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2 Features
This section summarizes features of the MPC7448 implementation.

Major features of the MPC7448 are as follows:

• High-performance, superscalar microprocessor

— Up to four instructions can be fetched from the instruction cache at a time.

— Up to three instructions plus a branch instruction can be dispatched to the issue queues at a 
time.

— Up to 12 instructions can be in the instruction queue (IQ).

— Up to 16 instructions can be at some stage of execution simultaneously.

— Single-cycle execution for most instructions

— One instruction per clock cycle throughput for most instructions

— Seven-stage pipeline control

• Eleven independent execution units and three register files

— Branch processing unit (BPU) features static and dynamic branch prediction

– 128-entry (32-set, four-way set-associative) branch target instruction cache (BTIC), a cache 
of branch instructions that have been encountered in branch/loop code sequences. If a target 
instruction is in the BTIC, it is fetched into the instruction queue a cycle sooner than it can 
be made available from the instruction cache. Typically, a fetch that hits the BTIC provides 
the first four instructions in the target stream.

– 2048-entry branch history table (BHT) with 2 bits per entry for four levels of 
prediction—not taken, strongly not taken, taken, and strongly taken

– Up to three outstanding speculative branches

– Branch instructions that do not update the count register (CTR) or link register (LR) are 
often removed from the instruction stream.

– Eight-entry link register stack to predict the target address of Branch Conditional to Link 
Register (bclr) instructions

— Four integer units (IUs) that share 32 GPRs for integer operands

– Three identical IUs (IU1a, IU1b, and IU1c) can execute all integer instructions except 
multiply, divide, and move to/from special-purpose register instructions.

– IU2 executes miscellaneous instructions, including the CR logical operations, integer 
multiplication and division instructions, and move to/from special-purpose register 
instructions.

— Five-stage FPU and 32-entry FPR file

– Fully IEEE Std. 754™-1985–compliant FPU for both single- and double-precision 
operations

– Supports non-IEEE mode for time-critical operations

– Hardware support for denormalized numbers

– Thirty-two 64-bit FPRs for single- or double-precision operands
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— Four vector units and 32-entry vector register file (VRs)

– Vector permute unit (VPU)

– Vector integer unit 1 (VIU1) handles short-latency AltiVec™ integer instructions, such as 
vector add instructions (for example, vaddsbs, vaddshs, and vaddsws).

– Vector integer unit 2 (VIU2) handles longer-latency AltiVec integer instructions, such as 
vector multiply add instructions (for example, vmhaddshs, vmhraddshs, and 
vmladduhm).

– Vector floating-point unit (VFPU)

— Three-stage load/store unit (LSU)

– Supports integer, floating-point, and vector instruction load/store traffic

– Four-entry vector touch queue (VTQ) supports all four architected AltiVec data stream 
operations

– Three-cycle GPR and AltiVec load latency (byte, half word, word, vector) with one-cycle 
throughput

– Four-cycle FPR load latency (single, double) with one-cycle throughput

– No additional delay for misaligned access within double-word boundary

– A dedicated adder calculates effective addresses (EAs).

– Supports store gathering 

– Performs alignment, normalization, and precision conversion for floating-point data

– Executes cache control and TLB instructions

– Performs alignment, zero padding, and sign extension for integer data

– Supports hits under misses (multiple outstanding misses)

– Supports both big- and little-endian modes, including misaligned little-endian accesses

• Three issue queues, FIQ, VIQ, and GIQ, can accept as many as one, two, and three instructions, 
respectively, in a cycle. Instruction dispatch requires the following:

— Instructions can only be dispatched from the three lowest IQ entries—IQ0, IQ1, and IQ2.

— A maximum of three instructions can be dispatched to the issue queues per clock cycle.

— Space must be available in the CQ for an instruction to dispatch (this includes instructions that 
are assigned a space in the CQ but not in an issue queue).

• Rename buffers

— 16 GPR rename buffers

— 16 FPR rename buffers

— 16 VR rename buffers

• Dispatch unit

— Decode/dispatch stage fully decodes each instruction

• Completion unit

— Retires an instruction from the 16-entry completion queue (CQ) when all instructions ahead of 
it have been completed, the instruction has finished executing, and no exceptions are pending

— Guarantees sequential programming model (precise exception model)
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— Monitors all dispatched instructions and retires them in order

— Tracks unresolved branches and flushes instructions after a mispredicted branch 

— Retires as many as three instructions per clock cycle

• Separate on-chip L1 instruction and data caches (Harvard architecture)

— 32-Kbyte, eight-way set-associative instruction and data caches

— Pseudo least-recently-used (PLRU) replacement algorithm

— 32-byte (eight-word) L1 cache block

— Physically indexed/physical tags

— Cache write-back or write-through operation programmable on a per-page or per-block basis

— Instruction cache can provide four instructions per clock cycle; data cache can provide four 
words per clock cycle

— Caches can be disabled in software.

