
NXP USA Inc. - MC7448VS1000LD Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing
chips designed to perform specific tasks within an
embedded system. Unlike general-purpose
microprocessors found in personal computers, embedded
microprocessors are tailored for dedicated functions within
larger systems, offering optimized performance, efficiency,
and reliability. These microprocessors are integral to the
operation of countless electronic devices, providing the
computational power necessary for controlling processes,
handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad
spectrum of applications, making them indispensable in
modern technology. In consumer electronics, they power
devices such as smartphones, tablets, and smart home
appliances, enabling advanced features and connectivity.
In the automotive industry, embedded microprocessors are
critical for engine control units (ECUs), infotainment
systems, and advanced driver-assistance systems (ADAS).
Industrial automation relies on these microprocessors for
controlling machinery, managing production lines, and
ensuring safety protocols. Medical devices, including
diagnostic equipment and patient monitoring systems,
depend on embedded microprocessors for accurate data
processing and reliable performance. Additionally,
embedded microprocessors are used in
telecommunications, aerospace, and defense applications,
where precision and dependability are paramount.

Common Subcategories of Embedded -
Microprocessors

Embedded microprocessors can be categorized into
several common subcategories based on their
architecture, performance, and intended application.
These include:

General-Purpose Microprocessors: Designed for
a wide range of applications, offering a balance of
performance and flexibility.

Application-Specific Integrated Circuits
(ASICs): Custom-designed for specific tasks,
providing optimal performance for particular
applications.

Digital Signal Processors (DSPs): Specialized for
real-time signal processing tasks, ideal for audio,
video, and communication systems.

System on Chip (SoC): Integrates the
microprocessor with other system components, such
as memory and peripherals, on a single chip for
compact and efficient designs.

Types of Embedded - Microprocessors

Details

Product Status Obsolete

Core Processor PowerPC G4

Number of Cores/Bus Width 1 Core, 32-Bit

Speed 1.0GHz

Co-Processors/DSP Multimedia; SIMD

RAM Controllers -

Graphics Acceleration No

Display & Interface Controllers -

Ethernet -

SATA -

USB -

Voltage - I/O 1.5V, 1.8V, 2.5V

Operating Temperature 0°C ~ 105°C (TA)

Security Features -

Package / Case 360-CLGA, FCCLGA

Supplier Device Package 360-FCCLGA (25x25)

Purchase URL https://www.e-xfl.com/product-detail/nxp-semiconductors/mc7448vs1000ld

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mc7448vs1000ld-4474318
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors


MPC7448 RISC Microprocessor Hardware Specifications, Rev. 4

4 Freescale Semiconductor
 

Features

— Four vector units and 32-entry vector register file (VRs)

– Vector permute unit (VPU)

– Vector integer unit 1 (VIU1) handles short-latency AltiVec™ integer instructions, such as 
vector add instructions (for example, vaddsbs, vaddshs, and vaddsws).

– Vector integer unit 2 (VIU2) handles longer-latency AltiVec integer instructions, such as 
vector multiply add instructions (for example, vmhaddshs, vmhraddshs, and 
vmladduhm).

– Vector floating-point unit (VFPU)

— Three-stage load/store unit (LSU)

– Supports integer, floating-point, and vector instruction load/store traffic

– Four-entry vector touch queue (VTQ) supports all four architected AltiVec data stream 
operations

– Three-cycle GPR and AltiVec load latency (byte, half word, word, vector) with one-cycle 
throughput

– Four-cycle FPR load latency (single, double) with one-cycle throughput

– No additional delay for misaligned access within double-word boundary

– A dedicated adder calculates effective addresses (EAs).

– Supports store gathering 

– Performs alignment, normalization, and precision conversion for floating-point data

– Executes cache control and TLB instructions

– Performs alignment, zero padding, and sign extension for integer data

– Supports hits under misses (multiple outstanding misses)

– Supports both big- and little-endian modes, including misaligned little-endian accesses

• Three issue queues, FIQ, VIQ, and GIQ, can accept as many as one, two, and three instructions, 
respectively, in a cycle. Instruction dispatch requires the following:

— Instructions can only be dispatched from the three lowest IQ entries—IQ0, IQ1, and IQ2.

— A maximum of three instructions can be dispatched to the issue queues per clock cycle.

— Space must be available in the CQ for an instruction to dispatch (this includes instructions that 
are assigned a space in the CQ but not in an issue queue).

