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when running a typical benchmark at temperatures in a typical system. The Full-Power Mode–Thermal 
value is intended to represent the sustained power consumption of the device when running a typical code 
sequence at high temperature and is recommended to be used as the basis for designing a thermal solution; 
see Section 9.7, “Power and Thermal Management Information” for more information on thermal 
solutions. The Full-Power Mode–Maximum value is recommended to be used for power supply design 
because this represents the maximum peak power draw of the device that a power supply must be capable 
of sourcing without voltage droop. For information on power consumption when dynamic frequency 
switching is enabled, see Section 9.7.5, “Dynamic Frequency Switching (DFS).” 

Table 7. Power Consumption for MPC7448 at Maximum Rated Frequency

Die Junction 
Temperature 

(Tj)

Maximum Processor Core Frequency (Speed Grade, MHz)
Unit Notes

1000 MHz 1420 MHz 1600 MHz 1700 MHz

Full-Power Mode

Typical 65 •CC 15.0 19.0 20.0 21.0 W 1, 2

Thermal 105 •CC 18.6 23.3 24.4 25.6 W 1, 5

Maximum 105 •CC 21.6 27.1 28.4 29.8 W 1, 3

Nap Mode

Typical 105 •CC 11.1 11.8 13.0 13.0 W 1, 6

Sleep Mode

Typical 105 •CC 10.8 11.4 12.5 12.5 W 1, 6

Deep Sleep Mode (PLL Disabled)

Typical 105 •CC 10.4 11.0 12.0 12.0 W 1, 6

Notes: 
1. These values specify the power consumption for the core power supply (VDD) at nominal voltage and apply to all valid 

processor bus frequencies and configurations. The values do not include I/O supply power (OVDD) or PLL supply power 
(AVDD). OVDD power is system dependent but is typically < 5% of VDD power. Worst case power consumption for 
AVDD < 13 mW. Freescale also offers MPC7448 part numbers that meet lower power consumption specifications; for 
more information on these devices, see Section 11.2, “Part Numbers Not Fully Addressed by This Document.”

2. Typical power consumption is an average value measured with the processor operating at its rated maximum processor 
core frequency (except for Deep Sleep Mode), at nominal recommended VDD (see Table 4) and 65°C while running the 
Dhrystone 2.1 benchmark and achieving 2.3 Dhrystone MIPs/MHz. This parameter is not 100% tested but periodically 
sampled.b 

3. Maximum power consumption is the average measured with the processor operating at its rated maximum processor core 
frequency, at nominal VDD and maximum operating junction temperature (see Table 4) while running an entirely 
cache-resident, contrived sequence of instructions to keep all the execution units maximally busy.

4. Doze mode is not a user-definable state; it is an intermediate state between full-power and either nap or sleep mode. As 
a result, power consumption for this mode is not tested.

5. Thermal power consumption is an average value measured at the nominal recommended VDD (see Table 4) and 105 °C 
while running the Dhrystone 2.1 benchmark and achieving 2.3 Dhrystone MIPs/MHz. This parameter is not 100% tested 
but periodically sampled.

6. Typical power consumption for these modes is measured at the nominal recommended VDD (see Table 4) and 105 °C in 
the mode described. This parameter is not 100% tested but is periodically sampled.
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5.2 AC Electrical Characteristics
This section provides the AC electrical characteristics for the MPC7448. After fabrication, functional parts 
are sorted by maximum processor core frequency as shown in Section 5.2.1, “Clock AC Specifications,” 
and tested for conformance to the AC specifications for that frequency. The processor core frequency, 
determined by the bus (SYSCLK) frequency and the settings of the PLL_CFG[0:5] signals, can be 
dynamically modified using dynamic frequency switching (DFS). Parts are sold by maximum processor 
core frequency; see Section 11, “Part Numbering and Marking,” for information on ordering parts. DFS is 
described in Section 9.7.5, “Dynamic Frequency Switching (DFS).”

