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Features

— Monitors all dispatched instructions and retires them in order

— Tracks unresolved branches and flushes instructions after a mispredicted branch 

— Retires as many as three instructions per clock cycle

• Separate on-chip L1 instruction and data caches (Harvard architecture)

— 32-Kbyte, eight-way set-associative instruction and data caches

— Pseudo least-recently-used (PLRU) replacement algorithm

— 32-byte (eight-word) L1 cache block

— Physically indexed/physical tags

— Cache write-back or write-through operation programmable on a per-page or per-block basis

— Instruction cache can provide four instructions per clock cycle; data cache can provide four 
words per clock cycle

— Caches can be disabled in software.

— Caches can be locked in software.

— MESI data cache coherency maintained in hardware

— Separate copy of data cache tags for efficient snooping

— Parity support on cache

— No snooping of instruction cache except for icbi instruction

— Data cache supports AltiVec LRU and transient instructions

— Critical double- and/or quad-word forwarding is performed as needed. Critical quad-word 
forwarding is used for AltiVec loads and instruction fetches. Other accesses use critical 
double-word forwarding.

• Level 2 (L2) cache interface

— On-chip, 1-Mbyte, eight-way set-associative unified instruction and data cache

— Cache write-back or write-through operation programmable on a per-page or per-block basis

— Parity support on cache tags

— ECC or parity support on data

— Error injection allows testing of error recovery software

• Separate memory management units (MMUs) for instructions and data

— 52-bit virtual address, 32- or 36-bit physical address

— Address translation for 4-Kbyte pages, variable-sized blocks, and 256-Mbyte segments

— Memory programmable as write-back/write-through, caching-inhibited/caching-allowed, and 
memory coherency enforced/memory coherency not enforced on a page or block basis

— Separate IBATs and DBATs (eight each) also defined as SPRs

— Separate instruction and data translation lookaside buffers (TLBs) 

– Both TLBs are 128-entry, two-way set-associative and use an LRU replacement algorithm.

– TLBs are hardware- or software-reloadable (that is, a page table search is performed in 
hardware or by system software on a TLB miss).
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Electrical and Thermal Characteristics

Figure 2 shows the undershoot and overshoot voltage on the MPC7448.

Figure 2. Overshoot/Undershoot Voltage

The MPC7448 provides several I/O voltages to support both compatibility with existing systems and 
migration to future systems. The MPC7448 core voltage must always be provided at the nominal voltage 
(see Table 4). The input voltage threshold for each bus is selected by sampling the state of the voltage 
select pins at the negation of the signal HRESET. The output voltage will swing from GND to the 
maximum voltage applied to the OVDD power pins. Table 3 provides the input threshold voltage settings. 
Because these settings may change in future products, it is recommended that BVSEL[0:1] be configured 
using resistor options, jumpers, or some other flexible means, with the capability to reconfigure the 
termination of this signal in the future, if necessary.

Table 3. Input Threshold Voltage Setting

BVSEL0 BVSEL1 I/O Voltage Mode1 Notes

0 0 1.8 V 2, 3

0 1 2.5 V 2, 4

1 0 1.5 V 2

1 1 2.5 V 4

Notes:
1. Caution: The I/O voltage mode selected must agree with the OVDD voltages 

supplied. See Table 4.

2. If used, pull-down resistors should be less than 250 Ω.

3. The pin configuration used to select 1.8V mode on the MPC7448 is not compatible 
with the pin configuration used to select 1.8V mode on the MPC7447A and earlier 
devices.

4. The pin configuration used to select 2.5V mode on the MPC7448 is fully compatible 
with the pin configuration used to select 2.5V mode on the MPC7447A and earlier 
devices.

VIH

GND
GND – 0.3 V

GND – 0.7 V
Not to Exceed 10%

OVDD + 20%

VIL

OVDD

OVDD + 5%

of tSYSCLK
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Notes:

1. Caution: The SYSCLK frequency and PLL_CFG[0:5] settings must be chosen such that the resulting SYSCLK (bus) 
frequency, processor core frequency, and PLL (VCO) frequency do not exceed their respective maximum or minimum 
operating frequencies. Refer to the PLL_CFG[0:5] signal description in Section 9.1.1, “PLL Configuration,” for valid 
PLL_CFG[0:5] settings.

2. Actual maximum system bus frequency is system-dependent. See Section 5.2.1, “Clock AC Specifications.”

3. Rise and fall times for the SYSCLK input measured from 0.4 to 1.4 V

4. Timing is guaranteed by design and characterization.

5. Guaranteed by design

6. The SYSCLK driver’s closed loop jitter bandwidth should be less than 1.5 MHz at –3 dB.

7. Relock timing is guaranteed by design and characterization. PLL-relock time is the maximum amount of time required for PLL 
lock after a stable VDD and SYSCLK are reached during the power-on reset sequence. This specification also applies when 
the PLL has been disabled and subsequently re-enabled during sleep mode. Also note that HRESET must be held asserted 
for a minimum of 255 bus clocks after the PLL-relock time during the power-on reset sequence.

