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2 Features
This section summarizes features of the MPC7448 implementation.

Major features of the MPC7448 are as follows:

• High-performance, superscalar microprocessor

— Up to four instructions can be fetched from the instruction cache at a time.

— Up to three instructions plus a branch instruction can be dispatched to the issue queues at a 
time.

— Up to 12 instructions can be in the instruction queue (IQ).

— Up to 16 instructions can be at some stage of execution simultaneously.

— Single-cycle execution for most instructions

— One instruction per clock cycle throughput for most instructions

— Seven-stage pipeline control

• Eleven independent execution units and three register files

— Branch processing unit (BPU) features static and dynamic branch prediction

– 128-entry (32-set, four-way set-associative) branch target instruction cache (BTIC), a cache 
of branch instructions that have been encountered in branch/loop code sequences. If a target 
instruction is in the BTIC, it is fetched into the instruction queue a cycle sooner than it can 
be made available from the instruction cache. Typically, a fetch that hits the BTIC provides 
the first four instructions in the target stream.

– 2048-entry branch history table (BHT) with 2 bits per entry for four levels of 
prediction—not taken, strongly not taken, taken, and strongly taken

– Up to three outstanding speculative branches

– Branch instructions that do not update the count register (CTR) or link register (LR) are 
often removed from the instruction stream.

– Eight-entry link register stack to predict the target address of Branch Conditional to Link 
Register (bclr) instructions

— Four integer units (IUs) that share 32 GPRs for integer operands

– Three identical IUs (IU1a, IU1b, and IU1c) can execute all integer instructions except 
multiply, divide, and move to/from special-purpose register instructions.

– IU2 executes miscellaneous instructions, including the CR logical operations, integer 
multiplication and division instructions, and move to/from special-purpose register 
instructions.

— Five-stage FPU and 32-entry FPR file

– Fully IEEE Std. 754™-1985–compliant FPU for both single- and double-precision 
operations

– Supports non-IEEE mode for time-critical operations

– Hardware support for denormalized numbers

– Thirty-two 64-bit FPRs for single- or double-precision operands
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— Four vector units and 32-entry vector register file (VRs)

– Vector permute unit (VPU)

– Vector integer unit 1 (VIU1) handles short-latency AltiVec™ integer instructions, such as 
vector add instructions (for example, vaddsbs, vaddshs, and vaddsws).

– Vector integer unit 2 (VIU2) handles longer-latency AltiVec integer instructions, such as 
vector multiply add instructions (for example, vmhaddshs, vmhraddshs, and 
vmladduhm).

– Vector floating-point unit (VFPU)

— Three-stage load/store unit (LSU)

– Supports integer, floating-point, and vector instruction load/store traffic

– Four-entry vector touch queue (VTQ) supports all four architected AltiVec data stream 
operations

– Three-cycle GPR and AltiVec load latency (byte, half word, word, vector) with one-cycle 
throughput

– Four-cycle FPR load latency (single, double) with one-cycle throughput

– No additional delay for misaligned access within double-word boundary

– A dedicated adder calculates effective addresses (EAs).

– Supports store gathering 

– Performs alignment, normalization, and precision conversion for floating-point data

– Executes cache control and TLB instructions

– Performs alignment, zero padding, and sign extension for integer data

– Supports hits under misses (multiple outstanding misses)

– Supports both big- and little-endian modes, including misaligned little-endian accesses

• Three issue queues, FIQ, VIQ, and GIQ, can accept as many as one, two, and three instructions, 
respectively, in a cycle. Instruction dispatch requires the following:

— Instructions can only be dispatched from the three lowest IQ entries—IQ0, IQ1, and IQ2.

— A maximum of three instructions can be dispatched to the issue queues per clock cycle.

— Space must be available in the CQ for an instruction to dispatch (this includes instructions that 
are assigned a space in the CQ but not in an issue queue).

• Rename buffers

— 16 GPR rename buffers

— 16 FPR rename buffers

— 16 VR rename buffers

• Dispatch unit

— Decode/dispatch stage fully decodes each instruction

• Completion unit

— Retires an instruction from the 16-entry completion queue (CQ) when all instructions ahead of 
it have been completed, the instruction has finished executing, and no exceptions are pending

— Guarantees sequential programming model (precise exception model)
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• Efficient data flow

— Although the VR/LSU interface is 128 bits, the L1/L2 bus interface allows up to 256 bits.