5.2.1 Clock AC Specifications
Table 8 provides the clock AC timing specifications as defined in Figure 3 and represents the tested 
operating frequencies of the devices. The maximum system bus frequency, fSYSCLK, given in Table 8, is 
considered a practical maximum in a typical single-processor system. This does not exclude 
multi-processor systems, but these typically require considerably more design effort to achieve the 
maximum rated bus frequency. The actual maximum SYSCLK frequency for any application of the 
MPC7448 will be a function of the AC timings of the microprocessor(s), the AC timings for the system 
controller, bus loading, circuit board topology, trace lengths, and so forth, and may be less than the value 
given in Table 8.
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Notes:

1. Caution: The SYSCLK frequency and PLL_CFG[0:5] settings must be chosen such that the resulting SYSCLK (bus) 
frequency, processor core frequency, and PLL (VCO) frequency do not exceed their respective maximum or minimum 
operating frequencies. Refer to the PLL_CFG[0:5] signal description in Section 9.1.1, “PLL Configuration,” for valid 
PLL_CFG[0:5] settings.

2. Actual maximum system bus frequency is system-dependent. See Section 5.2.1, “Clock AC Specifications.”

3. Rise and fall times for the SYSCLK input measured from 0.4 to 1.4 V

4. Timing is guaranteed by design and characterization.

5. Guaranteed by design

6. The SYSCLK driver’s closed loop jitter bandwidth should be less than 1.5 MHz at –3 dB.

7. Relock timing is guaranteed by design and characterization. PLL-relock time is the maximum amount of time required for PLL 
lock after a stable VDD and SYSCLK are reached during the power-on reset sequence. This specification also applies when 
the PLL has been disabled and subsequently re-enabled during sleep mode. Also note that HRESET must be held asserted 
for a minimum of 255 bus clocks after the PLL-relock time during the power-on reset sequence.

8.  This reflects the maximum and minimum core frequencies when the dynamic frequency switching feature (DFS) is disabled. 
fcore_DFS provides the maximum and minimum core frequencies when operating in a DFS mode.

9.This specification supports the Dynamic Frequency Switching (DFS) feature and is applicable only when one of the DFS modes 
(divide-by-2 or divide-by-4) is enabled. When DFS is disabled, the core frequency must conform to the maximum and minimum 
frequencies stated for fcore.

10.Use of the DFS feature does not affect VCO frequency.

Table 8. Clock AC Timing Specifications
At recommended operating conditions. See Table 4.

Characteristic Symbol

 Maximum Processor Core Frequency (Speed Grade)

Unit Notes1000 MHz 1420 MHz 1600 MHz 1700 MHz

Min Max Min Max Min Max Min Max

Processor 
core 
frequency

DFS mode disabled fcore 600 1000 600 1420 600 1600 600 1700 MHz 1, 8

DFS mode enabled fcore_DF 300 500 300 710 300 800 300 850 9

VCO frequency fVCO 600 1000 600 1420 600 800 600 1700 MHz 1, 10

SYSCLK frequency fSYSCLK 33 200 33 200 33 200 33 200 MHz 1, 2, 8

SYSCLK cycle time tSYSCLK 5.0 30 5.0 30 5.0 30 5.0 30 ns 2

SYSCLK rise and fall time tKR, tKF — 0.5 — 0.5 — 0.5 — 0.5 ns 3

SYSCLK duty cycle measured at 
OVDD/2

tKHKL/
tSYSCLK

40 60 40 60 40 60 40 60 % 4

SYSCLK cycle-to-cycle jitter — 150 — 150 — 150 — 150 ps 5, 6

Internal PLL relock time — 100 — 100 — 100 — 100 μs 7
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Figure 4 provides the AC test load for the MPC7448.

Figure 4. AC Test Load

Figure 5 provides the BMODE[0:1] input timing diagram for the MPC7448. These mode select inputs are 
sampled once before and once after HRESET negation.

Figure 5. BMODE[0:1] Input Sample Timing Diagram

Output Z0 = 50 Ω OVDD/2
RL = 50 Ω

HRESET

BMODE[0:1]

VM = Midpoint Voltage (OVDD/2)

SYSCLK

1st Sample 2nd Sample

VM VM
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6 Pin Assignments
Figure 12 (in Part A) shows the pinout of the MPC7448, 360 high coefficient of thermal expansion ceramic 
ball grid array (HCTE) package as viewed from the top surface. Part B shows the side profile of the HCTE 
package to indicate the direction of the top surface view.

Figure 12. Pinout of the MPC7448, 360 HCTE Package as Viewed from the Top Surface
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7 Pinout Listings
Table 11 provides the pinout listing for the MPC7448, 360 HCTE package. The pinouts of the MPC7448 
and MPC7447A are compatible, but the requirements regarding the use of the additional power and ground 
pins have changed. The MPC7448 requires these pins be connected to the appropriate power or ground 
plane to achieve high core frequencies; see Section 9.3, “Connection Recommendations,” for additional 
information. As a result, these pins should be connected in all new designs.