8.  This reflects the maximum and minimum core frequencies when the dynamic frequency switching feature (DFS) is disabled. 
fcore_DFS provides the maximum and minimum core frequencies when operating in a DFS mode.

9.This specification supports the Dynamic Frequency Switching (DFS) feature and is applicable only when one of the DFS modes 
(divide-by-2 or divide-by-4) is enabled. When DFS is disabled, the core frequency must conform to the maximum and minimum 
frequencies stated for fcore.

10.Use of the DFS feature does not affect VCO frequency.

Table 8. Clock AC Timing Specifications
At recommended operating conditions. See Table 4.

Characteristic Symbol

 Maximum Processor Core Frequency (Speed Grade)

Unit Notes1000 MHz 1420 MHz 1600 MHz 1700 MHz

Min Max Min Max Min Max Min Max

Processor 
core 
frequency

DFS mode disabled fcore 600 1000 600 1420 600 1600 600 1700 MHz 1, 8

DFS mode enabled fcore_DF 300 500 300 710 300 800 300 850 9

VCO frequency fVCO 600 1000 600 1420 600 800 600 1700 MHz 1, 10

SYSCLK frequency fSYSCLK 33 200 33 200 33 200 33 200 MHz 1, 2, 8

SYSCLK cycle time tSYSCLK 5.0 30 5.0 30 5.0 30 5.0 30 ns 2

SYSCLK rise and fall time tKR, tKF — 0.5 — 0.5 — 0.5 — 0.5 ns 3

SYSCLK duty cycle measured at 
OVDD/2

tKHKL/
tSYSCLK

40 60 40 60 40 60 40 60 % 4

SYSCLK cycle-to-cycle jitter — 150 — 150 — 150 — 150 ps 5, 6

Internal PLL relock time — 100 — 100 — 100 — 100 μs 7
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Figure 3 provides the SYSCLK input timing diagram.

Figure 3. SYSCLK Input Timing Diagram

5.2.2 Processor Bus AC Specifications
Table 9 provides the processor bus AC timing specifications for the MPC7448 as defined in Figure 4 and 
Figure 5. 

Table 9. Processor Bus AC Timing Specifications1

At recommended operating conditions. See Table 4.

Parameter Symbol 2
All Speed Grades

Unit Notes
Min Max

Input setup times:
A[0:35], AP[0:4]
D[0:63], DP[0:7]
AACK, ARTRY, BG, CKSTP_IN, DBG, DTI[0:3], GBL, TT[0:4], 

QACK, TA, TBEN, TEA, TS, EXT_QUAL, PMON_IN, 
SHD[0:1]

BMODE[0:1], BVSEL[0:1]

tAVKH
tDVKH
tIVKH

tMVKH

1.5
1.5
1.5

1.5

—
—
—

—

ns
—
—
—

8

Input hold times:
A[0:35], AP[0:4]
D[0:63], DP[0:7]
AACK, ARTRY, BG, CKSTP_IN, DBG, DTI[0:3], GBL, TT[0:4], 

QACK, TA, TBEN, TEA, TS, EXT_QUAL, PMON_IN, 
SHD[0:1]

BMODE[0:1], BVSEL[0:1]

tAXKH
tDXKH
tIXKH

tMXKH

0
0
0

0

—
—
—

—

ns
—
—
—
—

8

Output valid times: 
A[0:35], AP[0:4]
D[0:63], DP[0:7]
BR, CI, DRDY, GBL, HIT, PMON_OUT, QREQ, TBST, 

TSIZ[0:2], TT[0:4], WT
TS
ARTRY, SHD[0:1]

tKHAV
tKHDV
tKHOV

tKHTSV
tKHARV

—
—
—

—
—

1.8
1.8
1.8

1.8
1.8

ns

Output hold times:
A[0:35], AP[0:4]
D[0:63], DP[0:7]
BR, CI, DRDY, GBL, HIT, PMON_OUT, QREQ, TBST, 

TSIZ[0:2], TT[0:4], WT
TS
ARTRY, SHD[0:1]

tKHAX
tKHDX
tKHOX

tKHTSX
tKHARX

0.5
0.5
0.5

0.5
0.5

—
—
—

—
—

ns

SYSCLK to output enable tKHOE 0.5 — ns 5

SYSCLK VMVMVM
CVIH

CVIL

VM = Midpoint Voltage (OVDD/2)

tSYSCLK

tKR tKF
tKHKL
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Figure 4 provides the AC test load for the MPC7448.