• Rename buffers

— 16 GPR rename buffers

— 16 FPR rename buffers

— 16 VR rename buffers

• Dispatch unit

— Decode/dispatch stage fully decodes each instruction

• Completion unit

— Retires an instruction from the 16-entry completion queue (CQ) when all instructions ahead of 
it have been completed, the instruction has finished executing, and no exceptions are pending

— Guarantees sequential programming model (precise exception model)
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— Monitors all dispatched instructions and retires them in order

— Tracks unresolved branches and flushes instructions after a mispredicted branch 

— Retires as many as three instructions per clock cycle

• Separate on-chip L1 instruction and data caches (Harvard architecture)

— 32-Kbyte, eight-way set-associative instruction and data caches

— Pseudo least-recently-used (PLRU) replacement algorithm

— 32-byte (eight-word) L1 cache block

— Physically indexed/physical tags

— Cache write-back or write-through operation programmable on a per-page or per-block basis

— Instruction cache can provide four instructions per clock cycle; data cache can provide four 
words per clock cycle

— Caches can be disabled in software.

— Caches can be locked in software.

— MESI data cache coherency maintained in hardware

— Separate copy of data cache tags for efficient snooping

— Parity support on cache

— No snooping of instruction cache except for icbi instruction

— Data cache supports AltiVec LRU and transient instructions

— Critical double- and/or quad-word forwarding is performed as needed. Critical quad-word 
forwarding is used for AltiVec loads and instruction fetches. Other accesses use critical 
double-word forwarding.

• Level 2 (L2) cache interface

— On-chip, 1-Mbyte, eight-way set-associative unified instruction and data cache

— Cache write-back or write-through operation programmable on a per-page or per-block basis

— Parity support on cache tags

— ECC or parity support on data

— Error injection allows testing of error recovery software

• Separate memory management units (MMUs) for instructions and data

— 52-bit virtual address, 32- or 36-bit physical address

— Address translation for 4-Kbyte pages, variable-sized blocks, and 256-Mbyte segments

— Memory programmable as write-back/write-through, caching-inhibited/caching-allowed, and 
memory coherency enforced/memory coherency not enforced on a page or block basis

— Separate IBATs and DBATs (eight each) also defined as SPRs

— Separate instruction and data translation lookaside buffers (TLBs) 

– Both TLBs are 128-entry, two-way set-associative and use an LRU replacement algorithm.

– TLBs are hardware- or software-reloadable (that is, a page table search is performed in 
hardware or by system software on a TLB miss).
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Electrical and Thermal Characteristics

Figure 4 provides the AC test load for the MPC7448.

Figure 4. AC Test Load

Figure 5 provides the BMODE[0:1] input timing diagram for the MPC7448. These mode select inputs are 
sampled once before and once after HRESET negation.

Figure 5. BMODE[0:1] Input Sample Timing Diagram

Output Z0 = 50 Ω OVDD/2
RL = 50 Ω

HRESET

BMODE[0:1]

VM = Midpoint Voltage (OVDD/2)

SYSCLK

1st Sample 2nd Sample

VM VM
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5.2.3 IEEE Std. 1149.1 AC Timing Specifications
Table 10 provides the IEEE Std. 1149.1 (JTAG) AC timing specifications as defined in Figure 8 through 
Figure 11.

Table 10. JTAG AC Timing Specifications (Independent of SYSCLK)1

At recommended operating conditions. See Table 4.

Parameter Symbol Min Max Unit Notes

TCK frequency of operation fTCLK 0 33.3 MHz

TCK cycle time tTCLK 30 — ns

TCK clock pulse width measured at 1.4 V tJHJL 15 — ns

TCK rise and fall times tJR and tJF — 2 ns

TRST assert time tTRST 25 — ns 2

Input setup times:
Boundary-scan data
TMS, TDI 

tDVJH
tIVJH

4
0

—
—

ns 3

Input hold times:
Boundary-scan data
TMS, TDI 

tDXJH
tIXJH

20
25

—
—

ns 3

Valid times:
Boundary-scan data
TDO

tJLDV
tJLOV

4
4

20
25

ns 4

Output hold times:
Boundary-scan data
TDO

tJLDX
tJLOX

30
30

—
—

ns 4

TCK to output high impedance:
Boundary-scan data
TDO

tJLDZ
tJLOZ

3
3

19
9

ns 4, 5

Notes: 
1. All outputs are measured from the midpoint voltage of the falling/rising edge of TCLK to the midpoint of the signal in question. 

The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load (see Figure 7). 
Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

2. TRST is an asynchronous level sensitive signal. The time is for test purposes only.

3. Non-JTAG signal input timing with respect to TCK.

4. Non-JTAG signal output timing with respect to TCK.

5. Guaranteed by design and characterization.
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Table 11. Pinout Listing for the MPC7448, 360 HCTE Package

Signal Name Pin Number Active I/O Notes

A[0:35] E11, H1, C11, G3, F10, L2, D11, D1, C10, G2, D12, L3, G4, T2, F4, V1, 
J4, R2, K5, W2, J2, K4, N4, J3, M5, P5, N3, T1, V2, U1, N5, W1, B12, 
C4, G10, B11