— The L1 data cache is fully pipelined to provide 128 bits/cycle to or from the VRs.

— The L2 cache is fully pipelined to provide 32 bytes per clock every other cycle to the L1 caches.

— As many as 16 out-of-order transactions can be present on the MPX bus.

— Store merging for multiple store misses to the same line. Only coherency action taken 
(address-only) for store misses merged to all 32 bytes of a cache block (no data tenure needed).

— Three-entry finished store queue and five-entry completed store queue between the LSU and 
the L1 data cache

— Separate additional queues for efficient buffering of outbound data (such as castouts and 
write-through stores) from the L1 data cache and L2 cache

• Multiprocessing support features include the following:

— Hardware-enforced, MESI cache coherency protocols for data cache

— Load/store with reservation instruction pair for atomic memory references, semaphores, and 
other multiprocessor operations

• Power and thermal management

— Dynamic frequency switching (DFS) feature allows processor core frequency to be halved or 
quartered through software to reduce power consumption.

— The following three power-saving modes are available to the system: 

– Nap—Instruction fetching is halted. Only the clocks for the time base, decrementer, and 
JTAG logic remain running. The part goes into the doze state to snoop memory operations 
on the bus and then back to nap using a QREQ/QACK processor-system handshake 
protocol.

– Sleep—Power consumption is further reduced by disabling bus snooping, leaving only the 
PLL in a locked and running state. All internal functional units are disabled.

– Deep sleep—When the part is in the sleep state, the system can disable the PLL. The system 
can then disable the SYSCLK source for greater system power savings. Power-on reset 
procedures for restarting and relocking the PLL must be followed upon exiting the deep 
sleep state.

— Instruction cache throttling provides control of instruction fetching to limit device temperature.

— A new temperature diode that can determine the temperature of the microprocessor

• Performance monitor can be used to help debug system designs and improve software efficiency.

• In-system testability and debugging features through JTAG boundary-scan capability

• Testability

— LSSD scan design

— IEEE Std. 1149.1™ JTAG interface
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• Reliability and serviceability

— Parity checking on system bus

— Parity checking on the L1 caches and L2 data tags

— ECC or parity checking on L2 data

3 Comparison with the MPC7447A, MPC7447, MPC7445, 
and MPC7441

Table 1 compares the key features of the MPC7448 with the key features of the earlier MPC7447A, 
MPC7447, MPC7445, and MPC7441. All are based on the MPC7450 RISC microprocessor and are 
architecturally very similar. The MPC7448 is identical to the MPC7447A, but the MPC7448 supports 1 
Mbyte of L2 cache with ECC and the use of dynamic frequency switching (DFS) with more bus-to-core 
ratios.

Table 1. Microarchitecture Comparison

Microarchitectural Specs MPC7448 MPC7447A MPC7447 MPC7445 MPC7441

Basic Pipeline Functions

Logic inversions per cycle 18

Pipeline stages up to execute 5

Total pipeline stages (minimum) 7

Pipeline maximum instruction throughput 3 + branch

Pipeline Resources

Instruction buffer size 12

Completion buffer size 16

Renames (integer, float, vector) 16, 16, 16

Maximum Execution Throughput

SFX 3

Vector 2 (any 2 of 4 units)

Scalar floating-point 1

Out-of-Order Window Size in Execution Queues

SFX integer units 1 entry × 3 queues

Vector units In order, 4 queues

Scalar floating-point unit In order

Branch Processing Resources

Prediction structures BTIC, BHT, link stack

BTIC size, associativity 128-entry, 4-way

BHT size 2K-entry

Link stack depth 8

Unresolved branches supported 3

Branch taken penalty (BTIC hit) 1

Minimum misprediction penalty 6
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Figure 2 shows the undershoot and overshoot voltage on the MPC7448.

Figure 2. Overshoot/Undershoot Voltage

The MPC7448 provides several I/O voltages to support both compatibility with existing systems and 
migration to future systems. The MPC7448 core voltage must always be provided at the nominal voltage 
(see Table 4). The input voltage threshold for each bus is selected by sampling the state of the voltage 
select pins at the negation of the signal HRESET. The output voltage will swing from GND to the 
maximum voltage applied to the OVDD power pins. Table 3 provides the input threshold voltage settings. 
Because these settings may change in future products, it is recommended that BVSEL[0:1] be configured 
using resistor options, jumpers, or some other flexible means, with the capability to reconfigure the 
termination of this signal in the future, if necessary.