Figure 4. AC Test Load

Figure 5 provides the BMODE[0:1] input timing diagram for the MPC7448. These mode select inputs are 
sampled once before and once after HRESET negation.

Figure 5. BMODE[0:1] Input Sample Timing Diagram

Output Z0 = 50 Ω OVDD/2
RL = 50 Ω

HRESET

BMODE[0:1]

VM = Midpoint Voltage (OVDD/2)

SYSCLK

1st Sample 2nd Sample

VM VM
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Figure 7 provides the AC test load for TDO and the boundary-scan outputs of the MPC7448.

Figure 7. Alternate AC Test Load for the JTAG Interface

Figure 8 provides the JTAG clock input timing diagram.

Figure 8. JTAG Clock Input Timing Diagram

Figure 9 provides the TRST timing diagram.

Figure 9. TRST Timing Diagram

Figure 10 provides the boundary-scan timing diagram.

Figure 10. Boundary-Scan Timing Diagram

Output Z0 = 50 Ω OVDD/2
RL = 50 Ω

VMVMVM

VM = Midpoint Voltage (OVDD/2)

tTCLK

tJR tJFtJHJL

TCLK

TRST
tTRST

VM = Midpoint Voltage (OVDD/2)

VM VM

VMTCK

Boundary

Boundary

Boundary

Data Outputs

Data Inputs

Data Outputs

VM = Midpoint Voltage (OVDD/2)

tDXJH

tDVJH

tJLDV

tJLDZ

Input
Data Valid

Output Data Valid

Output Data Valid

tJLDX

VM
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Pinout Listings

LVRAM B10 — — 12, 20, 22

NC (no connect) A6, A14, A15, B14, B15, C14, C15, C16, C17, C18, C19, D14, D15, D16, 
D17, D18, D19, E14, E15, F14, F15, G14, G15, H15, H16, J15, J16, J17, 
J18, J19, K15, K16, K17, K18, K19, L15, L16, L17, L18, L19

— — 11

LSSD_MODE E8 Low Input 6, 12

MCP C9 Low Input

OVDD B4, C2, C12, D5, F2, H3, J5, K2, L5, M3, N6, P2, P8, P11, R4, R13, R16, 
T6, T9, U2, U12, U16, V4, V7, V10, V14

— —

OVDD_SENSE E18, G18 — — 16

PLL_CFG[0:4] B8, C8, C7, D7, A7 High Input

PLL_CFG[5] D10 High Input 9, 20

PMON_IN D9 Low Input 13

PMON_OUT A9 Low Output

QACK G5 Low Input

QREQ P4 Low Output

SHD[0:1] E4, H5 Low I/O 3

SMI F9 Low Input

SRESET A2 Low Input

SYSCLK A10 — Input

TA K6 Low Input

TBEN E1 High Input

TBST F11 Low Output

TCK C6 High Input

TDI B9 High Input 6

TDO A4 High Output

TEA L1 Low Input

TEMP_ANODE N18 — — 17

TEMP_CATHODE N19 — — 17

TMS F1 High Input 6

TRST A5 Low Input 6, 14

TS L4 Low I/O 3

TSIZ[0:2] G6, F7, E7 High Output

TT[0:4] E5, E6, F6, E9, C5 High I/O

WT D3 Low Output

VDD H8, H10, H12, J7, J9, J11, J13, K8, K10, K12, K14, L7, L9, L11, L13, M8, 
M10, M12

— —

VDD A13, A16, A18, B17, B19, C13, E13, E16, F12, F17, F19, G11, G16, 
H14, H17, H19, M14, M16, M18, N15, N17, P16, P18

— — 15

Table 11. Pinout Listing for the MPC7448, 360 HCTE Package (continued)

Signal Name Pin Number Active I/O Notes
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8.4 Mechanical Dimensions for the MPC7448, 360 HCTE LGA
Figure 13 provides the mechanical dimensions and bottom surface nomenclature for the MPC7448, 360 
HCTE LGA package.

Figure 14. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC7448, 
360 HCTE LGA Package

NOTES:
1. Dimensioning and 

tolerancing per ASME 
Y14.5M, 1994

2. Dimensions in millimeters
3. Top side A1 corner index is a 

metalized feature with 
various shapes. Bottom side 
A1 corner is designated with 
a pad missing from the array.

0.2

CA

360X
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2X

A1 CORNER

E
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0.2
2X

C

B

1 2 3 4 5 6 7 8 9 10 111213141516
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A
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Dim Min Max

A 1.52 1.80

A1 0.70 0.90

A2 — 0.6

b 0.82 0.93

D 25.00 BSC

D1 — 11.3

D2 8.0 —

D3 — 6.5

D4 7.2 7.4

e 1.27 BSC

E 25.00 BSC

E1 — 11.3

E2 8.0 —

E3 — 6.5

E4 7.9 8.1

Capacitor Region

1

D3

E2
E1

A

A1

A2

E4

D4

E3

D1

D2

0.35 A
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These requirements are shown graphically in Figure 16.

Figure 16. MPC7448 Power Up Sequencing Requirements

Certain stipulations also apply to the manner in which the power rails of the MPC7448 power down, as 
follows:

• OVDD may ramp down any time before or after VDD.