High I/O 2

AACK R1 Low Input

AP[0:4] C1, E3, H6, F5, G7 High I/O 2

ARTRY N2 Low I/O 3

AVDD A8 — Input

BG M1 Low Input

BMODE0 G9 Low Input 4

BMODE1 F8 Low Input 5

BR D2 Low Output

BVSEL0 B7 High Input 1, 6

BVSEL1 E10 High Input 1, 20

CI J1 Low Output

CKSTP_IN A3 Low Input

CKSTP_OUT B1 Low Output

CLK_OUT H2 High Output

D[0:63] R15, W15, T14, V16, W16, T15, U15, P14, V13, W13, T13, P13, U14, 
W14, R12, T12, W12, V12, N11, N10, R11, U11, W11, T11, R10, N9, 
P10, U10, R9, W10, U9, V9, W5, U6, T5, U5, W7, R6, P7, V6, P17, R19, 
V18, R18, V19, T19, U19, W19, U18, W17, W18, T16, T18, T17, W3, 
V17, U4, U8, U7, R7, P6, R8, W8, T8

High I/O

DBG M2 Low Input

DFS2 A12 Low Input 20, 21

DFS4 B6 Low Input 12, 20, 21

DP[0:7] T3, W4, T4, W9, M6, V3, N8, W6 High I/O

DRDY R3 Low Output 7

DTI[0:3] G1, K1, P1, N1 High Input 8

EXT_QUAL A11 High Input 9

GBL E2 Low I/O

GND B5, C3, D6, D13, E17, F3, G17, H4, H7, H9, H11, H13, J6, J8, J10, J12, 
K7, K3, K9, K11, K13, L6, L8, L10, L12, M4, M7, M9, M11, M13, N7, P3, 
P9, P12, R5, R14, R17, T7, T10, U3, U13, U17, V5, V8, V11, V15

— —

GND A17, A19, B13, B16, B18, E12, E19, F13, F16, F18, G19, H18, J14, L14, 
M15, M17, M19, N14, N16, P15, P19

— — 15

GND_SENSE G12, N13 — — 19

HIT B2 Low Output 7

HRESET D8 Low Input

INT D4 Low Input

L1_TSTCLK G8 High Input 9

L2_TSTCLK B3 High Input 10
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LVRAM B10 — — 12, 20, 22

NC (no connect) A6, A14, A15, B14, B15, C14, C15, C16, C17, C18, C19, D14, D15, D16, 
D17, D18, D19, E14, E15, F14, F15, G14, G15, H15, H16, J15, J16, J17, 
J18, J19, K15, K16, K17, K18, K19, L15, L16, L17, L18, L19

— — 11

LSSD_MODE E8 Low Input 6, 12

MCP C9 Low Input

OVDD B4, C2, C12, D5, F2, H3, J5, K2, L5, M3, N6, P2, P8, P11, R4, R13, R16, 
T6, T9, U2, U12, U16, V4, V7, V10, V14

— —

OVDD_SENSE E18, G18 — — 16

PLL_CFG[0:4] B8, C8, C7, D7, A7 High Input

PLL_CFG[5] D10 High Input 9, 20

PMON_IN D9 Low Input 13

PMON_OUT A9 Low Output

QACK G5 Low Input

QREQ P4 Low Output

SHD[0:1] E4, H5 Low I/O 3

SMI F9 Low Input

SRESET A2 Low Input

SYSCLK A10 — Input

TA K6 Low Input

TBEN E1 High Input

TBST F11 Low Output

TCK C6 High Input

TDI B9 High Input 6

TDO A4 High Output

TEA L1 Low Input

TEMP_ANODE N18 — — 17

TEMP_CATHODE N19 — — 17

TMS F1 High Input 6

TRST A5 Low Input 6, 14

TS L4 Low I/O 3

TSIZ[0:2] G6, F7, E7 High Output

TT[0:4] E5, E6, F6, E9, C5 High I/O

WT D3 Low Output

VDD H8, H10, H12, J7, J9, J11, J13, K8, K10, K12, K14, L7, L9, L11, L13, M8, 
M10, M12

— —

VDD A13, A16, A18, B17, B19, C13, E13, E16, F12, F17, F19, G11, G16, 
H14, H17, H19, M14, M16, M18, N15, N17, P16, P18

— — 15

Table 11. Pinout Listing for the MPC7448, 360 HCTE Package (continued)

Signal Name Pin Number Active I/O Notes
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VDD_SENSE G13, N12 — — 18

Notes:
1. OVDD supplies power to the processor bus, JTAG, and all control signals, and is configurable. (VDD supplies power to the 

processor core, and AVDD supplies power to the PLL after filtering from VDD). To program the I/O voltage, see Table 3. If used, 
the pull-down resistor should be less than 250 Ω.  Because these settings may change in future products, it is recommended 
BVSEL[0:1] be configured using resistor options, jumpers, or some other flexible means, with the capability to reconfigure 
the termination of this signal in the future if necessary. For actual recommended value of Vin or supply voltages see Table 4. 