Table 3. Input Threshold Voltage Setting

BVSEL0 BVSEL1 I/O Voltage Mode1 Notes

0 0 1.8 V 2, 3

0 1 2.5 V 2, 4

1 0 1.5 V 2

1 1 2.5 V 4

Notes:
1. Caution: The I/O voltage mode selected must agree with the OVDD voltages 

supplied. See Table 4.

2. If used, pull-down resistors should be less than 250 Ω.

3. The pin configuration used to select 1.8V mode on the MPC7448 is not compatible 
with the pin configuration used to select 1.8V mode on the MPC7447A and earlier 
devices.

4. The pin configuration used to select 2.5V mode on the MPC7448 is fully compatible 
with the pin configuration used to select 2.5V mode on the MPC7447A and earlier 
devices.

VIH

GND
GND – 0.3 V

GND – 0.7 V
Not to Exceed 10%

OVDD + 20%

VIL

OVDD

OVDD + 5%

of tSYSCLK
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Table 7 provides the power consumption for the MPC7448 part numbers described by this document; see 
Section 11.1, “Part Numbers Fully Addressed by This Document,” for information regarding which part 
numbers are described by this document. Freescale also offers MPC7448 part numbers that meet lower 
power consumption specifications by adhering to lower core voltage and core frequency specifications. 
For more information on these devices, including references to the MPC7448 Hardware Specification 
Addenda that describe these devices, see Section 11.2, “Part Numbers Not Fully Addressed by This 
Document.” 

The power consumptions provided in Table 7 represent the power consumption of each speed grade when 
operated at the rated maximum core frequency (see Table 8). Freescale sorts devices by power as well as 
by core frequency, and power limits for each speed grade are independent of each other. Each device is 
tested at its maximum core frequency only. (Note that Deep Sleep Mode power consumption is 
independent of clock frequency.) Operating a device at a frequency lower than its rated maximum is fully 
supported provided the clock frequencies are within the specifications given in Table 8, and a device 
operated below its rated maximum will have lower power consumption. However, inferences should not 
be made about a device’s power consumption based on the power specifications of another (lower) speed 
grade. For example, a 1700 MHz device operated at 1420 MHz may not exhibit the same power 
consumption as a 1420 MHz device operated at 1420 MHz. 

For all MPC7448 devices, the following guidelines on the use of these parameters for system design are 
suggested. The Full-Power Mode–Typical value represents the sustained power consumption of the device 

High-impedance (off-state) leakage current:
Vin = OVDD 
Vin = GND

— ITSI —
 50

– 50

µA 2, 3, 4

Output high voltage @ IOH = –5 mA 1.5 VOH OVDD – 0.45 — V

1.8 OVDD – 0.45 —

2.5 1.8 —

Output low voltage @ IOL = 5 mA 1.5 VOL — 0.45 V

1.8 — 0.45

2.5 — 0.6

Capacitance,
Vin = 0 V, f = 1 MHz

All inputs Cin — 8.0 pF 5

Notes: 

1. Nominal voltages; see Table 4 for recommended operating conditions.

2. All I/O signals are referenced to OVDD.

3. Excludes test signals and IEEE Std. 1149.1 boundary scan (JTAG) signals

4. The leakage is measured for nominal OVDD and VDD, or both OVDD and VDD must vary in the same direction (for 
example, both OVDD and VDD vary by either +5% or –5%).

5. Capacitance is periodically sampled rather than 100% tested. 

6. These pins have internal pull-up resistors. 

Table 6. DC Electrical Specifications (continued)
At recommended operating conditions. See Table 4. 

Characteristic
Nominal Bus

Voltage 1
Symbol Min Max Unit Notes
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5.2 AC Electrical Characteristics
This section provides the AC electrical characteristics for the MPC7448. After fabrication, functional parts 
are sorted by maximum processor core frequency as shown in Section 5.2.1, “Clock AC Specifications,” 
and tested for conformance to the AC specifications for that frequency. The processor core frequency, 
determined by the bus (SYSCLK) frequency and the settings of the PLL_CFG[0:5] signals, can be 
dynamically modified using dynamic frequency switching (DFS). Parts are sold by maximum processor 
core frequency; see Section 11, “Part Numbering and Marking,” for information on ordering parts. DFS is 
described in Section 9.7.5, “Dynamic Frequency Switching (DFS).”