— Caches can be locked in software.

— MESI data cache coherency maintained in hardware

— Separate copy of data cache tags for efficient snooping

— Parity support on cache

— No snooping of instruction cache except for icbi instruction

— Data cache supports AltiVec LRU and transient instructions

— Critical double- and/or quad-word forwarding is performed as needed. Critical quad-word 
forwarding is used for AltiVec loads and instruction fetches. Other accesses use critical 
double-word forwarding.

• Level 2 (L2) cache interface

— On-chip, 1-Mbyte, eight-way set-associative unified instruction and data cache

— Cache write-back or write-through operation programmable on a per-page or per-block basis

— Parity support on cache tags

— ECC or parity support on data

— Error injection allows testing of error recovery software

• Separate memory management units (MMUs) for instructions and data

— 52-bit virtual address, 32- or 36-bit physical address

— Address translation for 4-Kbyte pages, variable-sized blocks, and 256-Mbyte segments

— Memory programmable as write-back/write-through, caching-inhibited/caching-allowed, and 
memory coherency enforced/memory coherency not enforced on a page or block basis

— Separate IBATs and DBATs (eight each) also defined as SPRs

— Separate instruction and data translation lookaside buffers (TLBs) 

– Both TLBs are 128-entry, two-way set-associative and use an LRU replacement algorithm.

– TLBs are hardware- or software-reloadable (that is, a page table search is performed in 
hardware or by system software on a TLB miss).
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• Efficient data flow

— Although the VR/LSU interface is 128 bits, the L1/L2 bus interface allows up to 256 bits.

— The L1 data cache is fully pipelined to provide 128 bits/cycle to or from the VRs.

— The L2 cache is fully pipelined to provide 32 bytes per clock every other cycle to the L1 caches.

— As many as 16 out-of-order transactions can be present on the MPX bus.

— Store merging for multiple store misses to the same line. Only coherency action taken 
(address-only) for store misses merged to all 32 bytes of a cache block (no data tenure needed).

— Three-entry finished store queue and five-entry completed store queue between the LSU and 
the L1 data cache

— Separate additional queues for efficient buffering of outbound data (such as castouts and 
write-through stores) from the L1 data cache and L2 cache

• Multiprocessing support features include the following:

— Hardware-enforced, MESI cache coherency protocols for data cache

— Load/store with reservation instruction pair for atomic memory references, semaphores, and 
other multiprocessor operations

• Power and thermal management

— Dynamic frequency switching (DFS) feature allows processor core frequency to be halved or 
quartered through software to reduce power consumption.

— The following three power-saving modes are available to the system: 

– Nap—Instruction fetching is halted. Only the clocks for the time base, decrementer, and 
JTAG logic remain running. The part goes into the doze state to snoop memory operations 
on the bus and then back to nap using a QREQ/QACK processor-system handshake 
protocol.

– Sleep—Power consumption is further reduced by disabling bus snooping, leaving only the 
PLL in a locked and running state. All internal functional units are disabled.

– Deep sleep—When the part is in the sleep state, the system can disable the PLL. The system 
can then disable the SYSCLK source for greater system power savings. Power-on reset 
procedures for restarting and relocking the PLL must be followed upon exiting the deep 
sleep state.

— Instruction cache throttling provides control of instruction fetching to limit device temperature.

— A new temperature diode that can determine the temperature of the microprocessor

• Performance monitor can be used to help debug system designs and improve software efficiency.

• In-system testability and debugging features through JTAG boundary-scan capability

• Testability

— LSSD scan design

— IEEE Std. 1149.1™ JTAG interface
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Table 4 provides the recommended operating conditions for the MPC7448 part numbers described by this 
document; see Section 11.1, “Part Numbers Fully Addressed by This Document,” for more information. 
See Section 9.2, “Power Supply Design and Sequencing” for power sequencing requirements.

