodically 
sampled.b 

3. Maximum power consumption is the average measured with the processor operating at its rated maximum processor core 
frequency, at nominal VDD and maximum operating junction temperature (see Table 4) while running an entirely 
cache-resident, contrived sequence of instructions to keep all the execution units maximally busy.

4. Doze mode is not a user-definable state; it is an intermediate state between full-power and either nap or sleep mode. As 
a result, power consumption for this mode is not tested.

5. Thermal power consumption is an average value measured at the nominal recommended VDD (see Table 4) and 105 °C 
while running the Dhrystone 2.1 benchmark and achieving 2.3 Dhrystone MIPs/MHz. This parameter is not 100% tested 
but periodically sampled.

6. Typical power consumption for these modes is measured at the nominal recommended VDD (see Table 4) and 105 °C in 
the mode described. This parameter is not 100% tested but is periodically sampled.
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Notes:

1. Caution: The SYSCLK frequency and PLL_CFG[0:5] settings must be chosen such that the resulting SYSCLK (bus) 
frequency, processor core frequency, and PLL (VCO) frequency do not exceed their respective maximum or minimum 
operating frequencies. Refer to the PLL_CFG[0:5] signal description in Section 9.1.1, “PLL Configuration,” for valid 
PLL_CFG[0:5] settings.

2. Actual maximum system bus frequency is system-dependent. See Section 5.2.1, “Clock AC Specifications.”

3. Rise and fall times for the SYSCLK input measured from 0.4 to 1.4 V

4. Timing is guaranteed by design and characterization.

5. Guaranteed by design

6. The SYSCLK driver’s closed loop jitter bandwidth should be less than 1.5 MHz at –3 dB.

7. Relock timing is guaranteed by design and characterization. PLL-relock time is the maximum amount of time required for PLL 
lock after a stable VDD and SYSCLK are reached during the power-on reset sequence. This specification also applies when 
the PLL has been disabled and subsequently re-enabled during sleep mode. Also note that HRESET must be held asserted 
for a minimum of 255 bus clocks after the PLL-relock time during the power-on reset sequence.

8.  This reflects the maximum and minimum core frequencies when the dynamic frequency switching feature (DFS) is disabled. 
fcore_DFS provides the maximum and minimum core frequencies when operating in a DFS mode.

9.This specification supports the Dynamic Frequency Switching (DFS) feature and is applicable only when one of the DFS modes 
(divide-by-2 or divide-by-4) is enabled. When DFS is disabled, the core frequency must conform to the maximum and minimum 
frequencies stated for fcore.

10.Use of the DFS feature does not affect VCO frequency.

Table 8. Clock AC Timing Specifications
At recommended operating conditions. See Table 4.

Characteristic Symbol

 Maximum Processor Core Frequency (Speed Grade)

Unit Notes1000 MHz 1420 MHz 1600 MHz 1700 MHz

Min Max Min Max Min Max Min Max

Processor 
core 
frequency

DFS mode disabled fcore 600 1000 600 1420 600 1600 600 1700 MHz 1, 8

DFS mode enabled fcore_DF 300 500 300 710 300 800 300 850 9

VCO frequency fVCO 600 1000 600 1420 600 800 600 1700 MHz 1, 10

SYSCLK frequency fSYSCLK 33 200 33 200 33 200 33 200 MHz 1, 2, 8

SYSCLK cycle time tSYSCLK 5.0 30 5.0 30 5.0 30 5.0 30 ns 2

SYSCLK rise and fall time tKR, tKF — 0.5 — 0.5 — 0.5 — 0.5 ns 3

SYSCLK duty cycle measured at 
OVDD/2

tKHKL/
tSYSCLK

40 60 40 60 40 60 40 60 % 4

SYSCLK cycle-to-cycle jitter — 150 — 150 — 150 — 150 ps 5, 6

Internal PLL relock time — 100 — 100 — 100 — 100 μs 7
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SYSCLK to output high impedance (all except TS, ARTRY, 
SHD0, SHD1)