5.2.1 Clock AC Specifications
Table 8 provides the clock AC timing specifications as defined in Figure 3 and represents the tested 
operating frequencies of the devices. The maximum system bus frequency, fSYSCLK, given in Table 8, is 
considered a practical maximum in a typical single-processor system. This does not exclude 
multi-processor systems, but these typically require considerably more design effort to achieve the 
maximum rated bus frequency. The actual maximum SYSCLK frequency for any application of the 
MPC7448 will be a function of the AC timings of the microprocessor(s), the AC timings for the system 
controller, bus loading, circuit board topology, trace lengths, and so forth, and may be less than the value 
given in Table 8.
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SYSCLK to output high impedance (all except TS, ARTRY, 
SHD0, SHD1)

tKHOZ — 1.8 ns 5

SYSCLK to TS high impedance after precharge tKHTSPZ — 1 tSYSCLK 3, 4, 5

Maximum delay to ARTRY/SHD0/SHD1 precharge tKHARP — 1 tSYSCLK 3, 5, 6, 7

SYSCLK to ARTRY/SHD0/SHD1 high impedance after 
precharge

tKHARPZ — 2 tSYSCLK 3, 5, 6, 7

Notes: 
1. All input specifications are measured from the midpoint of the signal in question to the midpoint of the rising edge of the input 

SYSCLK. All output specifications are measured from the midpoint of the rising edge of SYSCLK to the midpoint of the signal 
in question. All output timings assume a purely resistive 50-Ω load (see Figure 4). Input and output timings are measured at 
the pin; time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

2. The symbology used for timing specifications herein follows the pattern of t(signal)(state)(reference)(state) for inputs and 
t(reference)(state)(signal)(state) for outputs. For example, tIVKH symbolizes the time input signals (I) reach the valid state (V) 
relative to the SYSCLK reference (K) going to the high (H) state or input setup time. And tKHOV symbolizes the time from 
SYSCLK(K) going high (H) until outputs (O) are valid (V) or output valid time. Input hold time can be read as the time that the 
input signal (I) went invalid (X) with respect to the rising clock edge (KH) (note the position of the reference and its state for 
inputs) and output hold time can be read as the time from the rising edge (KH) until the output went invalid (OX).

3. tsysclk is the period of the external clock (SYSCLK) in ns. The numbers given in the table must be multiplied by the period of 
SYSCLK to compute the actual time duration (in ns) of the parameter in question.

4. According to the bus protocol, TS is driven only by the currently active bus master. It is asserted low and precharged high 
before returning to high impedance, as shown in Figure 6. The nominal precharge width for TS is tSYSCLK, that is, one clock 
period. Since no master can assert TS on the following clock edge, there is no concern regarding contention with the 
precharge. Output valid and output hold timing is tested for the signal asserted. Output valid time is tested for precharge.The 
high-impedance behavior is guaranteed by design.

5. Guaranteed by design and not tested

6. According to the bus protocol, ARTRY can be driven by multiple bus masters through the clock period immediately following 
AACK. Bus contention is not an issue because any master asserting ARTRY will be driving it low. Any master asserting it low 
in the first clock following AACK will then go to high impedance for a fraction of a cycle, then negated for up to an entire cycle 
(crossing a bus cycle boundary) before being three-stated again. The nominal precharge width for ARTRY is 1.0 tSYSCLK; 
that is, it should be high impedance as shown in Figure 6 before the first opportunity for another master to assert ARTRY. 
Output valid and output hold timing is tested for the signal asserted.The high-impedance behavior is guaranteed by design.

7. According to the MPX bus protocol, SHD0 and SHD1 can be driven by multiple bus masters beginning two cycles after TS. 
Timing is the same as ARTRY, that is, the signal is high impedance for a fraction of a cycle, then negated for up to an entire 
cycle (crossing a bus cycle boundary) before being three-stated again. The nominal precharge width for SHD0 and SHD1 is 
1.0 tSYSCLK. The edges of the precharge vary depending on the programmed ratio of core to bus (PLL configurations).