2. Unused address pins must be pulled down to GND and corresponding address parity pins pulled up to OVDD.

3. These pins require weak pull-up resistors (for example, 4.7 KΩ) to maintain the control signals in the negated state after they 
have been actively negated and released by the MPC7448 and other bus masters.

4. This signal selects between MPX bus mode (asserted) and 60x bus mode (negated) and will be sampled at HRESET going 
high.

5. This signal must be negated during reset, by pull-up resistor to OVDD or negation by ¬HRESET (inverse of HRESET), to 
ensure proper operation.

6. Internal pull up on die. 

7. Not used in 60x bus mode.

8. These signals must be pulled down to GND if unused, or if the MPC7448 is in 60x bus mode.

9. These input signals are for factory use only and must be pulled down to GND for normal machine operation.

10.This test signal is recommended to be tied to HRESET; however, other configurations will not adversely affect performance.

11.These signals are for factory use only and must be left unconnected for normal machine operation. Some pins that were 
NCs on the MPC7447, MPC7445, and MPC7441 have now been defined for other purposes.

12.These input signals are for factory use only and must be pulled up to OVDD for normal machine operation.

13.This pin can externally cause a performance monitor event. Counting of the event is enabled through software.

14.This signal must be asserted during reset, by pull down to GND or assertion by HRESET, to ensure proper operation.

15.These pins were NCs on the MPC7447, MPC7445, and MPC7441. See Section 9.3, “Connection Recommendations,” for 
more information.

16.These pins were OVDD pins on the MPC7447, MPC7445, and MPC7441. These pins are internally connected to OVDD and 
are intended to allow an external device (such as a power supply) to detect the I/O voltage level present inside the device 
package. If unused, it is recommended they be connected to test points to facilitate system debug; otherwise, they may be 
connected directly to OVDD or left unconnected.

17.These pins provide connectivity to the on-chip temperature diode that can be used to determine the die junction temperature 
of the processor. These pins may be left unterminated if unused.

18.These pins are internally connected to VDD and are intended to allow an external device (such as a power supply) to detect 
the processor core voltage level present inside the device package. If unused, it is recommended they be connected to test 
points to facilitate system debug; otherwise, they may be connected directly to VDD or left unconnected.

19.These pins are internally connected to GND and are intended to allow an external device to detect the processor ground 
voltage level present inside the device package. If unused, it is recommended they be connected to test points to facilitate 
system debug; otherwise, they may be connected directly to GND or left unconnected.

20.These pins were in the TEST[0:4] factory test pin group on the MPC7447A, MPC7447, MPC7445, and MPC7441. They have 
been assigned new functions on the MPC7448.

21.These pins can be used to enable the supported dynamic frequency switching (DFS) modes via hardware. If both are pulled 
down, DFS mode is disabled completely and cannot be enabled via software. If unused, they should be pulled up to OVDD 
to allow software control of DFS. See the MPC7450 RISC Microprocessor Family Reference Manual for more information.

22.This pin is provided to allow operation of the L2 cache at low core voltages and is for factory use only. See the MPC7450 
RISC Microprocessor Family Reference Manual for more information.

Table 11. Pinout Listing for the MPC7448, 360 HCTE Package (continued)

Signal Name Pin Number Active I/O Notes
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8 Package Description
The following sections provide the package parameters and mechanical dimensions for the HCTE 
package. 

8.1 Package Parameters for the MPC7448, 360 HCTE BGA
The package parameters are as provided in the following list. The package type is 25 × 25 mm, 360-lead 
high coefficient of thermal expansion ceramic ball grid array (HCTE).

Package outline 25 × 25 mm
Interconnects 360 (19 × 19 ball array – 1)
Pitch 1.27 mm (50 mil)
Minimum module height 2.32 mm
Maximum module height 2.80 mm
Ball diameter 0.89 mm (35 mil)
Coefficient of thermal expansion12.3 ppm/°C 
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8.2 Mechanical Dimensions for the MPC7448, 360 HCTE BGA
Figure 13 provides the mechanical dimensions and bottom surface nomenclature for the MPC7448, 360 
HCTE BGA package.

Figure 13. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC7448, 
360 HCTE BGA Package

NOTES:
1. Dimensioning and 

tolerancing per ASME 
Y14.5M, 1994

2. Dimensions in millimeters.
3. Top side A1 corner index is a 

metalized feature with 
various shapes. Bottom side 
A1 corner is designated with 
a ball missing from the array.
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8.4 Mechanical Dimensions for the MPC7448, 360 HCTE LGA
Figure 13 provides the mechanical dimensions and bottom surface nomenclature for the MPC7448, 360 
HCTE LGA package.