tKHOZ — 1.8 ns 5

SYSCLK to TS high impedance after precharge tKHTSPZ — 1 tSYSCLK 3, 4, 5

Maximum delay to ARTRY/SHD0/SHD1 precharge tKHARP — 1 tSYSCLK 3, 5, 6, 7

SYSCLK to ARTRY/SHD0/SHD1 high impedance after 
precharge

tKHARPZ — 2 tSYSCLK 3, 5, 6, 7

Notes: 
1. All input specifications are measured from the midpoint of the signal in question to the midpoint of the rising edge of the input 

SYSCLK. All output specifications are measured from the midpoint of the rising edge of SYSCLK to the midpoint of the signal 
in question. All output timings assume a purely resistive 50-Ω load (see Figure 4). Input and output timings are measured at 
the pin; time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

2. The symbology used for timing specifications herein follows the pattern of t(signal)(state)(reference)(state) for inputs and 
t(reference)(state)(signal)(state) for outputs. For example, tIVKH symbolizes the time input signals (I) reach the valid state (V) 
relative to the SYSCLK reference (K) going to the high (H) state or input setup time. And tKHOV symbolizes the time from 
SYSCLK(K) going high (H) until outputs (O) are valid (V) or output valid time. Input hold time can be read as the time that the 
input signal (I) went invalid (X) with respect to the rising clock edge (KH) (note the position of the reference and its state for 
inputs) and output hold time can be read as the time from the rising edge (KH) until the output went invalid (OX).

3. tsysclk is the period of the external clock (SYSCLK) in ns. The numbers given in the table must be multiplied by the period of 
SYSCLK to compute the actual time duration (in ns) of the parameter in question.

4. According to the bus protocol, TS is driven only by the currently active bus master. It is asserted low and precharged high 
before returning to high impedance, as shown in Figure 6. The nominal precharge width for TS is tSYSCLK, that is, one clock 
period. Since no master can assert TS on the following clock edge, there is no concern regarding contention with the 
precharge. Output valid and output hold timing is tested for the signal asserted. Output valid time is tested for precharge.The 
high-impedance behavior is guaranteed by design.

5. Guaranteed by design and not tested

6. According to the bus protocol, ARTRY can be driven by multiple bus masters through the clock period immediately following 
AACK. Bus contention is not an issue because any master asserting ARTRY will be driving it low. Any master asserting it low 
in the first clock following AACK will then go to high impedance for a fraction of a cycle, then negated for up to an entire cycle 
(crossing a bus cycle boundary) before being three-stated again. The nominal precharge width for ARTRY is 1.0 tSYSCLK; 
that is, it should be high impedance as shown in Figure 6 before the first opportunity for another master to assert ARTRY. 
Output valid and output hold timing is tested for the signal asserted.The high-impedance behavior is guaranteed by design.

7. According to the MPX bus protocol, SHD0 and SHD1 can be driven by multiple bus masters beginning two cycles after TS. 
Timing is the same as ARTRY, that is, the signal is high impedance for a fraction of a cycle, then negated for up to an entire 
cycle (crossing a bus cycle boundary) before being three-stated again. The nominal precharge width for SHD0 and SHD1 is 
1.0 tSYSCLK. The edges of the precharge vary depending on the programmed ratio of core to bus (PLL configurations).

8. BMODE[0:1] and BVSEL[0:1] are mode select inputs. BMODE[0:1] are sampled before and after HRESET negation. 
BVSEL[0:1] are sampled before HRESET negation. These parameters represent the input setup and hold times for each 
sample. These values are guaranteed by design and not tested. BMODE[0:1] must remain stable after the second sample; 
BVSEL[0:1] must remain stable after the first (and only) sample. See Figure 5 for sample timing.

Table 9. Processor Bus AC Timing Specifications1 (continued)
At recommended operating conditions. See Table 4.

Parameter Symbol 2
All Speed Grades

Unit Notes
Min Max
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Figure 7 provides the AC test load for TDO and the boundary-scan outputs of the MPC7448.