Table 4. Recommended Operating Conditions1

Characteristic Symbol

Recommended Value
Unit Notes

1000 MHz 1420 MHz 1600 MHz 1700 MHz

Min Max Min Max Min Max Min Max

Core supply voltage VDD 1.15 V ± 50 mV 1.2 V ± 50 mV 1.25 V ± 50 mV 1.3 V +20/
– 50 mV

V 3, 4, 5

PLL supply voltage AVDD 1.15 V ± 50 mV 1.2 V ± 50 mV 1.25 V ± 50 mV 1.3 V +20/
– 50 mV

V 2, 3, 4

Processor 
bus 
supply 
voltage

I/O Voltage Mode = 1.5 V OVDD 1.5 V ± 5% 1.5 V ± 5% 1.5 V ± 5% 1.5 V ± 5% V 4

I/O Voltage Mode = 1.8 V 1.8 V ± 5% 1.8 V ± 5% 1.8 V ± 5% 1.8 V ± 5% 4

I/O Voltage Mode = 2.5 V 2.5 V ± 5% 2.5 V ± 5% 2.5 V ± 5% 2.5 V ± 5% 4

Input 
voltage

Processor bus Vin GND OVDD GND OVDD GND OVDD GND OVDD V

JTAG signals Vin GND OVDD GND OVDD GND OVDD GND OVDD

Die-junction temperature Tj 0 105 0 105 0 105 0 105 •CC 6

Notes: 
1. These are the recommended and tested operating conditions.

2. This voltage is the input to the filter discussed in Section 9.2.2, “PLL Power Supply Filtering,” and not necessarily the voltage 
at the AVDD pin, which may be reduced from VDD by the filter.

3.  Some early devices supported voltage and frequency derating whereby VDD (and AVDD) could be reduced to reduce power 
consumption. This feature has been superseded and is no longer supported. See Section 5.3, “Voltage and Frequency 
Derating,” for more information.

4. Caution: Power sequencing requirements must be met; see Section 9.2, “Power Supply Design and Sequencing”.

5. Caution: See Section 9.2.3, “Transient Specifications” for information regarding transients on this power supply.

6.  For information on extended temperature devices, see Section 11.2, “Part Numbers Not Fully Addressed by This Document.”



MPC7448 RISC Microprocessor Hardware Specifications, Rev. 4

12 Freescale Semiconductor
 

Electrical and Thermal Characteristics

Table 5 provides the package thermal characteristics for the MPC7448. For more information regarding 
thermal management, see Section 9.7, “Power and Thermal Management Information.”

Table 6 provides the DC electrical characteristics for the MPC7448.

Table 5. Package Thermal Characteristics1

Characteristic Symbol Value Unit Notes

Junction-to-ambient thermal resistance, natural convection, single-layer (1s) board RθJA 26 •C/WC/W 2, 3

Junction-to-ambient thermal resistance, natural convection, four-layer (2s2p) board RθJMA 19 •C/WC/W 2, 4

Junction-to-ambient thermal resistance, 200 ft/min airflow, single-layer (1s) board RθJMA 22 •C/WC/W 2, 4

Junction-to-ambient thermal resistance, 200 ft/min airflow, four-layer (2s2p) board RθJMA 16 •C/WC/W 2, 4

Junction-to-board thermal resistance RθJB 11 •C/WC/W 5

Junction-to-case thermal resistance RθJC < 0.1 •C/WC/W 6

Notes: 

1. Refer to Section 9.7, “Power and Thermal Management Information,” for details about thermal management.

2. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) 
temperature, ambient temperature, airflow, power dissipation of other components on the board, and board thermal 
resistance.

3. Per JEDEC JESD51-2 with the single-layer board horizontal

4. Per JEDEC JESD51-6 with the board horizontal

5. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on 
the top surface of the board near the package.

6. This is the thermal resistance between die and case top surface as measured by the cold plate method (MIL SPEC-883 
Method 1012.1) with the calculated case temperature. The actual value of RθJC for the part is less than 0.1°C/W.

Table 6. DC Electrical Specifications
At recommended operating conditions. See Table 4. 