8. BMODE[0:1] and BVSEL[0:1] are mode select inputs. BMODE[0:1] are sampled before and after HRESET negation. 
BVSEL[0:1] are sampled before HRESET negation. These parameters represent the input setup and hold times for each 
sample. These values are guaranteed by design and not tested. BMODE[0:1] must remain stable after the second sample; 
BVSEL[0:1] must remain stable after the first (and only) sample. See Figure 5 for sample timing.

Table 9. Processor Bus AC Timing Specifications1 (continued)
At recommended operating conditions. See Table 4.

Parameter Symbol 2
All Speed Grades

Unit Notes
Min Max
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Figure 4 provides the AC test load for the MPC7448.

Figure 4. AC Test Load

Figure 5 provides the BMODE[0:1] input timing diagram for the MPC7448. These mode select inputs are 
sampled once before and once after HRESET negation.

Figure 5. BMODE[0:1] Input Sample Timing Diagram

Output Z0 = 50 Ω OVDD/2
RL = 50 Ω

HRESET

BMODE[0:1]

VM = Midpoint Voltage (OVDD/2)

SYSCLK

1st Sample 2nd Sample

VM VM
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5.2.3 IEEE Std. 1149.1 AC Timing Specifications
Table 10 provides the IEEE Std. 1149.1 (JTAG) AC timing specifications as defined in Figure 8 through 
Figure 11.

Table 10. JTAG AC Timing Specifications (Independent of SYSCLK)1

At recommended operating conditions. See Table 4.

Parameter Symbol Min Max Unit Notes

TCK frequency of operation fTCLK 0 33.3 MHz

TCK cycle time tTCLK 30 — ns

TCK clock pulse width measured at 1.4 V tJHJL 15 — ns

TCK rise and fall times tJR and tJF — 2 ns

TRST assert time tTRST 25 — ns 2

Input setup times:
Boundary-scan data
TMS, TDI 

tDVJH
tIVJH

4
0

—
—

ns 3

Input hold times:
Boundary-scan data
TMS, TDI 

tDXJH
tIXJH

20
25

—
—

ns 3

Valid times:
Boundary-scan data
TDO

tJLDV
tJLOV

4
4

20
25

ns 4

Output hold times:
Boundary-scan data
TDO

tJLDX
tJLOX

30
30

—
—

ns 4

TCK to output high impedance:
Boundary-scan data
TDO

tJLDZ
tJLOZ

3
3

19
9

ns 4, 5

Notes: 
1. All outputs are measured from the midpoint voltage of the falling/rising edge of TCLK to the midpoint of the signal in question. 

The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load (see Figure 7). 
Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

2. TRST is an asynchronous level sensitive signal. The time is for test purposes only.

3. Non-JTAG signal input timing with respect to TCK.

4. Non-JTAG signal output timing with respect to TCK.

5. Guaranteed by design and characterization.
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7 Pinout Listings
Table 11 provides the pinout listing for the MPC7448, 360 HCTE package. The pinouts of the MPC7448 
and MPC7447A are compatible, but the requirements regarding the use of the additional power and ground 
pins have changed. The MPC7448 requires these pins be connected to the appropriate power or ground 
plane to achieve high core frequencies; see Section 9.3, “Connection Recommendations,” for additional 
information. As a result, these pins should be connected in all new designs.

Additionally, the MPC7448 may be populated on a board designed for a MPC7447 (or MPC7445 or 
MPC7441), provided the core voltage can be made to match the requirements in Table 4 and all pins 
defined as ‘no connect’ for the MPC7447 are unterminated, as required by the MPC7457 RISC 
Microprocessor Hardware Specifications. The MPC7448 uses pins previously marked ‘no connect’ for the 
temperature diode pins and for additional power and ground connections. The additional power and 
ground pins are required to achieve high core frequencies and core frequency will be limited if they are 
not connected; see Section 9.3, “Connection Recommendations,” for additional information. Because 
these ‘no connect’ pins in the MPC7447 360 pin package are not driven in functional mode, an MPC7447 
can be populated in an MPC7448 board. 

NOTE

Caution must be exercised when performing boundary scan test operations 
on a board designed for an MPC7448, but populated with an MPC7447 or 
earlier device. This is because in the MPC7447 it is possible to drive the 
latches associated with the former ‘no connect’ pins in the MPC7447, 
potentially causing contention on those pins. To prevent this, ensure that 
these pins are not connected on the board or, if they are connected, ensure 
that the states of internal MPC7447 latches do not cause these pins to be 
driven during board testing. 