Figure 7. Alternate AC Test Load for the JTAG Interface

Figure 8 provides the JTAG clock input timing diagram.

Figure 8. JTAG Clock Input Timing Diagram

Figure 9 provides the TRST timing diagram.

Figure 9. TRST Timing Diagram

Figure 10 provides the boundary-scan timing diagram.

Figure 10. Boundary-Scan Timing Diagram
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Figure 11 provides the test access port timing diagram.

Figure 11. Test Access Port Timing Diagram

5.3 Voltage and Frequency Derating
Voltage and frequency derating is no longer supported for part numbers described by this document 
beginning with datecode 0613. (See Section 11, “Part Numbering and Marking,” for information on date 
code markings.) It is supported by some MPC7448 part numbers which target low-power applications; see 
Section 11.2, “Part Numbers Not Fully Addressed by This Document” and the referenced MPC7448 
Hardware Specification Addenda for more information on these low-power devices. For those devices 
which previously supported this feature, information has been archived in the Chip Errata for the 
MPC7448 (document order no. MPC7448CE). 
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7 Pinout Listings
Table 11 provides the pinout listing for the MPC7448, 360 HCTE package. The pinouts of the MPC7448 
and MPC7447A are compatible, but the requirements regarding the use of the additional power and ground 
pins have changed. The MPC7448 requires these pins be connected to the appropriate power or ground 
plane to achieve high core frequencies; see Section 9.3, “Connection Recommendations,” for additional 
information. As a result, these pins should be connected in all new designs.

Additionally, the MPC7448 may be populated on a board designed for a MPC7447 (or MPC7445 or 
MPC7441), provided the core voltage can be made to match the requirements in Table 4 and all pins 
defined as ‘no connect’ for the MPC7447 are unterminated, as required by the MPC7457 RISC 
Microprocessor Hardware Specifications. The MPC7448 uses pins previously marked ‘no connect’ for the 
temperature diode pins and for additional power and ground connections. The additional power and 
ground pins are required to achieve high core frequencies and core frequency will be limited if they are 
not connected; see Section 9.3, “Connection Recommendations,” for additional information. Because 
these ‘no connect’ pins in the MPC7447 360 pin package are not driven in functional mode, an MPC7447 
can be populated in an MPC7448 board. 

NOTE

Caution must be exercised when performing boundary scan test operations 
on a board designed for an MPC7448, but populated with an MPC7447 or 
earlier device. This is because in the MPC7447 it is possible to drive the 
latches associated with the former ‘no connect’ pins in the MPC7447, 
potentially causing contention on those pins. To prevent this, ensure that 
these pins are not connected on the board or, if they are connected, ensure 
that the states of internal MPC7447 latches do not cause these pins to be 
driven during board testing. 

For the MPC7448, pins that were defined as the TEST[0:4] factory test signal group on the MPC7447A 
and earlier devices have been assigned new functions. For most of these, the termination recommendations 
for the TEST[0:4] pins of the MPC7447A are compatible with the MPC7448 and will allow correct 
operation with no performance loss. The exception is BVSEL1 (TEST3 on the MPC7447A and earlier 
devices), which may require a different termination depending which I/O voltage mode is desired; see 
Table 3 for more information.

NOTE

This pinout is not compatible with the MPC750, MPC7400, or MPC7410 
360 BGA package.
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LVRAM B10 — — 12, 20, 22

NC (no connect) A6, A14, A15, B14, B15, C14, C15, C16, C17, C18, C19, D14, D15, D16, 
D17, D18, D19, E14, E15, F14, F15, G14, G15, H15, H16, J15, J16, J17, 
J18, J19, K15, K16, K17, K18, K19, L15, L16, L17, L18, L19