Figure 14. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC7448, 
360 HCTE LGA Package

NOTES:
1. Dimensioning and 

tolerancing per ASME 
Y14.5M, 1994

2. Dimensions in millimeters
3. Top side A1 corner index is a 

metalized feature with 
various shapes. Bottom side 
A1 corner is designated with 
a pad missing from the array.
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8.6 Mechanical Dimensions for the MPC7448, 360 HCTE 
RoHS-Compliant BGA

Figure 13 provides the mechanical dimensions and bottom surface nomenclature for the MPC7448, 360 
HCTE BGA package with RoHS-compliant lead-free spheres.

Figure 15. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC7448, 
360 HCTE RoHS-Compliant BGA Package

NOTES:
1. Dimensioning and 

tolerancing per ASME 
Y14.5M, 1994

2. Dimensions in millimeters.
3. Top side A1 corner index is a 

metalized feature with 
various shapes. Bottom side 
A1 corner is designated with 
a ball missing from the array.

4. Dimension A1 represents the 
collapsed sphere diameter.
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9.1.2 System Bus Clock (SYSCLK) and Spread Spectrum Sources
Spread spectrum clock sources are an increasingly popular way to control electromagnetic interference 
emissions (EMI) by spreading the emitted noise to a wider spectrum and reducing the peak noise 
magnitude in order to meet industry and government requirements. These clock sources intentionally add 
long-term jitter in order to diffuse the EMI spectral content. The jitter specification given in Table 8 
considers short-term (cycle-to-cycle) jitter only and the clock generator’s cycle-to-cycle output jitter 
should meet the MPC7448 input cycle-to-cycle jitter requirement. Frequency modulation and spread are 
separate concerns, and the MPC7448 is compatible with spread spectrum sources if the recommendations 
listed in Table 13 are observed.

It is imperative to note that the processor’s minimum and maximum SYSCLK, core, and VCO frequencies 
must not be exceeded regardless of the type of clock source. Therefore, systems in which the processor is 
operated at its maximum rated core or bus frequency should avoid violating the stated limits by using 
down-spreading only.

9.2 Power Supply Design and Sequencing
The following sections provide detailed information regarding power supply design for the MPC7448.

9.2.1 Power Supply Sequencing
The MPC7448 requires its power rails and clock to be applied in a specific sequence to ensure proper 
device operation and to prevent device damage. The power sequencing requirements are as follows:

• AVDD must be delayed with respect to VDD by the RC time constant of the PLL filter circuit 
described in Section 9.2.2, “PLL Power Supply Filtering”. This time constant is nominally 100 µs.

• OVDD may ramp anytime before or after VDD and AVDD.

Additionally, the following requirements exist regarding the application of SYSCLK:

• The voltage at the SYSCLK input must not exceed VDD until VDD has ramped to 0.9 V.

• The voltage at the SYSCLK input must not exceed OVDD by more 20% during transients (see 
overshoot/undershoot specifications in Figure 2) or 0.3 V DC (see Table 2) at any time.

Table 13. Spread Spectrum Clock Source Recommendations
At recommended operating conditions. See Table 4.

Parameter Min Max Unit Notes

Frequency modulation — 50 kHz 1

Frequency spread — 1.0 % 1, 2

Notes: 
1. Guaranteed by design
2. SYSCLK frequencies resulting from frequency spreading, and the resulting core and VCO 

frequencies, must meet the minimum and maximum specifications given in Table 8.
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These requirements are shown graphically in Figure 16.

Figure 16. MPC7448 Power Up Sequencing Requirements

Certain stipulations also apply to the manner in which the power rails of the MPC7448 power down, as 
follows:

• OVDD may ramp down any time before or after VDD.

• The voltage at the SYSCLK input must not exceed VDD once VDD has ramped down below 0.9 V.

• The voltage at the SYSCLK input must not exceed OVDD by more 20% during transients (see 
overshoot/undershoot specifications in Figure 2) or 0.3 V DC (see Table 2) at any time.

AVDD

VDD

OVDD

SYSCLK

0.9 V

no restrictions between OVDD and VDD

0.9 V

limit imposed by VDD if OVDD ramps up first

limit imposed by OVDD if VDD ramps up first

100 μs (nominal) delay from VDD to AVDD
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9.4 Output Buffer DC Impedance
The MPC7448 processor bus drivers are characterized over process, voltage, and temperature. To measure 
Z0, an external resistor is connected from the chip pad to OVDD or GND. The value of each resistor is 
varied until the pad voltage is OVDD/2. Figure 20 shows the driver impedance measurement.

Figure 20. Driver Impedance Measurement

The output impedance is the average of two components—the resistances of the pull-up and pull-down 
devices. When data is held low, SW2 is closed (SW1 is open), and RN is trimmed until the voltage at the 
pad equals OVDD/2. RN then becomes the resistance of the pull-down devices. When data is held high, 
SW1 is closed (SW2 is open), and RP is trimmed until the voltage at the pad equals OVDD/2. RP then 
becomes the resistance of the pull-up devices. RP and RN are designed to be close to each other in value. 
Then, Z0 = (RP + RN)/2.