• The voltage at the SYSCLK input must not exceed VDD once VDD has ramped down below 0.9 V.

• The voltage at the SYSCLK input must not exceed OVDD by more 20% during transients (see 
overshoot/undershoot specifications in Figure 2) or 0.3 V DC (see Table 2) at any time.

AVDD

VDD

OVDD

SYSCLK

0.9 V

no restrictions between OVDD and VDD

0.9 V

limit imposed by VDD if OVDD ramps up first

limit imposed by OVDD if VDD ramps up first

100 μs (nominal) delay from VDD to AVDD
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9.2.3 Transient Specifications
The ensure the long-term reliability of the device, the MPC7448 requires that transients on the core power 
rail (VDD) be constrained. The recommended operating voltage specifications provided in Table 4 are DC 
specifications. That is, the device may be operated continuously with VDD within the specified range 
without adversely affecting the device’s reliability. Excursions above the stated recommended operation 
range, including overshoot during power-up, can impact the long-term reliability of the device. Excursions 
are described by their amplitude and duration. Duration is defined as the time period during which the VDD 
power plane, as measured at the VDD_SENSE pins, will be within a specific voltage range, expressed as 
percentage of the total time the device will be powered up over the device lifetime. In practice, the period 
over which transients are measured can be any arbitrary period of time that accurately represents the 
expected range of processor and system activity. The voltage ranges and durations for normal operation 
and transients are described in Table 14.

Note that, to simplify transient measurements, the duration of the excursion into the High Transient region 
is also included in the Low Transient duration, so that only the time the voltage is above each threshold 
must be considered. Figure 19 shows an example of measuring voltage transients. 

Figure 19. Voltage Transient Example

Table 14. VDD Power Supply Transient Specifications
At recommended operating temperatures. See Table 4.

Voltage Region
Voltage Range (V)

Permitted 
Duration 1

Notes
Min Max

Normal VDD minimum VDD maximum 100% 2

Low Transient VDD maximum 1.35 V 10% 2, 3

High Transient 1.35 V 1.40 V 0.2% 4

Notes: 
1. Permitted duration is defined as the percentage of the total time the device is powered on that the VDD 

power supply voltage may exist within the specified voltage range.
2. See Table 4 for nominal VDD specifications.

3. To simplify measurement, excursions into the High Transient region are included in this duration.

4. Excursions above the absolute maximum rating of 1.4 V are not permitted; see Table 2.

VDD (nominal)

1.40 V

A + B < T • 10%

1.35 V

VDD (maximum)

A C

B

T

C < T • 0.2%

VDD (minimum)

Normal

Low Transient

High Transient
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9.4 Output Buffer DC Impedance
The MPC7448 processor bus drivers are characterized over process, voltage, and temperature. To measure 
Z0, an external resistor is connected from the chip pad to OVDD or GND. The value of each resistor is 
varied until the pad voltage is OVDD/2. Figure 20 shows the driver impedance measurement.

Figure 20. Driver Impedance Measurement

The output impedance is the average of two components—the resistances of the pull-up and pull-down 
devices. When data is held low, SW2 is closed (SW1 is open), and RN is trimmed until the voltage at the 
pad equals OVDD/2. RN then becomes the resistance of the pull-down devices. When data is held high, 
SW1 is closed (SW2 is open), and RP is trimmed until the voltage at the pad equals OVDD/2. RP then 
becomes the resistance of the pull-up devices. RP and RN are designed to be close to each other in value. 
Then, Z0 = (RP + RN)/2.

Table 15 summarizes the signal impedance results. The impedance increases with junction temperature 
and is relatively unaffected by bus voltage.

9.5 Pull-Up/Pull-Down Resistor Requirements
The MPC7448 requires high-resistive (weak: 4.7-KΩ) pull-up resistors on several control pins of the bus 
interface to maintain the control signals in the negated state after they have been actively negated and 
released by the MPC7448 or other bus masters. These pins are: TS, ARTRY, SHDO, and SHD1.

Some pins designated as being factory test pins must be pulled up to OVDD or down to GND to ensure 
proper device operation. The pins that must be pulled up to OVDD are LSSD_MODE and TEST[0:3]; the 
pins that must be pulled down to GND are L1_TSTCLK and TEST[4]. The CKSTP_IN signal should 

Table 15. Impedance Characteristics
At recommended operating conditions. See Table 4

Impedance Processor Bus Unit

Z0 Typical 33–42 Ω

Maximum 31–51 Ω

OVDD

OGND

RP

RN

Pad
Data

SW1

SW2
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to fully control the processor. If the target system has independent reset sources, such as voltage monitors, 
watchdog timers, power supply failures, or push-button switches, then the COP reset signals must be 
merged into these signals with logic.