Additionally, the MPC7448 may be populated on a board designed for a MPC7447 (or MPC7445 or 
MPC7441), provided the core voltage can be made to match the requirements in Table 4 and all pins 
defined as ‘no connect’ for the MPC7447 are unterminated, as required by the MPC7457 RISC 
Microprocessor Hardware Specifications. The MPC7448 uses pins previously marked ‘no connect’ for the 
temperature diode pins and for additional power and ground connections. The additional power and 
ground pins are required to achieve high core frequencies and core frequency will be limited if they are 
not connected; see Section 9.3, “Connection Recommendations,” for additional information. Because 
these ‘no connect’ pins in the MPC7447 360 pin package are not driven in functional mode, an MPC7447 
can be populated in an MPC7448 board. 

NOTE

Caution must be exercised when performing boundary scan test operations 
on a board designed for an MPC7448, but populated with an MPC7447 or 
earlier device. This is because in the MPC7447 it is possible to drive the 
latches associated with the former ‘no connect’ pins in the MPC7447, 
potentially causing contention on those pins. To prevent this, ensure that 
these pins are not connected on the board or, if they are connected, ensure 
that the states of internal MPC7447 latches do not cause these pins to be 
driven during board testing. 

For the MPC7448, pins that were defined as the TEST[0:4] factory test signal group on the MPC7447A 
and earlier devices have been assigned new functions. For most of these, the termination recommendations 
for the TEST[0:4] pins of the MPC7447A are compatible with the MPC7448 and will allow correct 
operation with no performance loss. The exception is BVSEL1 (TEST3 on the MPC7447A and earlier 
devices), which may require a different termination depending which I/O voltage mode is desired; see 
Table 3 for more information.

NOTE

This pinout is not compatible with the MPC750, MPC7400, or MPC7410 
360 BGA package.
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LVRAM B10 — — 12, 20, 22

NC (no connect) A6, A14, A15, B14, B15, C14, C15, C16, C17, C18, C19, D14, D15, D16, 
D17, D18, D19, E14, E15, F14, F15, G14, G15, H15, H16, J15, J16, J17, 
J18, J19, K15, K16, K17, K18, K19, L15, L16, L17, L18, L19

— — 11

LSSD_MODE E8 Low Input 6, 12

MCP C9 Low Input

OVDD B4, C2, C12, D5, F2, H3, J5, K2, L5, M3, N6, P2, P8, P11, R4, R13, R16, 
T6, T9, U2, U12, U16, V4, V7, V10, V14

— —

OVDD_SENSE E18, G18 — — 16

PLL_CFG[0:4] B8, C8, C7, D7, A7 High Input

PLL_CFG[5] D10 High Input 9, 20

PMON_IN D9 Low Input 13

PMON_OUT A9 Low Output

QACK G5 Low Input

QREQ P4 Low Output

SHD[0:1] E4, H5 Low I/O 3

SMI F9 Low Input

SRESET A2 Low Input

SYSCLK A10 — Input

TA K6 Low Input

TBEN E1 High Input

TBST F11 Low Output

TCK C6 High Input

TDI B9 High Input 6

TDO A4 High Output

TEA L1 Low Input

TEMP_ANODE N18 — — 17

TEMP_CATHODE N19 — — 17

TMS F1 High Input 6

TRST A5 Low Input 6, 14

TS L4 Low I/O 3

TSIZ[0:2] G6, F7, E7 High Output

TT[0:4] E5, E6, F6, E9, C5 High I/O

WT D3 Low Output

VDD H8, H10, H12, J7, J9, J11, J13, K8, K10, K12, K14, L7, L9, L11, L13, M8, 
M10, M12

— —

VDD A13, A16, A18, B17, B19, C13, E13, E16, F12, F17, F19, G11, G16, 
H14, H17, H19, M14, M16, M18, N15, N17, P16, P18

— — 15

Table 11. Pinout Listing for the MPC7448, 360 HCTE Package (continued)

Signal Name Pin Number Active I/O Notes
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8 Package Description
The following sections provide the package parameters and mechanical dimensions for the HCTE 
package. 