Table 15 summarizes the signal impedance results. The impedance increases with junction temperature 
and is relatively unaffected by bus voltage.

9.5 Pull-Up/Pull-Down Resistor Requirements
The MPC7448 requires high-resistive (weak: 4.7-KΩ) pull-up resistors on several control pins of the bus 
interface to maintain the control signals in the negated state after they have been actively negated and 
released by the MPC7448 or other bus masters. These pins are: TS, ARTRY, SHDO, and SHD1.

Some pins designated as being factory test pins must be pulled up to OVDD or down to GND to ensure 
proper device operation. The pins that must be pulled up to OVDD are LSSD_MODE and TEST[0:3]; the 
pins that must be pulled down to GND are L1_TSTCLK and TEST[4]. The CKSTP_IN signal should 

Table 15. Impedance Characteristics
At recommended operating conditions. See Table 4

Impedance Processor Bus Unit

Z0 Typical 33–42 Ω

Maximum 31–51 Ω

OVDD

OGND

RP

RN

Pad
Data

SW1

SW2
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to fully control the processor. If the target system has independent reset sources, such as voltage monitors, 
watchdog timers, power supply failures, or push-button switches, then the COP reset signals must be 
merged into these signals with logic.

The arrangement shown in Figure 21 allows the COP port to independently assert HRESET or TRST, 
while ensuring that the target can drive HRESET as well. If the JTAG interface and COP header will not 
be used, TRST should be tied to HRESET through a 0-Ω isolation resistor so that it is asserted when the 
system reset signal (HRESET) is asserted, ensuring that the JTAG scan chain is initialized during 
power-on. Although Freescale recommends that the COP header be designed into the system as shown in 
Figure 21, if this is not possible, the isolation resistor will allow future access to TRST in the case where 
a JTAG interface may need to be wired onto the system in debug situations.

The COP header shown in Figure 21 adds many benefits—breakpoints, watchpoints, register and memory 
examination/modification, and other standard debugger features are possible through this interface—and 
can be as inexpensive as an unpopulated footprint for a header to be added when needed.

The COP interface has a standard header for connection to the target system, based on the 0.025" 
square-post, 0.100" centered header assembly (often called a Berg header). The connector typically has 
pin 14 removed as a connector key.

There is no standardized way to number the COP header shown in Figure 21; consequently, many different 
pin numbers have been observed from emulator vendors. Some are numbered top-to-bottom then 
left-to-right, while others use left-to-right then top-to-bottom, while still others number the pins counter 
clockwise from pin 1 (as with an IC). Regardless of the numbering, the signal placement recommended in 
Figure 21 is common to all known emulators.

The QACK signal shown in Figure 21 is usually connected to the bridge chip or other system control logic 
in a system and is an input to the MPC7448 informing it that it can go into the quiescent state. Under 
normal operation this occurs during a low-power mode selection. In order for COP to work, the MPC7448 
must see this signal asserted (pulled down). While shown on the COP header, not all emulator products 
drive this signal. If the product does not, a pull-down resistor can be populated to assert this signal. 
Additionally, some emulator products implement open-drain type outputs and can only drive QACK 
asserted; for these tools, a pull-up resistor can be implemented to ensure this signal is negated when it is 
not being driven by the tool. Note that the pull-up and pull-down resistors on the QACK signal are 
mutually exclusive and it is never necessary to populate both in a system. To preserve correct power-down 
operation, QACK should be merged through logic so that it also can be driven by the bridge or system 
logic.
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Shin-Etsu MicroSi, Inc. 888-642-7674
10028 S. 51st St.
Phoenix, AZ 85044
Internet: www.microsi.com

Laird Technologies - Thermal 888-246-905
(formerly Thermagon Inc.)
4707 Detroit Ave.
Cleveland, OH 44102
Internet: www.lairdtech.com

The following section provides a heat sink selection example using one of the commercially available heat 
sinks.

9.7.3 Heat Sink Selection Example
For preliminary heat sink sizing, the die-junction temperature can be expressed as follows:

 Tj = Ti + Tr + (RθJC + Rθint + Rθsa) × Pd 

where:

Tj is the die-junction temperature 
Ti is the inlet cabinet ambient temperature
Tr is the air temperature rise within the computer cabinet
RθJC is the junction-to-case thermal resistance
Rθint is the adhesive or interface material thermal resistance
Rθsa is the heat sink base-to-ambient thermal resistance
Pd is the power dissipated by the device

During operation, the die-junction temperatures (Tj) should be maintained less than the value specified in 
Table 4. The temperature of air cooling the component greatly depends on the ambient inlet air temperature 
and the air temperature rise within the electronic cabinet. An electronic cabinet inlet-air temperature (Ti) 
may range from 30� to 40�C. The air temperature rise within a cabinet (Tr) may be in the range of 5� to 
10�C. The thermal resistance of the thermal interface material (Rθint) is typically about 1.1 �C/W. For 
example, assuming a Ti of 30�C, a Tr of 5�C, an HCTE package RθJC = 0.1, and a power consumption 
(Pd) of 25.6 W, the following expression for Tj is obtained:

Die-junction temperature: Tj = 30�C + 5�C + (0.1�C/W + 1.1�C/W + θsa) × 25.6

For this example, a Rθsavalue of 1.53 �C/W or less is required to maintain the die junction temperature 
below the maximum value of Table 4.