For the MPC7448, pins that were defined as the TEST[0:4] factory test signal group on the MPC7447A 
and earlier devices have been assigned new functions. For most of these, the termination recommendations 
for the TEST[0:4] pins of the MPC7447A are compatible with the MPC7448 and will allow correct 
operation with no performance loss. The exception is BVSEL1 (TEST3 on the MPC7447A and earlier 
devices), which may require a different termination depending which I/O voltage mode is desired; see 
Table 3 for more information.

NOTE

This pinout is not compatible with the MPC750, MPC7400, or MPC7410 
360 BGA package.
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8.2 Mechanical Dimensions for the MPC7448, 360 HCTE BGA
Figure 13 provides the mechanical dimensions and bottom surface nomenclature for the MPC7448, 360 
HCTE BGA package.

Figure 13. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC7448, 
360 HCTE BGA Package

NOTES:
1. Dimensioning and 

tolerancing per ASME 
Y14.5M, 1994

2. Dimensions in millimeters.
3. Top side A1 corner index is a 

metalized feature with 
various shapes. Bottom side 
A1 corner is designated with 
a ball missing from the array.
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8.5 Package Parameters for the MPC7448, 360 HCTE 
RoHS-Compliant BGA

The package parameters are as provided in the following list. The package type is 25 × 25 mm, 360-lead 
high coefficient of thermal expansion ceramic ball grid array (HCTE) with RoHS-compliant lead-free 
spheres.

Package outline 25 × 25 mm
Interconnects 360 (19 × 19 ball array – 1)
Pitch 1.27 mm (50 mil)
Minimum module height 1.92 mm
Maximum module height 2.40 mm
Ball diameter 0.75 mm (30 mil)
Coefficient of thermal expansion12.3 ppm/°C
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9 System Design Information
This section provides system and thermal design requirements and recommendations for successful 
application of the MPC7448.

9.1 Clocks
The following sections provide more detailed information regarding the clocking of the MPC7448. 

9.1.1 PLL Configuration
The MPC7448 PLL is configured by the PLL_CFG[0:5] signals. For a given SYSCLK (bus) frequency, 
the PLL configuration signals set the internal CPU and VCO frequency of operation. The PLL 
configuration for the MPC7448 is shown in Table 12. In this example, shaded cells represent settings that, 
for a given SYSCLK frequency, result in core and/or VCO frequencies that do not comply with Table 8. 
When enabled, dynamic frequency switching (DFS) also affects the core frequency by halving or 
quartering the bus-to-core multiplier; see Section 9.7.5, “Dynamic Frequency Switching (DFS),” for more 
information. Note that when DFS is enabled the resulting core frequency must meet the adjusted minimum 
core frequency requirements (fcore_DFS) described in Table 8. Note that the PLL_CFG[5] is currently used 
for factory test only and should be tied low, and that the MPC7448 PLL configuration settings are 
compatible with the MPC7447A PLL configuration settings when PLL_CFG[5] = 0.

Table 12. MPC7448 Microprocessor PLL Configuration Example

PLL_CFG[0:5]

Example Core and VCO Frequency in MHz

Bus-to-Core 
Multiplier 5

Core-to-VCO 
Multiplier 5

Bus (SYSCLK) Frequency

33.3
MHz

50
MHz

66.6
MHz

75
MHz

83
MHz

100
MHz

133
MHz

167
MHz

200
MHz

010000 2x 6 1x

100000 3x 6 1x 600

101000 4x 6 1x 667 800

101100 5x 1x 667 835 1000

100100 5.5x 1x 733 919 1100

110100 6x 1x 600 800 1002 1200

010100 6.5x 1x 650 866 1086 1300

001000 7x 1x 700 931 1169 1400

000100 7.5x 1x 623 750 1000 1253 1500

110000 8x 1x 600 664 800 1064 1336 1600

011000 8.5x 1x 638 706 850 1131 1417 1700

011110 9x 1x 600 675 747 900 1197 1500

011100 9.5x 1x 633 712 789 950 1264 1583

101010 10x 1x 667 750 830 1000 1333 1667

100010 10.5x 1x 700 938 872 1050 1397
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9.2.4 Decoupling Recommendations
Due to the MPC7448 dynamic power management feature, large address and data buses, and high 
operating frequencies, the MPC7448 can generate transient power surges and high frequency noise in its 
power supply, especially while driving large capacitive loads. This noise must be prevented from reaching 
other components in the MPC7448 system, and the MPC7448 itself requires a clean, tightly regulated 
source of power. Therefore, it is recommended that the system designer use sufficient decoupling 
capacitors, typically one capacitor for every VDD pin, and a similar amount for the OVDD pins, placed as 
close as possible to the power pins of the MPC7448. It is also recommended that these decoupling 
capacitors receive their power from separate VDD, OVDD, and GND power planes in the PCB, using short 
traces to minimize inductance.