8.1 Package Parameters for the MPC7448, 360 HCTE BGA
The package parameters are as provided in the following list. The package type is 25 × 25 mm, 360-lead 
high coefficient of thermal expansion ceramic ball grid array (HCTE).

Package outline 25 × 25 mm
Interconnects 360 (19 × 19 ball array – 1)
Pitch 1.27 mm (50 mil)
Minimum module height 2.32 mm
Maximum module height 2.80 mm
Ball diameter 0.89 mm (35 mil)
Coefficient of thermal expansion12.3 ppm/°C 
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8.5 Package Parameters for the MPC7448, 360 HCTE 
RoHS-Compliant BGA

The package parameters are as provided in the following list. The package type is 25 × 25 mm, 360-lead 
high coefficient of thermal expansion ceramic ball grid array (HCTE) with RoHS-compliant lead-free 
spheres.

Package outline 25 × 25 mm
Interconnects 360 (19 × 19 ball array – 1)
Pitch 1.27 mm (50 mil)
Minimum module height 1.92 mm
Maximum module height 2.40 mm
Ball diameter 0.75 mm (30 mil)
Coefficient of thermal expansion12.3 ppm/°C
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8.6 Mechanical Dimensions for the MPC7448, 360 HCTE 
RoHS-Compliant BGA

Figure 13 provides the mechanical dimensions and bottom surface nomenclature for the MPC7448, 360 
HCTE BGA package with RoHS-compliant lead-free spheres.

Figure 15. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC7448, 
360 HCTE RoHS-Compliant BGA Package

NOTES:
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2. Dimensions in millimeters.
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100110 11x 1x 733 825 913 1100 1467

000000 11.5x 1x 766 863 955 1150 1533

101110 12x 1x 600 800 900 996 1200 1600

111110 12.5x 1x 625 833 938 1038 1250 1667

010110 13x 1x 650 865 975 1079 1300

111000 13.5x 1x 675 900 1013 1121 1350

110010 14x 1x 700 933 1050 1162 1400

000110 15x 1x 750 1000 1125 1245 1500

110110 16x 1x 800 1066 1200 1328 1600

000010 17x 1x 850 1132 1275 1417 1700

001010 18x 1x 600 900 1200 1350 1500

001110 20x 1x 667 1000 1332 1500 1666

010010 21x 1x 700 1050 1399 1575

011010 24x 1x 800 1200 1600

111010 28x 1x 933 1400

001100 PLL bypass PLL off, SYSCLK clocks core circuitry directly

111100 PLL off PLL off, no core clocking occurs

Notes: 
1. PLL_CFG[0:5] settings not listed are reserved.

2. The sample bus-to-core frequencies shown are for reference only. Some PLL configurations may select bus, core, or VCO 
frequencies which are not useful, not supported, or not tested for by the MPC7448; see Section 5.2.1, “Clock AC 
Specifications,” for valid SYSCLK, core, and VCO frequencies. 

3. In PLL-bypass mode, the SYSCLK input signal clocks the internal processor directly and the PLL is disabled. However, the 
bus interface unit requires a 2x clock to function. Therefore, an additional signal, EXT_QUAL, must be driven at half the 
frequency of SYSCLK and offset in phase to meet the required input setup tIVKH and hold time tIXKH (see Table 9). The result 
will be that the processor bus frequency will be one-half SYSCLK, while the internal processor is clocked at SYSCLK 
frequency. This mode is intended for factory use and emulator tool use only. 
Note: The AC timing specifications given in this document do not apply in PLL-bypass mode.

4. In PLL-off mode, no clocking occurs inside the MPC7448 regardless of the SYSCLK input.

5. Applicable when DFS modes are disabled. These multipliers change when operating in a DFS mode. See Section 9.7.5, 
“Dynamic Frequency Switching (DFS)” for more information.

6. Bus-to-core multipliers less than 5x require that assertion of AACK be delayed by one or two bus cycles to allow the 
processor to generate a response to a snooped transaction. See the MPC7450 RISC Microprocessor Reference Manual for 
more information.

Table 12. MPC7448 Microprocessor PLL Configuration Example (continued)

PLL_CFG[0:5]

Example Core and VCO Frequency in MHz

Bus-to-Core 
Multiplier 5

Core-to-VCO 
Multiplier 5

Bus (SYSCLK) Frequency

33.3
MHz

50
MHz

66.6
MHz

75
MHz

83
MHz

100
MHz

133
MHz

167
MHz

200
MHz
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Figure 17. MPC7448 Power Down Sequencing Requirements

There is no requirement regarding AVDD during power down, but it is recommended that AVDD track VDD 
within the RC time constant of the PLL filter circuit described in Section 9.2.2, “PLL Power Supply 
Filtering” (nominally 100 µs).