Though the die junction-to-ambient and the heat sink-to-ambient thermal resistances are a common 
figure-of-merit used for comparing the thermal performance of various microelectronic packaging 
technologies, one should exercise caution when only using this metric in determining thermal management 
because no single parameter can adequately describe three-dimensional heat flow. The final die-junction 
operating temperature is not only a function of the component-level thermal resistance, but the 
system-level design and its operating conditions. In addition to the component's power consumption, a 
number of factors affect the final operating die-junction temperature—airflow, board population (local 
heat flux of adjacent components), heat sink efficiency, heat sink attach, heat sink placement, next-level 
interconnect technology, system air temperature rise, altitude, and so on.
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Solving for T, the equation becomes:

9.7.5 Dynamic Frequency Switching (DFS)
The DFS feature in the MPC7448 adds the ability to divide the processor-to-system bus ratio by two or 
four during normal functional operation. Divide-by-two mode is enabled by setting the HID1[DFS2] bit 
in software or by asserting the DFS2 pin via hardware. The MPC7448 can be returned for full speed by 
clearing HID1[DFS2] or negating DFS2. Similarly, divide-by-four mode is enabled by setting 
HID1[DFS4] in software or by asserting the DFS4 pin. In all cases, the frequency change occurs in 1 clock 
cycle and no idle waiting period is required to switch between modes. Note that asserting either DFS2 or 
DFS4 overrides software control of DFS, and that asserting both DFS2 and DFS4 disables DFS 
completely, including software control. Additional information regarding DFS can be found in the 
MPC7450 RISC Microprocessor Family Reference Manual. Note that minimum core frequency 
requirements must be observed when enabling DFS, and the resulting core frequency must meet the 
requirements for fcore_DFS given in Table 8.

9.7.5.1 Power Consumption with DFS Enabled
Power consumption with DFS enabled can be approximated using the following formula:

Where:

PDFS = Power consumption with DFS enabled

fDFS = Core frequency with DFS enabled

f = Core frequency prior to enabling DFS

P = Power consumption prior to enabling DFS (see Table 7)

PDS = Deep sleep mode power consumption (see Table 7)

The above is an approximation only. Power consumption with DFS enabled is not tested or guaranteed.

9.7.5.2 Bus-to-Core Multiplier Constraints with DFS
DFS is not available for all bus-to-core multipliers as configured by PLL_CFG[0:5] during hard reset. The 
complete listing is shown in Table 16. Shaded cells represent DFS modes that are not available for a 
particular PLL_CFG[0:5] setting. Should software or hardware attempt to transition to a multiplier that is 
not supported, the device will remain at its current multiplier. For example, if a transition from 
DFS-disabled to an unsupported divide-by-2 or divide-by-4 setting is attempted, the bus-to-core multiplier 
will remain at the setting configured by the PLL_CFG[0:5] pins. In the case of an attempted transition from 
a supported divide-by-2 mode to an unsupported divide-by-4 mode, the device will remain in divide-by-2 
mode. In all cases, the HID1[PC0-5] bits will correctly reflect the current bus-to-core frequency multiplier.

 nT =   
 VH – VL__________

1.986 × 10–4

 PDFS =   (P – PDS)  + PDS
fDFS___

f
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11 Part Numbering and Marking
Ordering information for the part numbers fully covered by this specification document is provided in 
Section 11.1, “Part Numbers Fully Addressed by This Document.” Note that the individual part numbers 
correspond to a maximum processor core frequency. For available frequencies, contact a local Freescale 
sales office. In addition to the processor frequency, the part numbering scheme also includes an application 
modifier that may specify special application conditions. An optional specification modifier may also 
apply for parts to indicate a specific change in specifications, such as support for an extended temperature 
range. Finally, each part number contains a revision level code that refers to the die mask revision number. 
Section 11.2, “Part Numbers Not Fully Addressed by This Document,” lists the part numbers that do not 
fully conform to the specifications of this document. These special part numbers require an additional 
document called a hardware specification addendum.

11.1 Part Numbers Fully Addressed by This Document
Table 18 provides the Freescale part numbering nomenclature for the MPC7448 part numbers fully 
addressed by this document. For information regarding other MPC7448 part numbers, see Section 11.2, 
“Part Numbers Not Fully Addressed by This Document.”