— — 11

LSSD_MODE E8 Low Input 6, 12

MCP C9 Low Input

OVDD B4, C2, C12, D5, F2, H3, J5, K2, L5, M3, N6, P2, P8, P11, R4, R13, R16, 
T6, T9, U2, U12, U16, V4, V7, V10, V14

— —

OVDD_SENSE E18, G18 — — 16

PLL_CFG[0:4] B8, C8, C7, D7, A7 High Input

PLL_CFG[5] D10 High Input 9, 20

PMON_IN D9 Low Input 13

PMON_OUT A9 Low Output

QACK G5 Low Input

QREQ P4 Low Output

SHD[0:1] E4, H5 Low I/O 3

SMI F9 Low Input

SRESET A2 Low Input

SYSCLK A10 — Input

TA K6 Low Input

TBEN E1 High Input

TBST F11 Low Output

TCK C6 High Input

TDI B9 High Input 6

TDO A4 High Output

TEA L1 Low Input

TEMP_ANODE N18 — — 17

TEMP_CATHODE N19 — — 17

TMS F1 High Input 6

TRST A5 Low Input 6, 14

TS L4 Low I/O 3

TSIZ[0:2] G6, F7, E7 High Output

TT[0:4] E5, E6, F6, E9, C5 High I/O

WT D3 Low Output

VDD H8, H10, H12, J7, J9, J11, J13, K8, K10, K12, K14, L7, L9, L11, L13, M8, 
M10, M12

— —

VDD A13, A16, A18, B17, B19, C13, E13, E16, F12, F17, F19, G11, G16, 
H14, H17, H19, M14, M16, M18, N15, N17, P16, P18

— — 15

Table 11. Pinout Listing for the MPC7448, 360 HCTE Package (continued)

Signal Name Pin Number Active I/O Notes
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8 Package Description
The following sections provide the package parameters and mechanical dimensions for the HCTE 
package. 

8.1 Package Parameters for the MPC7448, 360 HCTE BGA
The package parameters are as provided in the following list. The package type is 25 × 25 mm, 360-lead 
high coefficient of thermal expansion ceramic ball grid array (HCTE).

Package outline 25 × 25 mm
Interconnects 360 (19 × 19 ball array – 1)
Pitch 1.27 mm (50 mil)
Minimum module height 2.32 mm
Maximum module height 2.80 mm
Ball diameter 0.89 mm (35 mil)
Coefficient of thermal expansion12.3 ppm/°C 
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8.3 Package Parameters for the MPC7448, 360 HCTE LGA
The package parameters are as provided in the following list. The package type is 25 × 25 mm, 360 pin 
high coefficient of thermal expansion ceramic land grid array (HCTE).

Package outline 25 × 25 mm
Interconnects 360 (19 × 19 ball array – 1)
Pitch 1.27 mm (50 mil)
Minimum module height 1.52 mm
Maximum module height 1.80 mm
Pad diameter 0.89 mm (35 mil)
Coefficient of thermal expansion12.3 ppm/°C 
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8.4 Mechanical Dimensions for the MPC7448, 360 HCTE LGA
Figure 13 provides the mechanical dimensions and bottom surface nomenclature for the MPC7448, 360 
HCTE LGA package.

Figure 14. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC7448, 
360 HCTE LGA Package

NOTES:
1. Dimensioning and 

tolerancing per ASME 
Y14.5M, 1994

2. Dimensions in millimeters
3. Top side A1 corner index is a 

metalized feature with 
various shapes. Bottom side 
A1 corner is designated with 
a pad missing from the array.
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8.6 Mechanical Dimensions for the MPC7448, 360 HCTE 
RoHS-Compliant BGA

Figure 13 provides the mechanical dimensions and bottom surface nomenclature for the MPC7448, 360 
HCTE BGA package with RoHS-compliant lead-free spheres.

Figure 15. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC7448, 
360 HCTE RoHS-Compliant BGA Package

NOTES:
1. Dimensioning and 

tolerancing per ASME 
Y14.5M, 1994

2. Dimensions in millimeters.
3. Top side A1 corner index is a 

metalized feature with 
various shapes. Bottom side 
A1 corner is designated with 
a ball missing from the array.