9.2.2 PLL Power Supply Filtering
The AVDD power signal is provided on the MPC7448 to provide power to the clock generation PLL. To 
ensure stability of the internal clock, the power supplied to the AVDD input signal should be filtered of any 
noise in the 500-KHz to 10-MHz resonant frequency range of the PLL. The circuit shown in Figure 18 
using surface mount capacitors with minimum effective series inductance (ESL) is strongly recommended. 
In addition to filtering noise from the AVDD input, it also provides the required delay between VDD and 
AVDD as described in Section 9.2.1, “Power Supply Sequencing.”

The circuit should be placed as close as possible to the AVDD pin to minimize noise coupled from nearby 
circuits. It is often possible to route directly from the capacitors to the AVDD pin, which is on the periphery 
of the device footprint.

Figure 18. PLL Power Supply Filter Circuit
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9.2.4 Decoupling Recommendations
Due to the MPC7448 dynamic power management feature, large address and data buses, and high 
operating frequencies, the MPC7448 can generate transient power surges and high frequency noise in its 
power supply, especially while driving large capacitive loads. This noise must be prevented from reaching 
other components in the MPC7448 system, and the MPC7448 itself requires a clean, tightly regulated 
source of power. Therefore, it is recommended that the system designer use sufficient decoupling 
capacitors, typically one capacitor for every VDD pin, and a similar amount for the OVDD pins, placed as 
close as possible to the power pins of the MPC7448. It is also recommended that these decoupling 
capacitors receive their power from separate VDD, OVDD, and GND power planes in the PCB, using short 
traces to minimize inductance.

These capacitors should have a value of 0.01 or 0.1 µF. Only ceramic surface mount technology (SMT) 
capacitors should be used to minimize lead inductance. Orientations where connections are made along 
the length of the part, such as 0204, are preferable but not mandatory. Consistent with the 
recommendations of Dr. Howard Johnson in High Speed Digital Design: A Handbook of Black Magic 
(Prentice Hall, 1993) and contrary to previous recommendations for decoupling Freescale 
microprocessors, multiple small capacitors of equal value are recommended over using multiple values of 
capacitance.

In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB, 
feeding the VDD and OVDD planes, to enable quick recharging of the smaller chip capacitors. These bulk 
capacitors should have a low equivalent series resistance (ESR) rating to ensure the quick response time 
necessary. They should also be connected to the power and ground planes through two vias to minimize 
inductance. Suggested bulk capacitors are 100–330 µF (AVX TPS tantalum or Sanyo OSCON).

9.3 Connection Recommendations
To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal 
level. Unless otherwise noted, unused active low inputs should be tied to OVDD and unused active high 
inputs should be connected to GND. All NC (no connect) signals must remain unconnected.

Power and ground connections must be made to all external VDD, OVDD, and GND pins in the MPC7448. 
For backward compatibility with the MPC7447, MPC7445, and MP7441, or for migrating a system 
originally designed for one of these devices to the MPC7448, the new power and ground signals (formerly 
NC, see Table 11) may be left unconnected if the core frequency is 1 GHz or less. Operation above 1 GHz 
requires that these additional power and ground signals be connected, and it is strongly recommended that 
all new designs include the additional connections. See also Section 7, “Pinout Listings,” for additional 
information.

The MPC7448 provides VDD_SENSE, OVDD_SENSE, and GND_SENSE pins. These pins connect 
directly to the power/ground planes in the device package and are intended to allow an external device to 
measure the voltage present on the VDD, OVDD and GND planes in the device package. The most common 
use for these signals is as a feedback signal to a power supply regulator to allow it to compensate for board 
losses and supply the correct voltage at the device. (Note that all voltage parameters are specified at the 
pins of the device.) If not used for this purpose, it is recommended that these signals be connected to test 
points that can be used in the event that an accurate measurement of the voltage at the device is needed 
during system debug. Otherwise, these signals should be connected to the appropriate power/ground 
planes on the circuit board or left unconnected.
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to fully control the processor. If the target system has independent reset sources, such as voltage monitors, 
watchdog timers, power supply failures, or push-button switches, then the COP reset signals must be 
merged into these signals with logic.

