

Welcome to **E-XFL.COM**

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Obsolete
Core Processor	PowerPC G4
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	1.25GHz
Co-Processors/DSP	Multimedia; SIMD
RAM Controllers	-
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	1.5V, 1.8V, 2.5V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	360-BCBGA, FCCBGA
Supplier Device Package	360-FCCBGA (25x25)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc7448hx1250nc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Electrical and Thermal Characteristics

when running a typical benchmark at temperatures in a typical system. The Full-Power Mode—Thermal value is intended to represent the sustained power consumption of the device when running a typical code sequence at high temperature and is recommended to be used as the basis for designing a thermal solution; see Section 9.7, "Power and Thermal Management Information" for more information on thermal solutions. The Full-Power Mode—Maximum value is recommended to be used for power supply design because this represents the maximum peak power draw of the device that a power supply must be capable of sourcing without voltage droop. For information on power consumption when dynamic frequency switching is enabled, see Section 9.7.5, "Dynamic Frequency Switching (DFS)."

Die Junction Maximum Processor Core Frequency (Speed Grade, MHz) Temperature Unit **Notes** 1420 MHz 1600 MHz 1000 MHz 1700 MHz (T_i) **Full-Power Mode Typical** 65 •C 15.0 19.0 20.0 21.0 W 1, 2 Thermal 105 •C 18.6 23.3 24.4 25.6 W 1, 5 Maximum 105 •C 21.6 27.1 28.4 29.8 W 1, 3 Nap Mode Typical 11.8 W 105 •C 11.1 13.0 13.0 1.6 Sleep Mode 10.8 11.4 12.5 12.5 W Typical 105 •C 1,6 Deep Sleep Mode (PLL Disabled) W **Typical** 105 •C 10.4 11.0 12.0 12.0 1, 6

Table 7. Power Consumption for MPC7448 at Maximum Rated Frequency

Notes:

- 1. These values specify the power consumption for the core power supply (V_{DD}) at nominal voltage and apply to all valid processor bus frequencies and configurations. The values do not include I/O supply power (OV_{DD}) or PLL supply power (AV_{DD}). OV_{DD} power is system dependent but is typically < 5% of V_{DD} power. Worst case power consumption for AV_{DD} < 13 mW. Freescale also offers MPC7448 part numbers that meet lower power consumption specifications; for more information on these devices, see Section 11.2, "Part Numbers Not Fully Addressed by This Document."</p>
- Typical power consumption is an average value measured with the processor operating at its rated maximum processor
 core frequency (except for Deep Sleep Mode), at nominal recommended V_{DD} (see Table 4) and 65°C while running the
 Dhrystone 2.1 benchmark and achieving 2.3 Dhrystone MIPs/MHz. This parameter is not 100% tested but periodically
 sampled.b
- Maximum power consumption is the average measured with the processor operating at its rated maximum processor core
 frequency, at nominal V_{DD} and maximum operating junction temperature (see Table 4) while running an entirely
 cache-resident, contrived sequence of instructions to keep all the execution units maximally busy.
- 4. Doze mode is not a user-definable state; it is an intermediate state between full-power and either nap or sleep mode. As a result, power consumption for this mode is not tested.
- 5. Thermal power consumption is an average value measured at the nominal recommended V_{DD} (see Table 4) and 105 °C while running the Dhrystone 2.1 benchmark and achieving 2.3 Dhrystone MIPs/MHz. This parameter is not 100% tested but periodically sampled.
- 6. Typical power consumption for these modes is measured at the nominal recommended V_{DD} (see Table 4) and 105 °C in the mode described. This parameter is not 100% tested but is periodically sampled.

MPC7448 RISC Microprocessor Hardware Specifications, Rev. 4

Electrical and Thermal Characteristics

Table 8. Clock AC Timing Specifications

At recommended operating conditions. See Table 4.

			Мах	imum F	rocess	or Core	Freque	ency (S _l	peed Gi	ade)		
Characteristic		Symbol	1000	MHz	1420	MHz	1600	MHz	1700	MHz	Unit	Notes
			Min	Max	Min	Max	Min	Max	Min	Max		
Processor	DFS mode disabled	f _{core}	600	1000	600	1420	600	1600	600	1700	MHz	1, 8
core frequency	DFS mode enabled	f _{core_DF}	300	500	300	710	300	800	300	850		9
VCO frequency		f _{VCO}	600	1000	600	1420	600	800	600	1700	MHz	1, 10
SYSCLK fre	equency	f _{SYSCLK}	33	200	33	200	33	200	33	200	MHz	1, 2, 8
SYSCLK cy	cle time	tsysclk	5.0	30	5.0	30	5.0	30	5.0	30	ns	2
SYSCLK ris	e and fall time	t _{KR} , t _{KF}	_	0.5	_	0.5	_	0.5	_	0.5	ns	3
SYSCLK duty cycle measured at OV _{DD} /2		t _{KHKL} / t _{SYSCLK}	40	60	40	60	40	60	40	60	%	4
SYSCLK cycle-to-cycle jitter			_	150	_	150	_	150	_	150	ps	5, 6
Internal PLL	relock time		_	100	_	100	_	100	_	100	μs	7

Notes:

- Caution: The SYSCLK frequency and PLL_CFG[0:5] settings must be chosen such that the resulting SYSCLK (bus) frequency, processor core frequency, and PLL (VCO) frequency do not exceed their respective maximum or minimum operating frequencies. Refer to the PLL_CFG[0:5] signal description in Section 9.1.1, "PLL Configuration," for valid PLL_CFG[0:5] settings.
- 2. Actual maximum system bus frequency is system-dependent. See Section 5.2.1, "Clock AC Specifications."
- 3. Rise and fall times for the SYSCLK input measured from 0.4 to 1.4 V
- 4. Timing is guaranteed by design and characterization.
- 5. Guaranteed by design
- 6. The SYSCLK driver's closed loop jitter bandwidth should be less than 1.5 MHz at -3 dB.
- 7. Relock timing is guaranteed by design and characterization. PLL-relock time is the maximum amount of time required for PLL lock after a stable V_{DD} and SYSCLK are reached during the power-on reset sequence. This specification also applies when the PLL has been disabled and subsequently re-enabled during sleep mode. Also note that HRESET must be held asserted for a minimum of 255 bus clocks after the PLL-relock time during the power-on reset sequence.
- 8. This reflects the maximum and minimum core frequencies when the dynamic frequency switching feature (DFS) is disabled. f_{core DFS} provides the maximum and minimum core frequencies when operating in a DFS mode.
- 9. This specification supports the Dynamic Frequency Switching (DFS) feature and is applicable only when one of the DFS modes (divide-by-2 or divide-by-4) is enabled. When DFS is disabled, the core frequency must conform to the maximum and minimum frequencies stated for f_{core}.
- 10.Use of the DFS feature does not affect VCO frequency.

Figure 11 provides the test access port timing diagram.

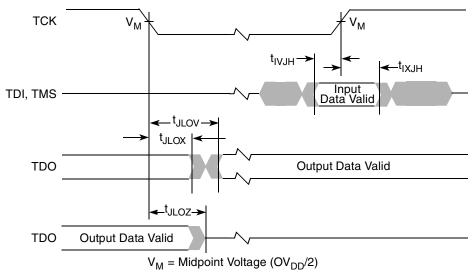


Figure 11. Test Access Port Timing Diagram

5.3 Voltage and Frequency Derating

Voltage and frequency derating is no longer supported for part numbers described by this document beginning with datecode 0613. (See Section 11, "Part Numbering and Marking," for information on date code markings.) It is supported by some MPC7448 part numbers which target low-power applications; see Section 11.2, "Part Numbers Not Fully Addressed by This Document" and the referenced MPC7448 Hardware Specification Addenda for more information on these low-power devices. For those devices which previously supported this feature, information has been archived in the *Chip Errata for the MPC7448* (document order no. MPC7448CE).

Pin Assignments

6 Pin Assignments

Figure 12 (in Part A) shows the pinout of the MPC7448, 360 high coefficient of thermal expansion ceramic ball grid array (HCTE) package as viewed from the top surface. Part B shows the side profile of the HCTE package to indicate the direction of the top surface view.

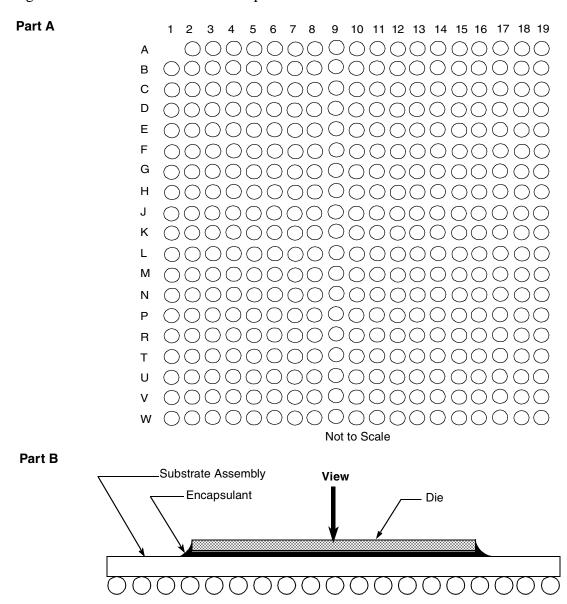


Figure 12. Pinout of the MPC7448, 360 HCTE Package as Viewed from the Top Surface

24 Freescale Semiconductor

MPC7448 RISC Microprocessor Hardware Specifications, Rev. 4

7 Pinout Listings

Table 11 provides the pinout listing for the MPC7448, 360 HCTE package. The pinouts of the MPC7448 and MPC7447A are compatible, but the requirements regarding the use of the additional power and ground pins have changed. The MPC7448 requires these pins be connected to the appropriate power or ground plane to achieve high core frequencies; see Section 9.3, "Connection Recommendations," for additional information. As a result, these pins should be connected in all new designs.

Additionally, the MPC7448 may be populated on a board designed for a MPC7447 (or MPC7445 or MPC7441), provided the core voltage can be made to match the requirements in Table 4 and all pins defined as 'no connect' for the MPC7447 are unterminated, as required by the *MPC7457 RISC Microprocessor Hardware Specifications*. The MPC7448 uses pins previously marked 'no connect' for the temperature diode pins and for additional power and ground connections. The additional power and ground pins are required to achieve high core frequencies and core frequency will be limited if they are not connected; see Section 9.3, "Connection Recommendations," for additional information. Because these 'no connect' pins in the MPC7447 360 pin package are not driven in functional mode, an MPC7447 can be populated in an MPC7448 board.