The arrangement shown in Figure 21 allows the COP port to independently assert HRESET or TRST, 
while ensuring that the target can drive HRESET as well. If the JTAG interface and COP header will not 
be used, TRST should be tied to HRESET through a 0-Ω isolation resistor so that it is asserted when the 
system reset signal (HRESET) is asserted, ensuring that the JTAG scan chain is initialized during 
power-on. Although Freescale recommends that the COP header be designed into the system as shown in 
Figure 21, if this is not possible, the isolation resistor will allow future access to TRST in the case where 
a JTAG interface may need to be wired onto the system in debug situations.

The COP header shown in Figure 21 adds many benefits—breakpoints, watchpoints, register and memory 
examination/modification, and other standard debugger features are possible through this interface—and 
can be as inexpensive as an unpopulated footprint for a header to be added when needed.

The COP interface has a standard header for connection to the target system, based on the 0.025" 
square-post, 0.100" centered header assembly (often called a Berg header). The connector typically has 
pin 14 removed as a connector key.

There is no standardized way to number the COP header shown in Figure 21; consequently, many different 
pin numbers have been observed from emulator vendors. Some are numbered top-to-bottom then 
left-to-right, while others use left-to-right then top-to-bottom, while still others number the pins counter 
clockwise from pin 1 (as with an IC). Regardless of the numbering, the signal placement recommended in 
Figure 21 is common to all known emulators.

The QACK signal shown in Figure 21 is usually connected to the bridge chip or other system control logic 
in a system and is an input to the MPC7448 informing it that it can go into the quiescent state. Under 
normal operation this occurs during a low-power mode selection. In order for COP to work, the MPC7448 
must see this signal asserted (pulled down). While shown on the COP header, not all emulator products 
drive this signal. If the product does not, a pull-down resistor can be populated to assert this signal. 
Additionally, some emulator products implement open-drain type outputs and can only drive QACK 
asserted; for these tools, a pull-up resistor can be implemented to ensure this signal is negated when it is 
not being driven by the tool. Note that the pull-up and pull-down resistors on the QACK signal are 
mutually exclusive and it is never necessary to populate both in a system. To preserve correct power-down 
operation, QACK should be merged through logic so that it also can be driven by the bridge or system 
logic.
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9.7 Power and Thermal Management Information
This section provides thermal management information for the high coefficient of thermal expansion 
(HCTE) package for air-cooled applications. Proper thermal control design is primarily dependent on the 
system-level design—the heat sink, airflow, and thermal interface material. The MPC7448 implements 
several features designed to assist with thermal management, including DFS and the temperature diode. 
DFS reduces the power consumption of the device by reducing the core frequency; see Section 9.7.5.1, 
“Power Consumption with DFS Enabled,” for specific information regarding power reduction and DFS. 
The temperature diode allows an external device to monitor the die temperature in order to detect excessive 
temperature conditions and alert the system; see Section 9.7.4, “Temperature Diode,” for more 
information.

To reduce the die-junction temperature, heat sinks may be attached to the package by several 
methods—spring clip to holes in the printed-circuit board or package, and mounting clip and screw 
assembly (see Figure 22); however, due to the potential large mass of the heat sink, attachment through the 
printed-circuit board is suggested. In any implementation of a heat sink solution, the force on the die 
should not exceed ten pounds (45 Newtons).

Figure 22. BGA Package Exploded Cross-Sectional View with Several Heat Sink Options

NOTE

A clip on heat sink is not recommended for LGA because there may not be 
adequate clearance between the device and the circuit board. A through-hole 
solution is recommended, as shown in Figure 23.

Thermal

Heat Sink
HCTE BGA Package

Heat Sink
Clip

Printed-Circuit Board

Interface Material
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9.7.1 Internal Package Conduction Resistance
For the exposed-die packaging technology described in Table 5, the intrinsic conduction thermal resistance 
paths are as follows:

• The die junction-to-case thermal resistance (the case is actually the top of the exposed silicon die)

• The die junction-to-board thermal resistance

Figure 24 depicts the primary heat transfer path for a package with an attached heat sink mounted to a 
printed-circuit board.

Figure 24. C4 Package with Heat Sink Mounted to a Printed-Circuit Board

Heat generated on the active side of the chip is conducted through the silicon, through the heat sink attach 
material (or thermal interface material), and, finally, to the heat sink, where it is removed by forced-air 
convection.