The arrangement shown in Figure 21 allows the COP port to independently assert HRESET or TRST, 
while ensuring that the target can drive HRESET as well. If the JTAG interface and COP header will not 
be used, TRST should be tied to HRESET through a 0-Ω isolation resistor so that it is asserted when the 
system reset signal (HRESET) is asserted, ensuring that the JTAG scan chain is initialized during 
power-on. Although Freescale recommends that the COP header be designed into the system as shown in 
Figure 21, if this is not possible, the isolation resistor will allow future access to TRST in the case where 
a JTAG interface may need to be wired onto the system in debug situations.

The COP header shown in Figure 21 adds many benefits—breakpoints, watchpoints, register and memory 
examination/modification, and other standard debugger features are possible through this interface—and 
can be as inexpensive as an unpopulated footprint for a header to be added when needed.

The COP interface has a standard header for connection to the target system, based on the 0.025" 
square-post, 0.100" centered header assembly (often called a Berg header). The connector typically has 
pin 14 removed as a connector key.

There is no standardized way to number the COP header shown in Figure 21; consequently, many different 
pin numbers have been observed from emulator vendors. Some are numbered top-to-bottom then 
left-to-right, while others use left-to-right then top-to-bottom, while still others number the pins counter 
clockwise from pin 1 (as with an IC). Regardless of the numbering, the signal placement recommended in 
Figure 21 is common to all known emulators.

The QACK signal shown in Figure 21 is usually connected to the bridge chip or other system control logic 
in a system and is an input to the MPC7448 informing it that it can go into the quiescent state. Under 
normal operation this occurs during a low-power mode selection. In order for COP to work, the MPC7448 
must see this signal asserted (pulled down). While shown on the COP header, not all emulator products 
drive this signal. If the product does not, a pull-down resistor can be populated to assert this signal. 
Additionally, some emulator products implement open-drain type outputs and can only drive QACK 
asserted; for these tools, a pull-up resistor can be implemented to ensure this signal is negated when it is 
not being driven by the tool. Note that the pull-up and pull-down resistors on the QACK signal are 
mutually exclusive and it is never necessary to populate both in a system. To preserve correct power-down 
operation, QACK should be merged through logic so that it also can be driven by the bridge or system 
logic.
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Figure 21. JTAG Interface Connection
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Notes:
1. RUN/STOP, normally found on pin 5 of the COP header, is not implemented on the MPC7448. Connect 

pin 5 of the COP header to OVDD with a 10-KΩ pull-up resistor.

2. Key location; pin 14 is not physically present on the COP header.

3. Component not populated. Populate only if debug tool does not drive QACK.

4. Populate only if debug tool uses an open-drain type output and does not actively negate QACK.

5. If the JTAG interface is implemented, connect HRESET from the target source to TRST from the COP 
header though an AND gate to TRST of the part. If the JTAG interface is not implemented, connect 
HRESET from the target source to TRST of the part through a 0-Ω isolation resistor.

6. The COP port and target board should be able to independently assert HRESET and TRST to the 
processor in order to fully control the processor as shown above.

TRST 6
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9.7 Power and Thermal Management Information
This section provides thermal management information for the high coefficient of thermal expansion 
(HCTE) package for air-cooled applications. Proper thermal control design is primarily dependent on the 
system-level design—the heat sink, airflow, and thermal interface material. The MPC7448 implements 
several features designed to assist with thermal management, including DFS and the temperature diode. 
DFS reduces the power consumption of the device by reducing the core frequency; see Section 9.7.5.1, 
“Power Consumption with DFS Enabled,” for specific information regarding power reduction and DFS. 
The temperature diode allows an external device to monitor the die temperature in order to detect excessive 
temperature conditions and alert the system; see Section 9.7.4, “Temperature Diode,” for more 
information.

To reduce the die-junction temperature, heat sinks may be attached to the package by several 
methods—spring clip to holes in the printed-circuit board or package, and mounting clip and screw 
assembly (see Figure 22); however, due to the potential large mass of the heat sink, attachment through the 
printed-circuit board is suggested. In any implementation of a heat sink solution, the force on the die 
should not exceed ten pounds (45 Newtons).