NOTE

Caution must be exercised when performing boundary scan test operations on a board designed for an MPC7448, but populated with an MPC7447 or earlier device. This is because in the MPC7447 it is possible to drive the latches associated with the former 'no connect' pins in the MPC7447, potentially causing contention on those pins. To prevent this, ensure that these pins are not connected on the board or, if they are connected, ensure that the states of internal MPC7447 latches do not cause these pins to be driven during board testing.

For the MPC7448, pins that were defined as the TEST[0:4] factory test signal group on the MPC7447A and earlier devices have been assigned new functions. For most of these, the termination recommendations for the TEST[0:4] pins of the MPC7447A are compatible with the MPC7448 and will allow correct operation with no performance loss. The exception is BVSEL1 (TEST3 on the MPC7447A and earlier devices), which may require a different termination depending which I/O voltage mode is desired; see Table 3 for more information.

NOTE

This pinout is not compatible with the MPC750, MPC7400, or MPC7410 360 BGA package.

Pinout Listings

Table 11. Pinout Listing for the MPC7448, 360 HCTE Package

Signal Name	Pin Number	Active	I/O	Notes
A[0:35]	E11, H1, C11, G3, F10, L2, D11, D1, C10, G2, D12, L3, G4, T2, F4, V1, J4, R2, K5, W2, J2, K4, N4, J3, M5, P5, N3, T1, V2, U1, N5, W1, B12, C4, G10, B11	High	I/O	2
AACK	R1	Low	Input	
AP[0:4]	C1, E3, H6, F5, G7	High	I/O	2
ARTRY	N2	Low	I/O	3
AV _{DD}	A8	_	Input	
BG	M1	Low	Input	
BMODE0	G9	Low	Input	4
BMODE1	F8	Low	Input	5
BR	D2	Low	Output	
BVSEL0	B7	High	Input	1, 6
BVSEL1	E10	High	Input	1, 20
CI	J1	Low	Output	
CKSTP_IN	A3	Low	Input	
CKSTP_OUT	B1	Low	Output	
CLK_OUT	H2	High	Output	
D[0:63]	R15, W15, T14, V16, W16, T15, U15, P14, V13, W13, T13, P13, U14, W14, R12, T12, W12, V12, N11, N10, R11, U11, W11, T11, R10, N9, P10, U10, R9, W10, U9, V9, W5, U6, T5, U5, W7, R6, P7, V6, P17, R19, V18, R18, V19, T19, U19, W19, U18, W17, W18, T16, T18, T17, W3, V17, U4, U8, U7, R7, P6, R8, W8, T8	High	I/O	
DBG	M2	Low	Input	
DFS2	A12	Low	Input	20, 21
DFS4	B6	Low	Input	12, 20, 21
DP[0:7]	T3, W4, T4, W9, M6, V3, N8, W6	High	I/O	
DRDY	R3	Low	Output	7
DTI[0:3]	G1, K1, P1, N1	High	Input	8
EXT_QUAL	A11	High	Input	9
GBL	E2	Low	I/O	
GND	B5, C3, D6, D13, E17, F3, G17, H4, H7, H9, H11, H13, J6, J8, J10, J12, K7, K3, K9, K11, K13, L6, L8, L10, L12, M4, M7, M9, M11, M13, N7, P3, P9, P12, R5, R14, R17, T7, T10, U3, U13, U17, V5, V8, V11, V15	_	_	
GND	A17, A19, B13, B16, B18, E12, E19, F13, F16, F18, G19, H18, J14, L14, M15, M17, M19, N14, N16, P15, P19	_	_	15
GND_SENSE	G12, N13	_	_	19
HIT	B2	Low	Output	7
HRESET	D8	Low	Input	
ĪNT	D4	Low	Input	
L1_TSTCLK	G8	High	Input	9
L2_TSTCLK	B3	High	Input	10

MPC7448 RISC Microprocessor Hardware Specifications, Rev. 4

8.3 Package Parameters for the MPC7448, 360 HCTE LGA

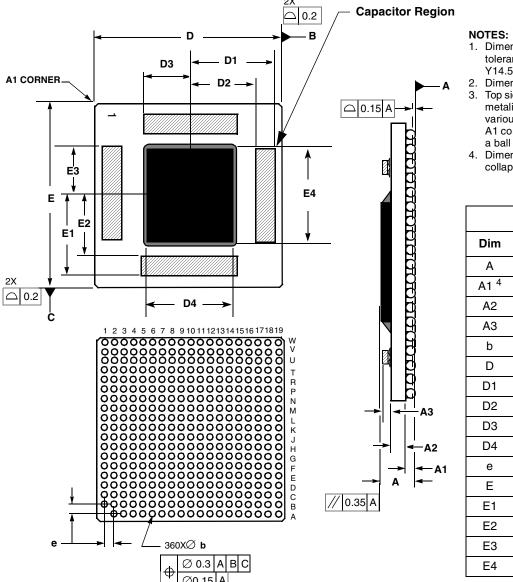
The package parameters are as provided in the following list. The package type is 25×25 mm, 360 pin high coefficient of thermal expansion ceramic land grid array (HCTE).