Because the silicon thermal resistance is quite small, the temperature drop in the silicon may be neglected 
for a first-order analysis. Thus, the thermal interface material and the heat sink conduction/convective 
thermal resistances are the dominant terms.

9.7.2 Thermal Interface Materials
A thermal interface material is recommended at the package lid-to-heat sink interface to minimize the 
thermal contact resistance. For those applications where the heat sink is attached by spring clip 
mechanism, Figure 25 shows the thermal performance of three thin-sheet thermal-interface materials 
(silicone, graphite/oil, fluoroether oil), a bare joint, and a joint with thermal grease as a function of contact 
pressure. As shown, the performance of these thermal interface materials improves with increasing contact 
pressure. The use of thermal grease significantly reduces the interface thermal resistance. That is, the bare 
joint results in a thermal resistance approximately seven times greater than the thermal grease joint. 

Often, heat sinks are attached to the package by means of a spring clip to holes in the printed-circuit board 
(see Figure 22). Therefore, synthetic grease offers the best thermal performance due to the low interface 
pressure and is recommended due to the high power dissipation of the MPC7448. Of course, the selection 

External Resistance

External Resistance

Internal Resistance

Radiation Convection

Radiation Convection

Heat Sink

Printed-Circuit Board

Thermal Interface Material

Package/Leads
Die Junction
Die/Package

(Note the internal versus external package resistance.)
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Due to the complexity and variety of system-level boundary conditions for today's microelectronic 
equipment, the combined effects of the heat transfer mechanisms (radiation, convection, and conduction) 
may vary widely. For these reasons, we recommend using conjugate heat transfer models for the board as 
well as system-level designs.

For system thermal modeling, the MPC7448 thermal model is shown in Figure 26. Four volumes represent 
this device. Two of the volumes, solder ball-air and substrate, are modeled using the package outline size 
of the package. The other two, die and bump-underfill, have the same size as the die. The silicon die should 
be modeled 8.0 × 7.3 × 0.86 mm3 with the heat source applied as a uniform source at the bottom of the 
volume. The bump and underfill layer is modeled as 8.0 × 7.3 × 0.07 mm3collapsed in the z-direction with 
a thermal conductivity of 5.0 W/(m • K) in the z-direction. The substrate volume is 25 × 25 × 1.14 mm3 
and has 9.9 W/(m • K) isotropic conductivity in the xy-plane and 2.95 W/(m • K) in the direction of the 
z-axis. The solder ball and air layer are modeled with the same horizontal dimensions as the substrate and 
is 0.8 mm thick. For the LGA package the solder and air layer is 0.1 mm thick, but the material properties 
are the same. It can also be modeled as a collapsed volume using orthotropic material properties: 
0.034 W/(m • K) in the xy-plane direction and 11.2 W/(m • K) in the direction of the z-axis.

Figure 26. Recommended Thermal Model of MPC7448

Bump and Underfill

Die

Substrate
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Die
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Bump and Underfill (8.0 × 7.3 × 0.07 mm3)
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ky 9.9
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Solder Ball and Air (25 × 25 × 0.8 mm3)

kx 0.034 W/(m • K)
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kz 11.2
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9.7.4 Temperature Diode
The MPC7448 has a temperature diode on the microprocessor that can be used in conjunction with other 
system temperature monitoring devices (such as Analog Devices, ADT7461™). These devices use the 
negative temperature coefficient of a diode operated at a constant current to determine the temperature of 
the microprocessor and its environment. For proper operation, the monitoring device used should 
auto-calibrate the device by canceling out the VBE variation of each MPC7448’s internal diode.

The following are the specifications of the MPC7448 on-board temperature diode:

Vf > 0.40 V 

Vf < 0.90 V

Operating range 2–300 μA

Diode leakage < 10 nA @ 125°C

Ideality factor over 5–150 μA at 60°C: n = 1.0275 ± 0.9%

Ideality factor is defined as the deviation from the ideal diode equation:

Another useful equation is:

Where:

Ifw = Forward current

Is = Saturation current

Vd = Voltage at diode

Vf = Voltage forward biased

VH = Diode voltage while IH is flowing

VL = Diode voltage while IL is flowing

IH = Larger diode bias current

IL = Smaller diode bias current

q = Charge of electron (1.6 x 10 –19 C)

n = Ideality factor (normally 1.0)

K = Boltzman’s constant (1.38 x 10–23 Joules/K)

T = Temperature (Kelvins)

The ratio of IH to IL is usually selected to be 10:1. The previous equation simplifies to the following:

 Ifw = Is e  – 1 

 qVf___
nKT

 VH – VL = n ln  – 1 
KT__
q

 IH__
IL

 VH – VL = 1.986 × 10–4 × nT 
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Table 16. Valid Divide Ratio Configurations