Figure 22. BGA Package Exploded Cross-Sectional View with Several Heat Sink Options

NOTE

A clip on heat sink is not recommended for LGA because there may not be 
adequate clearance between the device and the circuit board. A through-hole 
solution is recommended, as shown in Figure 23.
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9.7.1 Internal Package Conduction Resistance
For the exposed-die packaging technology described in Table 5, the intrinsic conduction thermal resistance 
paths are as follows:

• The die junction-to-case thermal resistance (the case is actually the top of the exposed silicon die)

• The die junction-to-board thermal resistance

Figure 24 depicts the primary heat transfer path for a package with an attached heat sink mounted to a 
printed-circuit board.

Figure 24. C4 Package with Heat Sink Mounted to a Printed-Circuit Board

Heat generated on the active side of the chip is conducted through the silicon, through the heat sink attach 
material (or thermal interface material), and, finally, to the heat sink, where it is removed by forced-air 
convection.

Because the silicon thermal resistance is quite small, the temperature drop in the silicon may be neglected 
for a first-order analysis. Thus, the thermal interface material and the heat sink conduction/convective 
thermal resistances are the dominant terms.

9.7.2 Thermal Interface Materials
A thermal interface material is recommended at the package lid-to-heat sink interface to minimize the 
thermal contact resistance. For those applications where the heat sink is attached by spring clip 
mechanism, Figure 25 shows the thermal performance of three thin-sheet thermal-interface materials 
(silicone, graphite/oil, fluoroether oil), a bare joint, and a joint with thermal grease as a function of contact 
pressure. As shown, the performance of these thermal interface materials improves with increasing contact 
pressure. The use of thermal grease significantly reduces the interface thermal resistance. That is, the bare 
joint results in a thermal resistance approximately seven times greater than the thermal grease joint. 

Often, heat sinks are attached to the package by means of a spring clip to holes in the printed-circuit board 
(see Figure 22). Therefore, synthetic grease offers the best thermal performance due to the low interface 
pressure and is recommended due to the high power dissipation of the MPC7448. Of course, the selection 
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Shin-Etsu MicroSi, Inc. 888-642-7674
10028 S. 51st St.
Phoenix, AZ 85044
Internet: www.microsi.com

Laird Technologies - Thermal 888-246-905
(formerly Thermagon Inc.)
4707 Detroit Ave.
Cleveland, OH 44102
Internet: www.lairdtech.com

The following section provides a heat sink selection example using one of the commercially available heat 
sinks.

9.7.3 Heat Sink Selection Example
For preliminary heat sink sizing, the die-junction temperature can be expressed as follows:

 Tj = Ti + Tr + (RθJC + Rθint + Rθsa) × Pd 

where:

Tj is the die-junction temperature 
Ti is the inlet cabinet ambient temperature
Tr is the air temperature rise within the computer cabinet
RθJC is the junction-to-case thermal resistance
Rθint is the adhesive or interface material thermal resistance
Rθsa is the heat sink base-to-ambient thermal resistance
Pd is the power dissipated by the device

During operation, the die-junction temperatures (Tj) should be maintained less than the value specified in 
Table 4. The temperature of air cooling the component greatly depends on the ambient inlet air temperature 
and the air temperature rise within the electronic cabinet. An electronic cabinet inlet-air temperature (Ti) 
may range from 30� to 40�C. The air temperature rise within a cabinet (Tr) may be in the range of 5� to 
10�C. The thermal resistance of the thermal interface material (Rθint) is typically about 1.1 �C/W. For 
example, assuming a Ti of 30�C, a Tr of 5�C, an HCTE package RθJC = 0.1, and a power consumption 
(Pd) of 25.6 W, the following expression for Tj is obtained:

Die-junction temperature: Tj = 30�C + 5�C + (0.1�C/W + 1.1�C/W + θsa) × 25.6

For this example, a Rθsavalue of 1.53 �C/W or less is required to maintain the die junction temperature 
below the maximum value of Table 4.

Though the die junction-to-ambient and the heat sink-to-ambient thermal resistances are a common 
figure-of-merit used for comparing the thermal performance of various microelectronic packaging 
technologies, one should exercise caution when only using this metric in determining thermal management 
because no single parameter can adequately describe three-dimensional heat flow. The final die-junction 
operating temperature is not only a function of the component-level thermal resistance, but the 
system-level design and its operating conditions. In addition to the component's power consumption, a 
number of factors affect the final operating die-junction temperature—airflow, board population (local 
heat flux of adjacent components), heat sink efficiency, heat sink attach, heat sink placement, next-level 
interconnect technology, system air temperature rise, altitude, and so on.
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Due to the complexity and variety of system-level boundary conditions for today's microelectronic 
equipment, the combined effects of the heat transfer mechanisms (radiation, convection, and conduction) 
may vary widely. For these reasons, we recommend using conjugate heat transfer models for the board as 
well as system-level designs.