4. Dimension A1 represents the 
collapsed sphere diameter.
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9 System Design Information
This section provides system and thermal design requirements and recommendations for successful 
application of the MPC7448.

9.1 Clocks
The following sections provide more detailed information regarding the clocking of the MPC7448. 

9.1.1 PLL Configuration
The MPC7448 PLL is configured by the PLL_CFG[0:5] signals. For a given SYSCLK (bus) frequency, 
the PLL configuration signals set the internal CPU and VCO frequency of operation. The PLL 
configuration for the MPC7448 is shown in Table 12. In this example, shaded cells represent settings that, 
for a given SYSCLK frequency, result in core and/or VCO frequencies that do not comply with Table 8. 
When enabled, dynamic frequency switching (DFS) also affects the core frequency by halving or 
quartering the bus-to-core multiplier; see Section 9.7.5, “Dynamic Frequency Switching (DFS),” for more 
information. Note that when DFS is enabled the resulting core frequency must meet the adjusted minimum 
core frequency requirements (fcore_DFS) described in Table 8. Note that the PLL_CFG[5] is currently used 
for factory test only and should be tied low, and that the MPC7448 PLL configuration settings are 
compatible with the MPC7447A PLL configuration settings when PLL_CFG[5] = 0.

Table 12. MPC7448 Microprocessor PLL Configuration Example

PLL_CFG[0:5]

Example Core and VCO Frequency in MHz

Bus-to-Core 
Multiplier 5

Core-to-VCO 
Multiplier 5

Bus (SYSCLK) Frequency

33.3
MHz

50
MHz

66.6
MHz

75
MHz

83
MHz

100
MHz

133
MHz

167
MHz

200
MHz

010000 2x 6 1x

100000 3x 6 1x 600

101000 4x 6 1x 667 800

101100 5x 1x 667 835 1000

100100 5.5x 1x 733 919 1100

110100 6x 1x 600 800 1002 1200

010100 6.5x 1x 650 866 1086 1300

001000 7x 1x 700 931 1169 1400

000100 7.5x 1x 623 750 1000 1253 1500

110000 8x 1x 600 664 800 1064 1336 1600

011000 8.5x 1x 638 706 850 1131 1417 1700

011110 9x 1x 600 675 747 900 1197 1500

011100 9.5x 1x 633 712 789 950 1264 1583

101010 10x 1x 667 750 830 1000 1333 1667

100010 10.5x 1x 700 938 872 1050 1397



MPC7448 RISC Microprocessor Hardware Specifications, Rev. 4

Freescale Semiconductor 41
 

System Design Information

9.2.4 Decoupling Recommendations
Due to the MPC7448 dynamic power management feature, large address and data buses, and high 
operating frequencies, the MPC7448 can generate transient power surges and high frequency noise in its 
power supply, especially while driving large capacitive loads. This noise must be prevented from reaching 
other components in the MPC7448 system, and the MPC7448 itself requires a clean, tightly regulated 
source of power. Therefore, it is recommended that the system designer use sufficient decoupling 
capacitors, typically one capacitor for every VDD pin, and a similar amount for the OVDD pins, placed as 
close as possible to the power pins of the MPC7448. It is also recommended that these decoupling 
capacitors receive their power from separate VDD, OVDD, and GND power planes in the PCB, using short 
traces to minimize inductance.

These capacitors should have a value of 0.01 or 0.1 µF. Only ceramic surface mount technology (SMT) 
capacitors should be used to minimize lead inductance. Orientations where connections are made along 
the length of the part, such as 0204, are preferable but not mandatory. Consistent with the 
recommendations of Dr. Howard Johnson in High Speed Digital Design: A Handbook of Black Magic 
(Prentice Hall, 1993) and contrary to previous recommendations for decoupling Freescale 
microprocessors, multiple small capacitors of equal value are recommended over using multiple values of 
capacitance.