Package outline $25 \times 25 \text{ mm}$

Interconnects $360 (19 \times 19 \text{ ball array} - 1)$

Pitch 1.27 mm (50 mil)

Minimum module height 1.52 mm Maximum module height 1.80 mm


Pad diameter 0.89 mm (35 mil) Coefficient of thermal expansion12.3 ppm/°C

Package Description

8.6 Mechanical Dimensions for the MPC7448, 360 HCTE RoHS-Compliant BGA

Figure 13 provides the mechanical dimensions and bottom surface nomenclature for the MPC7448, 360 HCTE BGA package with RoHS-compliant lead-free spheres.

- Dimensioning and tolerancing per ASME Y14.5M, 1994
- 2. Dimensions in millimeters.
- Top side A1 corner index is a metalized feature with various shapes. Bottom side A1 corner is designated with a ball missing from the array.
- Dimension A1 represents the collapsed sphere diameter.

	Millim	neters			
Dim	Min	Max			
Α	1.92	2.40			
A1 ⁴	0.40	0.60			
A2	0.70	0.90			
A3	_	0.6			
b	0.60	0.90			
D	25.00 BSC				
D1	_	11.3			
D2	8.0	_			
D3	_	6.5			
D4	7.2	7.4			
е	1.27	BSC			
Е	25.00	BSC			
E1	_	11.3			
E2	8.0	_			
E3	_	6.5			
E4	7.9	8.1			

Figure 15. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC7448, 360 HCTE RoHS-Compliant BGA Package

9 System Design Information

This section provides system and thermal design requirements and recommendations for successful application of the MPC7448.

9.1 Clocks

The following sections provide more detailed information regarding the clocking of the MPC7448.

9.1.1 PLL Configuration

The MPC7448 PLL is configured by the PLL_CFG[0:5] signals. For a given SYSCLK (bus) frequency, the PLL configuration signals set the internal CPU and VCO frequency of operation. The PLL configuration for the MPC7448 is shown in Table 12. In this example, shaded cells represent settings that, for a given SYSCLK frequency, result in core and/or VCO frequencies that do not comply with Table 8. When enabled, dynamic frequency switching (DFS) also affects the core frequency by halving or quartering the bus-to-core multiplier; see Section 9.7.5, "Dynamic Frequency Switching (DFS)," for more information. Note that when DFS is enabled the resulting core frequency must meet the adjusted minimum core frequency requirements (f_{core_DFS}) described in Table 8. Note that the PLL_CFG[5] is currently used for factory test only and should be tied low, and that the MPC7448 PLL configuration settings are compatible with the MPC7447A PLL configuration settings when PLL_CFG[5] = 0.

Table 12. MPC7448 Microprocessor PLL Configuration Example

			Exam	ole Core	and VC) Freque	ncy in M	Hz				
PLL_CFG[0:5]	D	0 1- 1/00	Bus (SYSCLK) Frequency									
	Bus-to-Core Multiplier ⁵	Core-to-VCO Multiplier ⁵	33.3 MHz	50 MHz	66.6 MHz	75 MHz	83 MHz	100 MHz	133 MHz	167 MHz	200 MHz	
010000	2x ⁶	1x										
100000	3x ⁶	1x									600	
101000	4x ⁶	1x								667	800	
101100	5x	1x							667	835	1000	
100100	5.5x	1x							733	919	1100	
110100	6x	1x						600	800	1002	1200	
010100	6.5x	1x						650	866	1086	1300	
001000	7x	1x						700	931	1169	1400	
000100	7.5x	1x					623	750	1000	1253	1500	
110000	8x	1x				600	664	800	1064	1336	1600	
011000	8.5x	1x				638	706	850	1131	1417	1700	
011110	9x	1x			600	675	747	900	1197	1500		
011100	9.5x	1x			633	712	789	950	1264	1583		
101010	10x	1x			667	750	830	1000	1333	1667		
100010	10.5x	1x			700	938	872	1050	1397			

MPC7448 RISC Microprocessor Hardware Specifications, Rev. 4

System Design Information

Table 12. MPC7448 Microprocessor PLL Configuration Example (continued)

		Example Core and VCO Frequency in MHz												
PLL_CFG[0:5]	Due to Core	Corre to VCC	Bus (SYSCLK) Frequency											
	Bus-to-Core Multiplier ⁵	Core-to-VCO Multiplier ⁵	33.3 MHz	50 MHz	66.6 MHz	75 MHz	83 MHz	100 MHz	133 MHz	167 MHz	200 MHz			
100110	11x	1x			733	825	913	1100	1467					
000000	11.5x	1x			766	863	955	1150	1533					
101110	12x	1x		600	800	900	996	1200	1600					
111110	12.5x	1x		625	833	938	1038	1250	1667					
010110	13x	1x		650	865	975	1079	1300						
111000	13.5x	1x		675	900	1013	1121	1350						
110010	14x	1x		700	933	1050	1162	1400						
000110	15x	1x		750	1000	1125	1245	1500						
110110	16x	1x		800	1066	1200	1328	1600						
000010	17x	1x		850	1132	1275	1417	1700						
001010	18x	1x	600	900	1200	1350	1500							
001110	20x	1x	667	1000	1332	1500	1666							
010010	21x	1x	700	1050	1399	1575								
011010	24x	1x	800	1200	1600									
111010	28x	1x	933	1400										
001100	PLL b	ypass		PLL off, S	SYSCLK	clocks co	re circuit	ry directly	/					
111100	PLI	_ off		PL	L off, no	core cloc	king occi	urs						

Notes:

- 1. PLL_CFG[0:5] settings not listed are reserved.
- 2. The sample bus-to-core frequencies shown are for reference only. Some PLL configurations may select bus, core, or VCO frequencies which are not useful, not supported, or not tested for by the MPC7448; see Section 5.2.1, "Clock AC Specifications," for valid SYSCLK, core, and VCO frequencies.
- 3. In PLL-bypass mode, the SYSCLK input signal clocks the internal processor directly and the PLL is disabled. However, the bus interface unit requires a 2x clock to function. Therefore, an additional signal, EXT_QUAL, must be driven at half the frequency of SYSCLK and offset in phase to meet the required input setup t_{IVKH} and hold time t_{IXKH} (see Table 9). The result will be that the processor bus frequency will be one-half SYSCLK, while the internal processor is clocked at SYSCLK frequency. This mode is intended for factory use and emulator tool use only.
 - Note: The AC timing specifications given in this document do not apply in PLL-bypass mode.
- 4. In PLL-off mode, no clocking occurs inside the MPC7448 regardless of the SYSCLK input.
- 5. Applicable when DFS modes are disabled. These multipliers change when operating in a DFS mode. See Section 9.7.5, "Dynamic Frequency Switching (DFS)" for more information.
- 6. Bus-to-core multipliers less than 5x require that assertion of AACK be delayed by one or two bus cycles to allow the processor to generate a response to a snooped transaction. See the MPC7450 RISC Microprocessor Reference Manual for more information.

9.1.2 System Bus Clock (SYSCLK) and Spread Spectrum Sources

Spread spectrum clock sources are an increasingly popular way to control electromagnetic interference emissions (EMI) by spreading the emitted noise to a wider spectrum and reducing the peak noise magnitude in order to meet industry and government requirements. These clock sources intentionally add long-term jitter in order to diffuse the EMI spectral content. The jitter specification given in Table 8 considers short-term (cycle-to-cycle) jitter only and the clock generator's cycle-to-cycle output jitter should meet the MPC7448 input cycle-to-cycle jitter requirement. Frequency modulation and spread are separate concerns, and the MPC7448 is compatible with spread spectrum sources if the recommendations listed in Table 13 are observed.

Table 13. Spread Spectrum Clock Source Recommendations

At recommended operating conditions. See Table 4.

Parameter	Min	Max	Unit	Notes
Frequency modulation	_	50	kHz	1
Frequency spread	_	1.0	%	1, 2

Notes:

- 1. Guaranteed by design
- 2. SYSCLK frequencies resulting from frequency spreading, and the resulting core and VCO frequencies, must meet the minimum and maximum specifications given in Table 8.

It is imperative to note that the processor's minimum and maximum SYSCLK, core, and VCO frequencies must not be exceeded regardless of the type of clock source. Therefore, systems in which the processor is operated at its maximum rated core or bus frequency should avoid violating the stated limits by using down-spreading only.

9.2 Power Supply Design and Sequencing

The following sections provide detailed information regarding power supply design for the MPC7448.

9.2.1 Power Supply Sequencing

The MPC7448 requires its power rails and clock to be applied in a specific sequence to ensure proper device operation and to prevent device damage. The power sequencing requirements are as follows:

- AV_{DD} must be delayed with respect to V_{DD} by the RC time constant of the PLL filter circuit described in Section 9.2.2, "PLL Power Supply Filtering". This time constant is nominally 100 μ s.
- OV_{DD} may ramp anytime before or after V_{DD} and AV_{DD}.

Additionally, the following requirements exist regarding the application of SYSCLK:

- The voltage at the SYSCLK input must not exceed V_{DD} until V_{DD} has ramped to 0.9 V.
- The voltage at the SYSCLK input must not exceed OV_{DD} by more 20% during transients (see overshoot/undershoot specifications in Figure 2) or 0.3 V DC (see Table 2) at any time.

System Design Information

These requirements are shown graphically in Figure 16.

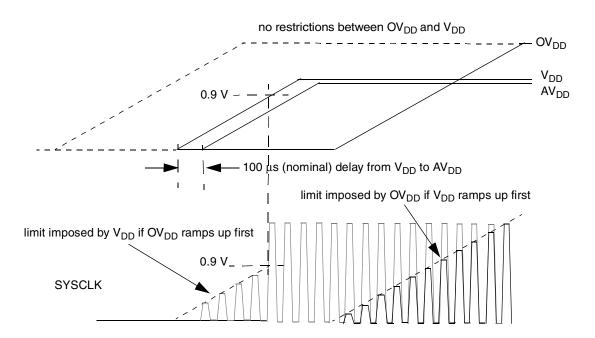


Figure 16. MPC7448 Power Up Sequencing Requirements

Certain stipulations also apply to the manner in which the power rails of the MPC7448 power down, as follows:

- OV_{DD} may ramp down any time before or after V_{DD}.
- The voltage at the SYSCLK input must not exceed V_{DD} once V_{DD} has ramped down below 0.9 V.
- The voltage at the SYSCLK input must not exceed OV_{DD} by more 20% during transients (see overshoot/undershoot specifications in Figure 2) or 0.3 V DC (see Table 2) at any time.