These capacitors should have a value of 0.01 or 0.1 µF. Only ceramic surface mount technology (SMT) 
capacitors should be used to minimize lead inductance. Orientations where connections are made along 
the length of the part, such as 0204, are preferable but not mandatory. Consistent with the 
recommendations of Dr. Howard Johnson in High Speed Digital Design: A Handbook of Black Magic 
(Prentice Hall, 1993) and contrary to previous recommendations for decoupling Freescale 
microprocessors, multiple small capacitors of equal value are recommended over using multiple values of 
capacitance.

In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB, 
feeding the VDD and OVDD planes, to enable quick recharging of the smaller chip capacitors. These bulk 
capacitors should have a low equivalent series resistance (ESR) rating to ensure the quick response time 
necessary. They should also be connected to the power and ground planes through two vias to minimize 
inductance. Suggested bulk capacitors are 100–330 µF (AVX TPS tantalum or Sanyo OSCON).

9.3 Connection Recommendations
To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal 
level. Unless otherwise noted, unused active low inputs should be tied to OVDD and unused active high 
inputs should be connected to GND. All NC (no connect) signals must remain unconnected.

Power and ground connections must be made to all external VDD, OVDD, and GND pins in the MPC7448. 
For backward compatibility with the MPC7447, MPC7445, and MP7441, or for migrating a system 
originally designed for one of these devices to the MPC7448, the new power and ground signals (formerly 
NC, see Table 11) may be left unconnected if the core frequency is 1 GHz or less. Operation above 1 GHz 
requires that these additional power and ground signals be connected, and it is strongly recommended that 
all new designs include the additional connections. See also Section 7, “Pinout Listings,” for additional 
information.

The MPC7448 provides VDD_SENSE, OVDD_SENSE, and GND_SENSE pins. These pins connect 
directly to the power/ground planes in the device package and are intended to allow an external device to 
measure the voltage present on the VDD, OVDD and GND planes in the device package. The most common 
use for these signals is as a feedback signal to a power supply regulator to allow it to compensate for board 
losses and supply the correct voltage at the device. (Note that all voltage parameters are specified at the 
pins of the device.) If not used for this purpose, it is recommended that these signals be connected to test 
points that can be used in the event that an accurate measurement of the voltage at the device is needed 
during system debug. Otherwise, these signals should be connected to the appropriate power/ground 
planes on the circuit board or left unconnected.
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9.4 Output Buffer DC Impedance
The MPC7448 processor bus drivers are characterized over process, voltage, and temperature. To measure 
Z0, an external resistor is connected from the chip pad to OVDD or GND. The value of each resistor is 
varied until the pad voltage is OVDD/2. Figure 20 shows the driver impedance measurement.

Figure 20. Driver Impedance Measurement

The output impedance is the average of two components—the resistances of the pull-up and pull-down 
devices. When data is held low, SW2 is closed (SW1 is open), and RN is trimmed until the voltage at the 
pad equals OVDD/2. RN then becomes the resistance of the pull-down devices. When data is held high, 
SW1 is closed (SW2 is open), and RP is trimmed until the voltage at the pad equals OVDD/2. RP then 
becomes the resistance of the pull-up devices. RP and RN are designed to be close to each other in value. 
Then, Z0 = (RP + RN)/2.

Table 15 summarizes the signal impedance results. The impedance increases with junction temperature 
and is relatively unaffected by bus voltage.

9.5 Pull-Up/Pull-Down Resistor Requirements
The MPC7448 requires high-resistive (weak: 4.7-KΩ) pull-up resistors on several control pins of the bus 
interface to maintain the control signals in the negated state after they have been actively negated and 
released by the MPC7448 or other bus masters. These pins are: TS, ARTRY, SHDO, and SHD1.