In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB, 
feeding the VDD and OVDD planes, to enable quick recharging of the smaller chip capacitors. These bulk 
capacitors should have a low equivalent series resistance (ESR) rating to ensure the quick response time 
necessary. They should also be connected to the power and ground planes through two vias to minimize 
inductance. Suggested bulk capacitors are 100–330 µF (AVX TPS tantalum or Sanyo OSCON).

9.3 Connection Recommendations
To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal 
level. Unless otherwise noted, unused active low inputs should be tied to OVDD and unused active high 
inputs should be connected to GND. All NC (no connect) signals must remain unconnected.

Power and ground connections must be made to all external VDD, OVDD, and GND pins in the MPC7448. 
For backward compatibility with the MPC7447, MPC7445, and MP7441, or for migrating a system 
originally designed for one of these devices to the MPC7448, the new power and ground signals (formerly 
NC, see Table 11) may be left unconnected if the core frequency is 1 GHz or less. Operation above 1 GHz 
requires that these additional power and ground signals be connected, and it is strongly recommended that 
all new designs include the additional connections. See also Section 7, “Pinout Listings,” for additional 
information.

The MPC7448 provides VDD_SENSE, OVDD_SENSE, and GND_SENSE pins. These pins connect 
directly to the power/ground planes in the device package and are intended to allow an external device to 
measure the voltage present on the VDD, OVDD and GND planes in the device package. The most common 
use for these signals is as a feedback signal to a power supply regulator to allow it to compensate for board 
losses and supply the correct voltage at the device. (Note that all voltage parameters are specified at the 
pins of the device.) If not used for this purpose, it is recommended that these signals be connected to test 
points that can be used in the event that an accurate measurement of the voltage at the device is needed 
during system debug. Otherwise, these signals should be connected to the appropriate power/ground 
planes on the circuit board or left unconnected.
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Figure 23. LGA Package Exploded Cross-Sectional View with Several Heat Sink Options

There are several commercially-available heat sinks for the MPC7448 provided by the following vendors:

Aavid Thermalloy 603-224-9988
80 Commercial St.
Concord, NH 03301
Internet: www.aavidthermalloy.com

Alpha Novatech 408-567-8082
473 Sapena Ct. #12
Santa Clara, CA 95054
Internet: www.alphanovatech.com

Calgreg Thermal Solutions 888-732-6100
60 Alhambra Road, Suite 1
Warwick, RI 02886
Internet: www.calgregthermalsolutions.com

International Electronic Research Corporation (IERC) 818-842-7277
413 North Moss St.
Burbank, CA 91502
Internet: www.ctscorp.com

Tyco Electronics 800-522-6752
Chip Coolers™
P.O. Box 3668
Harrisburg, PA 17105-3668
Internet: www.tycoelectronics.com

Wakefield Engineering 603-635-2800
33 Bridge St.
Pelham, NH 03076
Internet: www.wakefield.com

Ultimately, the final selection of an appropriate heat sink depends on many factors, such as thermal 
performance at a given air velocity, spatial volume, mass, attachment method, assembly, and cost. 

Thermal

Heat Sink
HCTE LGA Package

Heat Sink
Clip

Printed-Circuit Board

Interface Material



MPC7448 RISC Microprocessor Hardware Specifications, Rev. 4

48 Freescale Semiconductor
 

System Design Information

9.7.1 Internal Package Conduction Resistance
For the exposed-die packaging technology described in Table 5, the intrinsic conduction thermal resistance 
paths are as follows:

• The die junction-to-case thermal resistance (the case is actually the top of the exposed silicon die)

• The die junction-to-board thermal resistance

Figure 24 depicts the primary heat transfer path for a package with an attached heat sink mounted to a 
printed-circuit board.

Figure 24. C4 Package with Heat Sink Mounted to a Printed-Circuit Board

Heat generated on the active side of the chip is conducted through the silicon, through the heat sink attach 
material (or thermal interface material), and, finally, to the heat sink, where it is removed by forced-air 
convection.