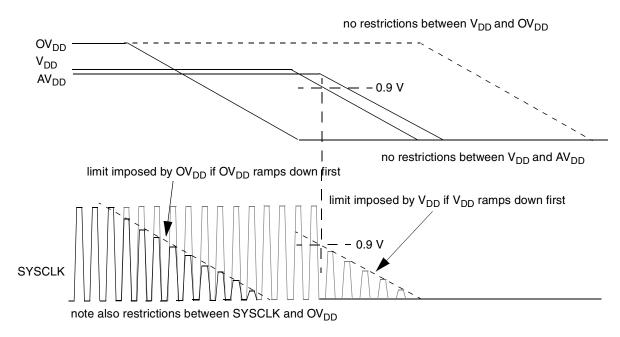


Figure 17. MPC7448 Power Down Sequencing Requirements

There is no requirement regarding AV_{DD} during power down, but it is recommended that AV_{DD} track V_{DD} within the RC time constant of the PLL filter circuit described in Section 9.2.2, "PLL Power Supply Filtering" (nominally 100 μ s).

9.2.2 PLL Power Supply Filtering

The AV_{DD} power signal is provided on the MPC7448 to provide power to the clock generation PLL. To ensure stability of the internal clock, the power supplied to the AV_{DD} input signal should be filtered of any noise in the 500-KHz to 10-MHz resonant frequency range of the PLL. The circuit shown in Figure 18 using surface mount capacitors with minimum effective series inductance (ESL) is strongly recommended. In addition to filtering noise from the AV_{DD} input, it also provides the required delay between V_{DD} and AV_{DD} as described in Section 9.2.1, "Power Supply Sequencing."

The circuit should be placed as close as possible to the AV_{DD} pin to minimize noise coupled from nearby circuits. It is often possible to route directly from the capacitors to the AV_{DD} pin, which is on the periphery of the device footprint.

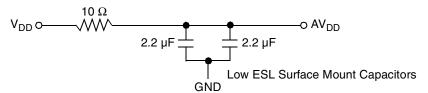


Figure 18. PLL Power Supply Filter Circuit

MPC7448 RISC Microprocessor Hardware Specifications, Rev. 4

9.2.3 Transient Specifications

The ensure the long-term reliability of the device, the MPC7448 requires that transients on the core power rail (V_{DD}) be constrained. The recommended operating voltage specifications provided in Table 4 are DC specifications. That is, the device may be operated continuously with V_{DD} within the specified range without adversely affecting the device's reliability. Excursions above the stated recommended operation range, including overshoot during power-up, can impact the long-term reliability of the device. Excursions are described by their amplitude and duration. Duration is defined as the time period during which the V_{DD} power plane, as measured at the V_{DD} SENSE pins, will be within a specific voltage range, expressed as percentage of the total time the device will be powered up over the device lifetime. In practice, the period over which transients are measured can be any arbitrary period of time that accurately represents the expected range of processor and system activity. The voltage ranges and durations for normal operation and transients are described in Table 14.

Table 14. VDD Power Supply Transient Specifications

At recommended operating temperatures. See Table 4.

Voltage Region	Voltage F	Range (V)	Permitted	Notes	
voitage negion	Min	Max	Duration ¹	Notes	
Normal	V _{DD} minimum	V _{DD} maximum	100%	2	
Low Transient	V _{DD} maximum	1.35 V	10%	2, 3	
High Transient	1.35 V	1.40 V	0.2%	4	

Notes:

- Permitted duration is defined as the percentage of the total time the device is powered on that the V_{DD} power supply voltage may exist within the specified voltage range.
- 2. See Table 4 for nominal V_{DD} specifications.
- 3. To simplify measurement, excursions into the High Transient region are included in this duration.
- 4. Excursions above the absolute maximum rating of 1.4 V are not permitted; see Table 2.

Note that, to simplify transient measurements, the duration of the excursion into the High Transient region is also included in the Low Transient duration, so that only the time the voltage is above each threshold must be considered. Figure 19 shows an example of measuring voltage transients.

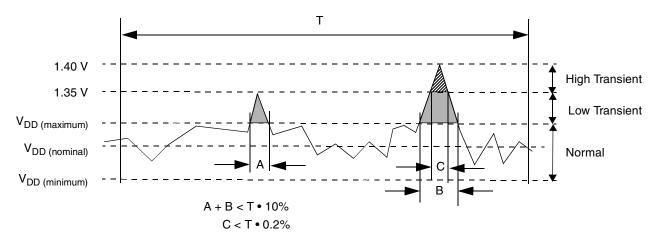
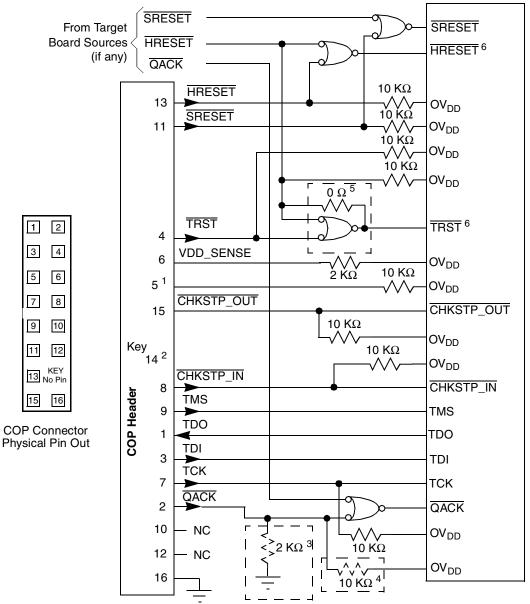



Figure 19. Voltage Transient Example

MPC7448 RISC Microprocessor Hardware Specifications, Rev. 4

Notes:

- 1. RUN/STOP, normally found on pin 5 of the COP header, is not implemented on the MPC7448. Connect pin 5 of the COP header to OV_{DD} with a 10-K Ω pull-up resistor.
- 2. Key location; pin 14 is not physically present on the COP header.
- 3. Component not populated. Populate only if debug tool does not drive QACK.
- 4. Populate only if debug tool uses an open-drain type output and does not actively negate QACK.
- 5. If the JTAG interface is implemented, connect HRESET from the target source to TRST from the COP header though an AND gate to TRST of the part. If the JTAG interface is not implemented, connect HRESET from the target source to TRST of the part through a 0-Ω isolation resistor.
- 6. The COP port and target board should be able to independently assert HRESET and TRST to the processor in order to fully control the processor as shown above.