Some pins designated as being factory test pins must be pulled up to OVDD or down to GND to ensure 
proper device operation. The pins that must be pulled up to OVDD are LSSD_MODE and TEST[0:3]; the 
pins that must be pulled down to GND are L1_TSTCLK and TEST[4]. The CKSTP_IN signal should 

Table 15. Impedance Characteristics
At recommended operating conditions. See Table 4

Impedance Processor Bus Unit

Z0 Typical 33–42 Ω

Maximum 31–51 Ω

OVDD

OGND

RP

RN

Pad
Data

SW1

SW2
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Figure 21. JTAG Interface Connection
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Notes:
1. RUN/STOP, normally found on pin 5 of the COP header, is not implemented on the MPC7448. Connect 

pin 5 of the COP header to OVDD with a 10-KΩ pull-up resistor.

2. Key location; pin 14 is not physically present on the COP header.

3. Component not populated. Populate only if debug tool does not drive QACK.

4. Populate only if debug tool uses an open-drain type output and does not actively negate QACK.

5. If the JTAG interface is implemented, connect HRESET from the target source to TRST from the COP 
header though an AND gate to TRST of the part. If the JTAG interface is not implemented, connect 
HRESET from the target source to TRST of the part through a 0-Ω isolation resistor.

6. The COP port and target board should be able to independently assert HRESET and TRST to the 
processor in order to fully control the processor as shown above.

TRST 6

10 KΩ
OVDD
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9.7.1 Internal Package Conduction Resistance
For the exposed-die packaging technology described in Table 5, the intrinsic conduction thermal resistance 
paths are as follows:

• The die junction-to-case thermal resistance (the case is actually the top of the exposed silicon die)

• The die junction-to-board thermal resistance

Figure 24 depicts the primary heat transfer path for a package with an attached heat sink mounted to a 
printed-circuit board.

Figure 24. C4 Package with Heat Sink Mounted to a Printed-Circuit Board

Heat generated on the active side of the chip is conducted through the silicon, through the heat sink attach 
material (or thermal interface material), and, finally, to the heat sink, where it is removed by forced-air 
convection.

Because the silicon thermal resistance is quite small, the temperature drop in the silicon may be neglected 
for a first-order analysis. Thus, the thermal interface material and the heat sink conduction/convective 
thermal resistances are the dominant terms.

9.7.2 Thermal Interface Materials
A thermal interface material is recommended at the package lid-to-heat sink interface to minimize the 
thermal contact resistance. For those applications where the heat sink is attached by spring clip 
mechanism, Figure 25 shows the thermal performance of three thin-sheet thermal-interface materials 
(silicone, graphite/oil, fluoroether oil), a bare joint, and a joint with thermal grease as a function of contact 
pressure. As shown, the performance of these thermal interface materials improves with increasing contact 
pressure. The use of thermal grease significantly reduces the interface thermal resistance. That is, the bare 
joint results in a thermal resistance approximately seven times greater than the thermal grease joint. 

Often, heat sinks are attached to the package by means of a spring clip to holes in the printed-circuit board 
(see Figure 22). Therefore, synthetic grease offers the best thermal performance due to the low interface 
pressure and is recommended due to the high power dissipation of the MPC7448. Of course, the selection 

External Resistance

External Resistance

Internal Resistance

Radiation Convection

Radiation Convection

Heat Sink

Printed-Circuit Board

Thermal Interface Material

Package/Leads
Die Junction
Die/Package

(Note the internal versus external package resistance.)
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of any thermal interface material depends on many factors—thermal performance requirements, 
manufacturability, service temperature, dielectric properties, cost, and so on.

Figure 25. Thermal Performance of Select Thermal Interface Material

The board designer can choose between several types of thermal interfaces. Heat sink adhesive materials 
should be selected based on high conductivity and mechanical strength to meet equipment shock/vibration 
requirements. There are several commercially available thermal interfaces and adhesive materials 
provided by the following vendors:

The Bergquist Company 800-347-4572
18930 West 78th St.
Chanhassen, MN 55317
Internet: www.bergquistcompany.com

Chomerics, Inc. 781-935-4850
77 Dragon Ct.
Woburn, MA 01801
Internet: www.chomerics.com

Dow-Corning Corporation 800-248-2481
Corporate Center  
P.O. Box 994.
Midland, MI 48686-0994
Internet: www.dowcorning.com
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