Characteristic Nominal Bus
Voltage 1

Symbol Min Max Unit Notes

Input high voltage
(all inputs)

1.5 VIH OVDD × 0.65  OVDD + 0.3 V 2

1.8 OVDD × 0.65  OVDD + 0.3

2.5 1.7  OVDD + 0.3

Input low voltage
(all inputs)

1.5 VIL –0.3 OVDD × 0.35 V 2

1.8 –0.3 OVDD × 0.35

2.5 –0.3 0.7

Input leakage current, all signals except 
BVSEL0, LSSD_MODE, TCK, TDI, TMS, 
TRST:
Vin = OVDD 
Vin = GND

— Iin —
 

50
– 50

µA 2, 3

Input leakage current, BVSEL0, 
LSSD_MODE, TCK, TDI, TMS, TRST:
Vin = OVDD 
Vin = GND

— Iin —

 50
– 2000

µA 2, 6
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Table 7 provides the power consumption for the MPC7448 part numbers described by this document; see 
Section 11.1, “Part Numbers Fully Addressed by This Document,” for information regarding which part 
numbers are described by this document. Freescale also offers MPC7448 part numbers that meet lower 
power consumption specifications by adhering to lower core voltage and core frequency specifications. 
For more information on these devices, including references to the MPC7448 Hardware Specification 
Addenda that describe these devices, see Section 11.2, “Part Numbers Not Fully Addressed by This 
Document.” 

The power consumptions provided in Table 7 represent the power consumption of each speed grade when 
operated at the rated maximum core frequency (see Table 8). Freescale sorts devices by power as well as 
by core frequency, and power limits for each speed grade are independent of each other. Each device is 
tested at its maximum core frequency only. (Note that Deep Sleep Mode power consumption is 
independent of clock frequency.) Operating a device at a frequency lower than its rated maximum is fully 
supported provided the clock frequencies are within the specifications given in Table 8, and a device 
operated below its rated maximum will have lower power consumption. However, inferences should not 
be made about a device’s power consumption based on the power specifications of another (lower) speed 
grade. For example, a 1700 MHz device operated at 1420 MHz may not exhibit the same power 
consumption as a 1420 MHz device operated at 1420 MHz. 

For all MPC7448 devices, the following guidelines on the use of these parameters for system design are 
suggested. The Full-Power Mode–Typical value represents the sustained power consumption of the device 

High-impedance (off-state) leakage current:
Vin = OVDD 
Vin = GND

— ITSI —
 50

– 50

µA 2, 3, 4

Output high voltage @ IOH = –5 mA 1.5 VOH OVDD – 0.45 — V

1.8 OVDD – 0.45 —

2.5 1.8 —

Output low voltage @ IOL = 5 mA 1.5 VOL — 0.45 V

1.8 — 0.45

2.5 — 0.6

Capacitance,
Vin = 0 V, f = 1 MHz

All inputs Cin — 8.0 pF 5

Notes: 

1. Nominal voltages; see Table 4 for recommended operating conditions.

2. All I/O signals are referenced to OVDD.

3. Excludes test signals and IEEE Std. 1149.1 boundary scan (JTAG) signals

4. The leakage is measured for nominal OVDD and VDD, or both OVDD and VDD must vary in the same direction (for 
example, both OVDD and VDD vary by either +5% or –5%).

5. Capacitance is periodically sampled rather than 100% tested. 

6. These pins have internal pull-up resistors. 

Table 6. DC Electrical Specifications (continued)
At recommended operating conditions. See Table 4. 

Characteristic
Nominal Bus

Voltage 1
Symbol Min Max Unit Notes
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Figure 4 provides the AC test load for the MPC7448.

Figure 4. AC Test Load

Figure 5 provides the BMODE[0:1] input timing diagram for the MPC7448. These mode select inputs are 
sampled once before and once after HRESET negation.

Figure 5. BMODE[0:1] Input Sample Timing Diagram

Output Z0 = 50 Ω OVDD/2
RL = 50 Ω

HRESET

BMODE[0:1]

VM = Midpoint Voltage (OVDD/2)

SYSCLK

1st Sample 2nd Sample

VM VM
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Figure 11 provides the test access port timing diagram.

Figure 11. Test Access Port Timing Diagram

5.3 Voltage and Frequency Derating
Voltage and frequency derating is no longer supported for part numbers described by this document 
beginning with datecode 0613. (See Section 11, “Part Numbering and Marking,” for information on date 
code markings.) It is supported by some MPC7448 part numbers which target low-power applications; see 
Section 11.2, “Part Numbers Not Fully Addressed by This Document” and the referenced MPC7448 
Hardware Specification Addenda for more information on these low-power devices. For those devices 
which previously supported this feature, information has been archived in the Chip Errata for the 
MPC7448 (document order no. MPC7448CE). 