DFS mode disabled
DFS divide-by-2 mode enabled
(HID1[DFS2] = 1 or DFS2 = 0)

DFS divide-by-4 mode enabled
(HID1[DFS4] = 1 or DFS4 = 0)

Bus-to-Core Multiplier 
Configured by 
PLL_CFG[0:5]
(see Table 12)

HID1[PC0-5] 3
Bus-to-Core 

Multiplier 
HID1[PC0-5] 3

Bus-to-Core 
Multiplier HID1[PC0-5] 3

2x 4 010000 N/A (unchanged) 1 unchanged 1 N/A (unchanged) 1 unchanged 1

3x 4 100000 N/A (unchanged) 1 unchanged 1 N/A (unchanged) 1 unchanged 1 

4x 4 101000 2x 4 010000 N/A (unchanged) 1 unchanged 1 

 5x 101100 2.5x 4 010101 N/A (unchanged) 1 unchanged 1

5.5x 100100 2.75x 4 110101 2 N/A (unchanged) 1 unchanged 1

 6x 110100 3x 4 100000 N/A (unchanged) 1 unchanged 1

6.5x 010100 3.25x 4  100000 2 N/A (unchanged) 1 unchanged 1

7x 001000 3.5x 4 110101 N/A (unchanged) 1 unchanged 1

7.5x 000100 3.75x 4 110101 2 N/A (unchanged) 1 unchanged 1

8x 110000 4x 4 101000 4 2x 4 010000

8.5x 011000 4.25x 4 101000 2 N/A (unchanged) 1 unchanged 1

9x 011110 4.5x 4 011101 2.25x 4 010000 2

9.5x 011100 4.75x 4 011101 2 N/A (unchanged) 1 unchanged 1

10x 101010 5x 101100 2.5x 4 010101

10.5x 100010 5.25x 101100 2 N/A (unchanged) 1 unchanged 1

11x 100110 5.5x 100100 2.75x 4 010101 2

11.5x 000000 5.75x 100100 2 N/A (unchanged) 1 unchanged 1

12x 101110 6x 110100 3x 4 100000

12.5x 111110 6.25x 110100 2 N/A (unchanged) 1 unchanged 1

13x 010110 6.5x 010100 3.25x 4 100000 2

13.5x 111000 6.75 010100 2 N/A (unchanged) 1 unchanged 1

14x 110010 7x 001000 3.5x 4 110101

15x 000110 7.5x 000100 3.75x 4 110101 2

16x 110110 8x 110000 4x 4 101000

17x 000010 8.5x 011000 4.25x 4 101000 2

18x 001010 9x 011110 4.5x 4 011101

20x 001110 10x 101010 5x 101100

21x 010010 10.5x 100010 5.25x 101100 2
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2 Table 6: Added separate input leakage specification for BVSEL0, LSSD_MODE, TCK, TDI, TMS, TRST 
signals to correctly indicate leakage current for signals with internal pull-up resistors.

Section 5.1: Added paragraph preceding Table 7 and edited notes in Table 7 to clarify core frequencies at 
which power consumption is measured.

Section 5.3: Removed voltage derating specifications; this feature has been made redundant by new 
device offerings and is no longer supported.

Changed names of “Typical–Nominal” and “Typical–Thermal” power consumption parameters to “Typical” 
and “Thermal”, respectively. (Name change only–no specifications were changed.)

Table 11: Revised Notes 16, 18, and 19 to reflect current recommendations for connection of SENSE pins.

Section 9.3: Added paragraph explaining connection recommendations for SENSE pins. (See also Table 
11 entry above.)

Table 19: Updated table to reflect changes in specifications for MC7448xxnnnnNC devices.

Table 9: Changed all instances of TT[0:3] to TT[0:4]

Removed mention of these input signals from output valid times and output hold times:

 • AACK, CKSTP_IN, DT[0:3]
Figure 17: Modified diagram slightly to correctly show constraint on SYSCLK ramping is related to VDD 
voltage, not AVDD voltage. (Diagram clarification only; no change in power sequencing requirements.)

Added Table 20 to reflect introduction of extended temperature devices and associated hardware 
specification addendum.

1 Added 1600 MHz, 1420 MHz, and 1000 MHz devices

Section 4: corrected die size

Table 2: Revised Note 4 to consider overshoot/undershoot and combined with Note 5.

Table 4: Revised operating voltage for 1700 MHz device from ± 50 mV to +20 mV / –50 mV.

Table 7: Updated and expanded table to include Typical – Nominal power consumption.

Table 11: Added voltage derating information for 1700 MHz devices; this feature is not supported at this 
time for other speed grades.

Added transient specifications for VDD power supply in Section 9.2.3, added Table 15 and Figure 19 and 
renumbered subsequent tables and figures.

Moved Decoupling Recommendations from Section 9.4 to Section 9.2.4 and renumbered subsequent 
sections.