Because the silicon thermal resistance is quite small, the temperature drop in the silicon may be neglected 
for a first-order analysis. Thus, the thermal interface material and the heat sink conduction/convective 
thermal resistances are the dominant terms.

9.7.2 Thermal Interface Materials
A thermal interface material is recommended at the package lid-to-heat sink interface to minimize the 
thermal contact resistance. For those applications where the heat sink is attached by spring clip 
mechanism, Figure 25 shows the thermal performance of three thin-sheet thermal-interface materials 
(silicone, graphite/oil, fluoroether oil), a bare joint, and a joint with thermal grease as a function of contact 
pressure. As shown, the performance of these thermal interface materials improves with increasing contact 
pressure. The use of thermal grease significantly reduces the interface thermal resistance. That is, the bare 
joint results in a thermal resistance approximately seven times greater than the thermal grease joint. 

Often, heat sinks are attached to the package by means of a spring clip to holes in the printed-circuit board 
(see Figure 22). Therefore, synthetic grease offers the best thermal performance due to the low interface 
pressure and is recommended due to the high power dissipation of the MPC7448. Of course, the selection 

External Resistance

External Resistance

Internal Resistance

Radiation Convection

Radiation Convection

Heat Sink

Printed-Circuit Board

Thermal Interface Material

Package/Leads
Die Junction
Die/Package

(Note the internal versus external package resistance.)
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Due to the complexity and variety of system-level boundary conditions for today's microelectronic 
equipment, the combined effects of the heat transfer mechanisms (radiation, convection, and conduction) 
may vary widely. For these reasons, we recommend using conjugate heat transfer models for the board as 
well as system-level designs.

For system thermal modeling, the MPC7448 thermal model is shown in Figure 26. Four volumes represent 
this device. Two of the volumes, solder ball-air and substrate, are modeled using the package outline size 
of the package. The other two, die and bump-underfill, have the same size as the die. The silicon die should 
be modeled 8.0 × 7.3 × 0.86 mm3 with the heat source applied as a uniform source at the bottom of the 
volume. The bump and underfill layer is modeled as 8.0 × 7.3 × 0.07 mm3collapsed in the z-direction with 
a thermal conductivity of 5.0 W/(m • K) in the z-direction. The substrate volume is 25 × 25 × 1.14 mm3 
and has 9.9 W/(m • K) isotropic conductivity in the xy-plane and 2.95 W/(m • K) in the direction of the 
z-axis. The solder ball and air layer are modeled with the same horizontal dimensions as the substrate and 
is 0.8 mm thick. For the LGA package the solder and air layer is 0.1 mm thick, but the material properties 
are the same. It can also be modeled as a collapsed volume using orthotropic material properties: 
0.034 W/(m • K) in the xy-plane direction and 11.2 W/(m • K) in the direction of the z-axis.

Figure 26. Recommended Thermal Model of MPC7448
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Die

Substrate

Solder and Air

Die

Substrate
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Top View of Model (Not to Scale)
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Substrate (25 × 25 × 1.14 mm3)

kx 9.9 W/(m • K)
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Table 16. Valid Divide Ratio Configurations

DFS mode disabled
DFS divide-by-2 mode enabled
(HID1[DFS2] = 1 or DFS2 = 0)

DFS divide-by-4 mode enabled
(HID1[DFS4] = 1 or DFS4 = 0)

Bus-to-Core Multiplier 
Configured by 
PLL_CFG[0:5]
(see Table 12)