VMTCK

TDI, TMS

TDO Output Data Valid

VM = Midpoint Voltage (OVDD/2)

tIXJH
tIVJH

tJLOV

tJLOZ

Input
Data Valid

TDO Output Data Valid

tJLOX

VM
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7 Pinout Listings
Table 11 provides the pinout listing for the MPC7448, 360 HCTE package. The pinouts of the MPC7448 
and MPC7447A are compatible, but the requirements regarding the use of the additional power and ground 
pins have changed. The MPC7448 requires these pins be connected to the appropriate power or ground 
plane to achieve high core frequencies; see Section 9.3, “Connection Recommendations,” for additional 
information. As a result, these pins should be connected in all new designs.

Additionally, the MPC7448 may be populated on a board designed for a MPC7447 (or MPC7445 or 
MPC7441), provided the core voltage can be made to match the requirements in Table 4 and all pins 
defined as ‘no connect’ for the MPC7447 are unterminated, as required by the MPC7457 RISC 
Microprocessor Hardware Specifications. The MPC7448 uses pins previously marked ‘no connect’ for the 
temperature diode pins and for additional power and ground connections. The additional power and 
ground pins are required to achieve high core frequencies and core frequency will be limited if they are 
not connected; see Section 9.3, “Connection Recommendations,” for additional information. Because 
these ‘no connect’ pins in the MPC7447 360 pin package are not driven in functional mode, an MPC7447 
can be populated in an MPC7448 board. 

NOTE

Caution must be exercised when performing boundary scan test operations 
on a board designed for an MPC7448, but populated with an MPC7447 or 
earlier device. This is because in the MPC7447 it is possible to drive the 
latches associated with the former ‘no connect’ pins in the MPC7447, 
potentially causing contention on those pins. To prevent this, ensure that 
these pins are not connected on the board or, if they are connected, ensure 
that the states of internal MPC7447 latches do not cause these pins to be 
driven during board testing. 

For the MPC7448, pins that were defined as the TEST[0:4] factory test signal group on the MPC7447A 
and earlier devices have been assigned new functions. For most of these, the termination recommendations 
for the TEST[0:4] pins of the MPC7447A are compatible with the MPC7448 and will allow correct 
operation with no performance loss. The exception is BVSEL1 (TEST3 on the MPC7447A and earlier 
devices), which may require a different termination depending which I/O voltage mode is desired; see 
Table 3 for more information.

NOTE

This pinout is not compatible with the MPC750, MPC7400, or MPC7410 
360 BGA package.
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Table 11. Pinout Listing for the MPC7448, 360 HCTE Package

Signal Name Pin Number Active I/O Notes

A[0:35] E11, H1, C11, G3, F10, L2, D11, D1, C10, G2, D12, L3, G4, T2, F4, V1, 
J4, R2, K5, W2, J2, K4, N4, J3, M5, P5, N3, T1, V2, U1, N5, W1, B12, 
C4, G10, B11

High I/O 2

AACK R1 Low Input

AP[0:4] C1, E3, H6, F5, G7 High I/O 2

ARTRY N2 Low I/O 3

AVDD A8 — Input

BG M1 Low Input

BMODE0 G9 Low Input 4

BMODE1 F8 Low Input 5

BR D2 Low Output

BVSEL0 B7 High Input 1, 6

BVSEL1 E10 High Input 1, 20

CI J1 Low Output

CKSTP_IN A3 Low Input

CKSTP_OUT B1 Low Output

CLK_OUT H2 High Output

D[0:63] R15, W15, T14, V16, W16, T15, U15, P14, V13, W13, T13, P13, U14, 
W14, R12, T12, W12, V12, N11, N10, R11, U11, W11, T11, R10, N9, 
P10, U10, R9, W10, U9, V9, W5, U6, T5, U5, W7, R6, P7, V6, P17, R19, 
V18, R18, V19, T19, U19, W19, U18, W17, W18, T16, T18, T17, W3, 
V17, U4, U8, U7, R7, P6, R8, W8, T8

High I/O

DBG M2 Low Input

DFS2 A12 Low Input 20, 21

DFS4 B6 Low Input 12, 20, 21

DP[0:7] T3, W4, T4, W9, M6, V3, N8, W6 High I/O

DRDY R3 Low Output 7

DTI[0:3] G1, K1, P1, N1 High Input 8

EXT_QUAL A11 High Input 9

GBL E2 Low I/O

GND B5, C3, D6, D13, E17, F3, G17, H4, H7, H9, H11, H13, J6, J8, J10, J12, 
K7, K3, K9, K11, K13, L6, L8, L10, L12, M4, M7, M9, M11, M13, N7, P3, 
P9, P12, R5, R14, R17, T7, T10, U3, U13, U17, V5, V8, V11, V15