Figure 21. JTAG Interface Connection

_

Freescale Semiconductor 45

MPC7448 RISC Microprocessor Hardware Specifications, Rev. 4

of any thermal interface material depends on many factors—thermal performance requirements, manufacturability, service temperature, dielectric properties, cost, and so on.

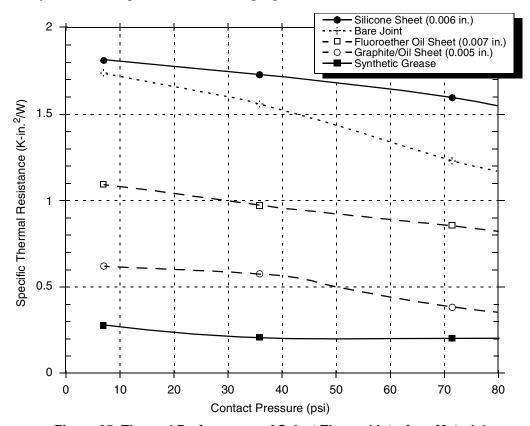


Figure 25. Thermal Performance of Select Thermal Interface Material

The board designer can choose between several types of thermal interfaces. Heat sink adhesive materials should be selected based on high conductivity and mechanical strength to meet equipment shock/vibration requirements. There are several commercially available thermal interfaces and adhesive materials provided by the following vendors:

The Bergquist Company 800-347-4572

18930 West 78th St.

Chanhassen, MN 55317

Internet: www.bergquistcompany.com

Chomerics, Inc. 781-935-4850

77 Dragon Ct.

Woburn, MA 01801

Internet: www.chomerics.com

Dow-Corning Corporation 800-248-2481

Corporate Center

P.O. Box 994.

Midland, MI 48686-0994

Internet: www.dowcorning.com

MPC7448 RISC Microprocessor Hardware Specifications, Rev. 4

Freescale Semiconductor

49

System Design Information

Table 16. Valid Divide Ratio Configurations

DFS mode dis	sabled	DFS divide-by-2 (HID1[DFS2] = 1		DFS divide-by-4 m (HID1[DFS4] = 1 o	ode enabled r DFS4 = 0)
Bus-to-Core Multiplier Configured by PLL_CFG[0:5] (see Table 12)	HID1[PC0-5] ³	Bus-to-Core Multiplier HID1[PC0-5] ³		Bus-to-Core Multiplier	HID1[PC0-5] ³
2x ⁴	010000	N/A (unchanged) 1	unchanged 1	N/A (unchanged) ¹	unchanged ¹
3x ⁴	100000	N/A (unchanged) 1	unchanged 1	N/A (unchanged) ¹	unchanged ¹
4x ⁴	101000	2x ⁴	010000	N/A (unchanged) ¹	unchanged ¹
5x	101100	2.5x ⁴	010101	N/A (unchanged) ¹	unchanged ¹
5.5x	100100	2.75x ⁴	110101 ²	N/A (unchanged) ¹	unchanged ¹
6x	110100	3x ⁴	100000	N/A (unchanged) ¹	unchanged ¹
6.5x	010100	3.25x ⁴	100000 ²	N/A (unchanged) ¹	unchanged ¹
7x	001000	3.5x ⁴	110101	N/A (unchanged) ¹	unchanged ¹
7.5x	000100	3.75x ⁴	110101 ²	N/A (unchanged) ¹	unchanged ¹
8x	110000	4x ⁴	101000 4	2x ⁴	010000
8.5x	011000	4.25x ⁴	101000 ²	N/A (unchanged) ¹	unchanged ¹
9x	011110	4.5x ⁴	011101	2.25x ⁴	010000 ²
9.5x	011100	4.75x ⁴	011101 ²	N/A (unchanged) ¹	unchanged ¹
10x	101010	5x	101100	2.5x ⁴	010101
10.5x	100010	5.25x	101100 ²	N/A (unchanged) ¹	unchanged ¹
11x	100110	5.5x	100100	2.75x ⁴	010101 ²
11.5x	000000	5.75x	100100 ²	N/A (unchanged) ¹	unchanged ¹
12x	101110	6x	110100	3x ⁴	100000
12.5x	111110	6.25x	110100 ²	N/A (unchanged) 1	unchanged ¹
13x	010110	6.5x	010100	3.25x ⁴	100000 ²
13.5x	111000	6.75	010100 ²	N/A (unchanged) 1	unchanged ¹
14x	110010	7x	001000	3.5x ⁴	110101
15x	000110	7.5x	000100	3.75x ⁴	110101 ²
16x	110110	8x	110000	4x ⁴	101000
17x	000010	8.5x	011000	4.25x ⁴	101000 ²
18x	001010	9x	011110	4.5x ⁴	011101
20x	001110	10x	101010	5x	101100
21x	010010	10.5x	100010	5.25x	101100 ²