For system thermal modeling, the MPC7448 thermal model is shown in Figure 26. Four volumes represent 
this device. Two of the volumes, solder ball-air and substrate, are modeled using the package outline size 
of the package. The other two, die and bump-underfill, have the same size as the die. The silicon die should 
be modeled 8.0 × 7.3 × 0.86 mm3 with the heat source applied as a uniform source at the bottom of the 
volume. The bump and underfill layer is modeled as 8.0 × 7.3 × 0.07 mm3collapsed in the z-direction with 
a thermal conductivity of 5.0 W/(m • K) in the z-direction. The substrate volume is 25 × 25 × 1.14 mm3 
and has 9.9 W/(m • K) isotropic conductivity in the xy-plane and 2.95 W/(m • K) in the direction of the 
z-axis. The solder ball and air layer are modeled with the same horizontal dimensions as the substrate and 
is 0.8 mm thick. For the LGA package the solder and air layer is 0.1 mm thick, but the material properties 
are the same. It can also be modeled as a collapsed volume using orthotropic material properties: 
0.034 W/(m • K) in the xy-plane direction and 11.2 W/(m • K) in the direction of the z-axis.

Figure 26. Recommended Thermal Model of MPC7448
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Table 16. Valid Divide Ratio Configurations

DFS mode disabled
DFS divide-by-2 mode enabled
(HID1[DFS2] = 1 or DFS2 = 0)

DFS divide-by-4 mode enabled
(HID1[DFS4] = 1 or DFS4 = 0)

Bus-to-Core Multiplier 
Configured by 
PLL_CFG[0:5]
(see Table 12)

HID1[PC0-5] 3
Bus-to-Core 

Multiplier 
HID1[PC0-5] 3

Bus-to-Core 
Multiplier HID1[PC0-5] 3

2x 4 010000 N/A (unchanged) 1 unchanged 1 N/A (unchanged) 1 unchanged 1

3x 4 100000 N/A (unchanged) 1 unchanged 1 N/A (unchanged) 1 unchanged 1 

4x 4 101000 2x 4 010000 N/A (unchanged) 1 unchanged 1 

 5x 101100 2.5x 4 010101 N/A (unchanged) 1 unchanged 1

5.5x 100100 2.75x 4 110101 2 N/A (unchanged) 1 unchanged 1

 6x 110100 3x 4 100000 N/A (unchanged) 1 unchanged 1

6.5x 010100 3.25x 4  100000 2 N/A (unchanged) 1 unchanged 1

7x 001000 3.5x 4 110101 N/A (unchanged) 1 unchanged 1

7.5x 000100 3.75x 4 110101 2 N/A (unchanged) 1 unchanged 1

8x 110000 4x 4 101000 4 2x 4 010000

8.5x 011000 4.25x 4 101000 2 N/A (unchanged) 1 unchanged 1

9x 011110 4.5x 4 011101 2.25x 4 010000 2

9.5x 011100 4.75x 4 011101 2 N/A (unchanged) 1 unchanged 1

10x 101010 5x 101100 2.5x 4 010101

10.5x 100010 5.25x 101100 2 N/A (unchanged) 1 unchanged 1

11x 100110 5.5x 100100 2.75x 4 010101 2

11.5x 000000 5.75x 100100 2 N/A (unchanged) 1 unchanged 1

12x 101110 6x 110100 3x 4 100000

12.5x 111110 6.25x 110100 2 N/A (unchanged) 1 unchanged 1

13x 010110 6.5x 010100 3.25x 4 100000 2

13.5x 111000 6.75 010100 2 N/A (unchanged) 1 unchanged 1

14x 110010 7x 001000 3.5x 4 110101

15x 000110 7.5x 000100 3.75x 4 110101 2

16x 110110 8x 110000 4x 4 101000

17x 000010 8.5x 011000 4.25x 4 101000 2

18x 001010 9x 011110 4.5x 4 011101

20x 001110 10x 101010 5x 101100

21x 010010 10.5x 100010 5.25x 101100 2