HID1[PC0-5] 3
Bus-to-Core 

Multiplier 
HID1[PC0-5] 3

Bus-to-Core 
Multiplier HID1[PC0-5] 3

2x 4 010000 N/A (unchanged) 1 unchanged 1 N/A (unchanged) 1 unchanged 1

3x 4 100000 N/A (unchanged) 1 unchanged 1 N/A (unchanged) 1 unchanged 1 

4x 4 101000 2x 4 010000 N/A (unchanged) 1 unchanged 1 

 5x 101100 2.5x 4 010101 N/A (unchanged) 1 unchanged 1

5.5x 100100 2.75x 4 110101 2 N/A (unchanged) 1 unchanged 1

 6x 110100 3x 4 100000 N/A (unchanged) 1 unchanged 1

6.5x 010100 3.25x 4  100000 2 N/A (unchanged) 1 unchanged 1

7x 001000 3.5x 4 110101 N/A (unchanged) 1 unchanged 1

7.5x 000100 3.75x 4 110101 2 N/A (unchanged) 1 unchanged 1

8x 110000 4x 4 101000 4 2x 4 010000

8.5x 011000 4.25x 4 101000 2 N/A (unchanged) 1 unchanged 1

9x 011110 4.5x 4 011101 2.25x 4 010000 2

9.5x 011100 4.75x 4 011101 2 N/A (unchanged) 1 unchanged 1

10x 101010 5x 101100 2.5x 4 010101

10.5x 100010 5.25x 101100 2 N/A (unchanged) 1 unchanged 1

11x 100110 5.5x 100100 2.75x 4 010101 2

11.5x 000000 5.75x 100100 2 N/A (unchanged) 1 unchanged 1

12x 101110 6x 110100 3x 4 100000

12.5x 111110 6.25x 110100 2 N/A (unchanged) 1 unchanged 1

13x 010110 6.5x 010100 3.25x 4 100000 2

13.5x 111000 6.75 010100 2 N/A (unchanged) 1 unchanged 1

14x 110010 7x 001000 3.5x 4 110101

15x 000110 7.5x 000100 3.75x 4 110101 2

16x 110110 8x 110000 4x 4 101000

17x 000010 8.5x 011000 4.25x 4 101000 2

18x 001010 9x 011110 4.5x 4 011101

20x 001110 10x 101010 5x 101100

21x 010010 10.5x 100010 5.25x 101100 2
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11 Part Numbering and Marking
Ordering information for the part numbers fully covered by this specification document is provided in 
Section 11.1, “Part Numbers Fully Addressed by This Document.” Note that the individual part numbers 
correspond to a maximum processor core frequency. For available frequencies, contact a local Freescale 
sales office. In addition to the processor frequency, the part numbering scheme also includes an application 
modifier that may specify special application conditions. An optional specification modifier may also 
apply for parts to indicate a specific change in specifications, such as support for an extended temperature 
range. Finally, each part number contains a revision level code that refers to the die mask revision number. 
Section 11.2, “Part Numbers Not Fully Addressed by This Document,” lists the part numbers that do not 
fully conform to the specifications of this document. These special part numbers require an additional 
document called a hardware specification addendum.

11.1 Part Numbers Fully Addressed by This Document
Table 18 provides the Freescale part numbering nomenclature for the MPC7448 part numbers fully 
addressed by this document. For information regarding other MPC7448 part numbers, see Section 11.2, 
“Part Numbers Not Fully Addressed by This Document.”

Table 18. Part Numbering Nomenclature

xx 7448 xx nnnn L x

Product 
Code

Part 
Identifier

Package
Processor 
Frequency

Application
Modifier

Revision Level

MC
PPC 1

7448 HX = HCTE BGA
VS = RoHS LGA
VU = RoHS BGA

1700 L: 1.3 V +20/–50 mV 
0 to 105 °C

C: 2.1; PVR = 0x8004_0201
D: 2.2; PVR = 0x8004_0202

1600 L: 1.25 V ± 50 mV 
0 to 105 °C

1420 L: 1.2 V ± 50 mV 
0 to 105 °C

1000 L: 1.15 V ± 50 mV 
0 to 105 °C

Notes: 
1. The P prefix in a Freescale part number designates a “Pilot Production Prototype” as defined by Freescale SOP 3-13. These 

parts have only preliminary reliability and characterization data. Before pilot production prototypes may be shipped, written 
authorization from the customer must be on file in the applicable sales office acknowledging the qualification status and the 
fact that product changes may still occur as pilot production prototypes are shipped.