Table 18. Part Numbering Nomenclature

xx 7448 xx nnnn L x

Product 
Code

Part 
Identifier

Package
Processor 
Frequency

Application
Modifier

Revision Level

MC
PPC 1

7448 HX = HCTE BGA
VS = RoHS LGA
VU = RoHS BGA

1700 L: 1.3 V +20/–50 mV 
0 to 105 °C

C: 2.1; PVR = 0x8004_0201
D: 2.2; PVR = 0x8004_0202

1600 L: 1.25 V ± 50 mV 
0 to 105 °C

1420 L: 1.2 V ± 50 mV 
0 to 105 °C

1000 L: 1.15 V ± 50 mV 
0 to 105 °C

Notes: 
1. The P prefix in a Freescale part number designates a “Pilot Production Prototype” as defined by Freescale SOP 3-13. These 

parts have only preliminary reliability and characterization data. Before pilot production prototypes may be shipped, written 
authorization from the customer must be on file in the applicable sales office acknowledging the qualification status and the 
fact that product changes may still occur as pilot production prototypes are shipped.
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11.2 Part Numbers Not Fully Addressed by This Document
Parts with application modifiers or revision levels not fully addressed in this specification document are 
described in separate hardware specification addenda which supplement and supersede this document. As 
such parts are released, these specifications will be listed in this section.

Table 19. Part Numbers Addressed by MC7448xxnnnnNx Series Hardware Specification Addendum
(Document Order No. MPC7448ECS01AD)

xx 7448 xx nnnn N x
Product 

Code
Part 

Identifier
Package

Processor 
Frequency

Application Modifier Revision Level

MC 7448 HX = HCTE BGA
VS = RoHS LGA
VU = RoHS BGA

1400 N: 1.15 V ± 50 mV 
0 to 105 °C

(date code 0613 and later) 2

C: 2.1; PVR = 0x8004_0201
D: 2.2; PVR = 0x8004_0202

MC
PPC1

1400 N: 1.1 V ± 50 mV 
0 to 105 °C

(date code 0612 and prior) 2

MC
PPC1

1267
Revision C only

N: 1.1 V ± 50 mV 
0 to 105 °C

MC
PPC1

1267
Revision D only

N: 1.05 V ± 50 mV 
0 to 105 °C

MC
PPC1

1250 N: 1.1 V ± 50 mV 
0 to 105 °C

MC
PPC1

1000
867
800
667
600

N: 1.0 V ± 50 mV 
0 to 105 °C

Notes: 
1. The P prefix in a Freescale part number designates a “Pilot Production Prototype” as defined by Freescale SOP 3-13. These 

parts have only preliminary reliability and characterization data. Before pilot production prototypes can be shipped, written 
authorization from the customer must be on file in the applicable sales office acknowledging the qualification status and the 
fact that product changes may still occur as pilot production prototypes are shipped.

2. Core voltage for 1400 MHz devices currently in production (date code of 0613 and later) is 1.15 V ± 50 mV; all such devices 
have the MC product code. The 1400 MHz devices with date code of 0612 and prior specified core voltage of 1.1 V ± 50 mV; 
this includes all 1400 MHz devices with the PPC product code. See Section 11.3, “Part Marking,” for information on part 
marking.
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11.3 Part Marking
Parts are marked as the example shown in Figure 27.

Figure 27. Part Marking for BGA and LGA Device

Table 20. Part Numbers Addressed by MC7448TxxnnnnNx Series Hardware Specification Addendum
(Document Order No. MPC7448ECS02AD)

xx 7448 T xx nnnn N x

Product 
Code

Part 
Identifier

Specificatio
n Modifier

Package
Processor 
Frequency

Application 
Modifier

Revision Level

MC
PPC1

7448 T = Extended 
Temperature 

Device

HX = HCTE BGA 1400 N: 1.15 V ± 50 mV 
– 40 to 105 °C

C: 2.1; PVR = 0x8004_0201
D: 2.2; PVR = 0x8004_0202

1267
Revision C only

N: 1.1 V ± 50 mV 
– 40 to 105 °C

1267
Revision D only

N: 1.05 V ± 50 mV 
– 40 to 105 °C

1000 N: 1.0 V ± 50 mV 
– 40 to 105 °C

Notes: 
1. The P prefix in a Freescale part number designates a “Pilot Production Prototype” as defined by Freescale SOP 3-13. 

These parts have only preliminary reliability and characterization data. Before pilot production prototypes can be shipped, 
written authorization from the customer must be on file in the applicable sales office acknowledging the qualification status 
and the fact that product changes may still occur as pilot production prototypes are shipped.

Notes:

YWWLAZ is the assembly traceability code.

AWLYYWW is the test code, where YYWW is the date code (YY = year, WW = work week)
MMMMMM is the M00 (mask) number.

xx7448
xxnnnnNx

AWLYYWW
MMMMMM
YWWLAZ

7448

BGA/LGA