Document Revision History

Table 17. Document Revision History (continued)

Revision	Date	Substantive Change(s)
2		Table 6: Added separate input leakage specification for BVSEL0, LSSD_MODE, TCK, TDI, TMS, TRST signals to correctly indicate leakage current for signals with internal pull-up resistors.
		Section 5.1: Added paragraph preceding Table 7 and edited notes in Table 7 to clarify core frequencies at which power consumption is measured.
		Section 5.3: Removed voltage derating specifications; this feature has been made redundant by new device offerings and is no longer supported.
		Changed names of "Typical-Nominal" and "Typical-Thermal" power consumption parameters to "Typical" and "Thermal", respectively. (Name change only-no specifications were changed.)
		Table 11: Revised Notes 16, 18, and 19 to reflect current recommendations for connection of SENSE pins.
		Section 9.3: Added paragraph explaining connection recommendations for SENSE pins. (See also Table 11 entry above.)
		Table 19: Updated table to reflect changes in specifications for MC7448xxnnnnNC devices. Table 9: Changed all instances of TT[0:3] to TT[0:4]
		Removed mention of these input signals from output valid times and output hold times: • AACK, CKSTP_IN, DT[0:3]
		Figure 17: Modified diagram slightly to correctly show constraint on SYSCLK ramping is related to V _{DD} voltage, not AV _{DD} voltage. (Diagram clarification only; no change in power sequencing requirements.) Added Table 20 to reflect introduction of extended temperature devices and associated hardware specification addendum.
1		Added 1600 MHz, 1420 MHz, and 1000 MHz devices Section 4: corrected die size
		Table 2: Revised Note 4 to consider overshoot/undershoot and combined with Note 5.
		Table 4: Revised operating voltage for 1700 MHz device from ± 50 mV to +20 mV / –50 mV.
		Table 7: Updated and expanded table to include Typical – Nominal power consumption.
		Table 11: Added voltage derating information for 1700 MHz devices; this feature is not supported at this time for other speed grades.
		Added transient specifications for VDD power supply in Section 9.2.3, added Table 15 and Figure 19 and renumbered subsequent tables and figures.
		Moved Decoupling Recommendations from Section 9.4 to Section 9.2.4 and renumbered subsequent sections.
		Section 9.2.1: Revised power sequencing requirements.
		Section 9.7.4: Added thermal diode ideality factor information (previously TBD).
		Table 17: Expanded table to show HID1 register values when DFS modes are enabled.
		Section 11.2: updated to include additional N-spec device speed grades
		Tables 18 and 19: corrected PVR values and added "MC" product code prefix
0		Initial public release.

11 Part Numbering and Marking

Ordering information for the part numbers fully covered by this specification document is provided in Section 11.1, "Part Numbers Fully Addressed by This Document." Note that the individual part numbers correspond to a maximum processor core frequency. For available frequencies, contact a local Freescale sales office. In addition to the processor frequency, the part numbering scheme also includes an application modifier that may specify special application conditions. An optional specification modifier may also apply for parts to indicate a specific change in specifications, such as support for an extended temperature range. Finally, each part number contains a revision level code that refers to the die mask revision number. Section 11.2, "Part Numbers Not Fully Addressed by This Document," lists the part numbers that do not fully conform to the specifications of this document. These special part numbers require an additional document called a hardware specification addendum.

11.1 Part Numbers Fully Addressed by This Document

Table 18 provides the Freescale part numbering nomenclature for the MPC7448 part numbers fully addressed by this document. For information regarding other MPC7448 part numbers, see Section 11.2, "Part Numbers Not Fully Addressed by This Document."

Table 18. Part Numbering Nomenclature

xx 7448 xx nnnn L x

Product Code	Part Identifier	Package	Processor Frequency	Application Modifier	Revision Level
MC PPC ¹	7448	HX = HCTE BGA VS = RoHS LGA	1700	L: 1.3 V +20/–50 mV 0 to 105 °C	C: 2.1; PVR = 0x8004_0201 D: 2.2; PVR = 0x8004_0202
		VU = RoHS BGA	1600	L: 1.25 V ± 50 mV 0 to 105 °C	
			1420	L: 1.2 V ± 50 mV 0 to 105 °C	
			1000	L: 1.15 V ± 50 mV 0 to 105 °C	

Notes:

^{1.} The P prefix in a Freescale part number designates a "Pilot Production Prototype" as defined by Freescale SOP 3-13. These parts have only preliminary reliability and characterization data. Before pilot production prototypes may be shipped, written authorization from the customer must be on file in the applicable sales office acknowledging the qualification status and the fact that product changes may still occur as pilot production prototypes are shipped.

How to Reach Us:

Home Page:

www.freescale.com

email:

support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 1-800-521-6274 480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064, Japan 0120 191014 +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor
Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447
303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor
@ hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. The described product is a PowerPC microprocessor. The PowerPC name is a trademark of IBM Corp. and is used under license. IEEE Stds. 1149.1™ and 754™ are trademarks of the Institute of Electrical and Electronics Engineers, Inc., (IEEE). This product is not endosed or approved by the IEEE. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2005, 2007.

Document Number: MPC7448EC

Rev. 4 3/2007