Section 9.2.1: Revised power sequencing requirements.

Section 9.7.4: Added thermal diode ideality factor information (previously TBD).

Table 17: Expanded table to show HID1 register values when DFS modes are enabled.

Section 11.2: updated to include additional N-spec device speed grades

Tables 18 and 19: corrected PVR values and added “MC” product code prefix

0 Initial public release.

Table 17. Document Revision History (continued)

 Revision Date Substantive Change(s)
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11 Part Numbering and Marking
Ordering information for the part numbers fully covered by this specification document is provided in 
Section 11.1, “Part Numbers Fully Addressed by This Document.” Note that the individual part numbers 
correspond to a maximum processor core frequency. For available frequencies, contact a local Freescale 
sales office. In addition to the processor frequency, the part numbering scheme also includes an application 
modifier that may specify special application conditions. An optional specification modifier may also 
apply for parts to indicate a specific change in specifications, such as support for an extended temperature 
range. Finally, each part number contains a revision level code that refers to the die mask revision number. 
Section 11.2, “Part Numbers Not Fully Addressed by This Document,” lists the part numbers that do not 
fully conform to the specifications of this document. These special part numbers require an additional 
document called a hardware specification addendum.

11.1 Part Numbers Fully Addressed by This Document
Table 18 provides the Freescale part numbering nomenclature for the MPC7448 part numbers fully 
addressed by this document. For information regarding other MPC7448 part numbers, see Section 11.2, 
“Part Numbers Not Fully Addressed by This Document.”

Table 18. Part Numbering Nomenclature

xx 7448 xx nnnn L x

Product 
Code

Part 
Identifier

Package
Processor 
Frequency

Application
Modifier

Revision Level

MC
PPC 1

7448 HX = HCTE BGA
VS = RoHS LGA
VU = RoHS BGA

1700 L: 1.3 V +20/–50 mV 
0 to 105 °C

C: 2.1; PVR = 0x8004_0201
D: 2.2; PVR = 0x8004_0202

1600 L: 1.25 V ± 50 mV 
0 to 105 °C

1420 L: 1.2 V ± 50 mV 
0 to 105 °C

1000 L: 1.15 V ± 50 mV 
0 to 105 °C

Notes: 
1. The P prefix in a Freescale part number designates a “Pilot Production Prototype” as defined by Freescale SOP 3-13. These 

parts have only preliminary reliability and characterization data. Before pilot production prototypes may be shipped, written 
authorization from the customer must be on file in the applicable sales office acknowledging the qualification status and the 
fact that product changes may still occur as pilot production prototypes are shipped.
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11.2 Part Numbers Not Fully Addressed by This Document
Parts with application modifiers or revision levels not fully addressed in this specification document are 
described in separate hardware specification addenda which supplement and supersede this document. As 
such parts are released, these specifications will be listed in this section.

Table 19. Part Numbers Addressed by MC7448xxnnnnNx Series Hardware Specification Addendum
(Document Order No. MPC7448ECS01AD)

xx 7448 xx nnnn N x
Product 

Code
Part 

Identifier
Package

Processor 
Frequency

Application Modifier Revision Level

MC 7448 HX = HCTE BGA
VS = RoHS LGA
VU = RoHS BGA

1400 N: 1.15 V ± 50 mV 
0 to 105 °C

(date code 0613 and later) 2

C: 2.1; PVR = 0x8004_0201
D: 2.2; PVR = 0x8004_0202

MC
PPC1

1400 N: 1.1 V ± 50 mV 
0 to 105 °C

(date code 0612 and prior) 2

MC
PPC1

1267
Revision C only

N: 1.1 V ± 50 mV 
0 to 105 °C

MC
PPC1

1267
Revision D only

N: 1.05 V ± 50 mV 
0 to 105 °C

MC
PPC1

1250 N: 1.1 V ± 50 mV 
0 to 105 °C

MC
PPC1

1000
867
800
667
600

N: 1.0 V ± 50 mV 
0 to 105 °C

Notes: 
1. The P prefix in a Freescale part number designates a “Pilot Production Prototype” as defined by Freescale SOP 3-13. These 

parts have only preliminary reliability and characterization data. Before pilot production prototypes can be shipped, written 
authorization from the customer must be on file in the applicable sales office acknowledging the qualification status and the 
fact that product changes may still occur as pilot production prototypes are shipped.

2. Core voltage for 1400 MHz devices currently in production (date code of 0613 and later) is 1.15 V ± 50 mV; all such devices 
have the MC product code. The 1400 MHz devices with date code of 0612 and prior specified core voltage of 1.1 V ± 50 mV; 
this includes all 1400 MHz devices with the PPC product code. See Section 11.3, “Part Marking,” for information on part 
marking.