— —

GND A17, A19, B13, B16, B18, E12, E19, F13, F16, F18, G19, H18, J14, L14, 
M15, M17, M19, N14, N16, P15, P19

— — 15

GND_SENSE G12, N13 — — 19

HIT B2 Low Output 7

HRESET D8 Low Input

INT D4 Low Input

L1_TSTCLK G8 High Input 9

L2_TSTCLK B3 High Input 10
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8.2 Mechanical Dimensions for the MPC7448, 360 HCTE BGA
Figure 13 provides the mechanical dimensions and bottom surface nomenclature for the MPC7448, 360 
HCTE BGA package.

Figure 13. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC7448, 
360 HCTE BGA Package

NOTES:
1. Dimensioning and 

tolerancing per ASME 
Y14.5M, 1994

2. Dimensions in millimeters.
3. Top side A1 corner index is a 

metalized feature with 
various shapes. Bottom side 
A1 corner is designated with 
a ball missing from the array.
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8.3 Package Parameters for the MPC7448, 360 HCTE LGA
The package parameters are as provided in the following list. The package type is 25 × 25 mm, 360 pin 
high coefficient of thermal expansion ceramic land grid array (HCTE).

Package outline 25 × 25 mm
Interconnects 360 (19 × 19 ball array – 1)
Pitch 1.27 mm (50 mil)
Minimum module height 1.52 mm
Maximum module height 1.80 mm
Pad diameter 0.89 mm (35 mil)
Coefficient of thermal expansion12.3 ppm/°C 
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8.4 Mechanical Dimensions for the MPC7448, 360 HCTE LGA
Figure 13 provides the mechanical dimensions and bottom surface nomenclature for the MPC7448, 360 
HCTE LGA package.

Figure 14. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC7448, 
360 HCTE LGA Package

NOTES:
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tolerancing per ASME 
Y14.5M, 1994
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3. Top side A1 corner index is a 

metalized feature with 
various shapes. Bottom side 
A1 corner is designated with 
a pad missing from the array.
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9 System Design Information
This section provides system and thermal design requirements and recommendations for successful 
application of the MPC7448.

9.1 Clocks
The following sections provide more detailed information regarding the clocking of the MPC7448. 

9.1.1 PLL Configuration
The MPC7448 PLL is configured by the PLL_CFG[0:5] signals. For a given SYSCLK (bus) frequency, 
the PLL configuration signals set the internal CPU and VCO frequency of operation. The PLL 
configuration for the MPC7448 is shown in Table 12. In this example, shaded cells represent settings that, 
for a given SYSCLK frequency, result in core and/or VCO frequencies that do not comply with Table 8. 
When enabled, dynamic frequency switching (DFS) also affects the core frequency by halving or 
quartering the bus-to-core multiplier; see Section 9.7.5, “Dynamic Frequency Switching (DFS),” for more 
information. Note that when DFS is enabled the resulting core frequency must meet the adjusted minimum 
core frequency requirements (fcore_DFS) described in Table 8. Note that the PLL_CFG[5] is currently used 
for factory test only and should be tied low, and that the MPC7448 PLL configuration settings are 
compatible with the MPC7447A PLL configuration settings when PLL_CFG[5] = 0.

Table 12. MPC7448 Microprocessor PLL Configuration Example

PLL_CFG[0:5]

Example Core and VCO Frequency in MHz

Bus-to-Core 
Multiplier 5

Core-to-VCO 
Multiplier 5

Bus (SYSCLK) Frequency

33.3
MHz

50
MHz

66.6
MHz

75
MHz

83
MHz

100
MHz

133
MHz

167
MHz

200
MHz

010000 2x 6 1x

100000 3x 6 1x 600

101000 4x 6 1x 667 800

101100 5x 1x 667 835 1000

100100 5.5x 1x 733 919 1100

110100 6x 1x 600 800 1002 1200

010100 6.5x 1x 650 866 1086 1300

001000 7x 1x 700 931 1169 1400

000100 7.5x 1x 623 750 1000 1253 1500

110000 8x 1x 600 664 800 1064 1336 1600

011000 8.5x 1x 638 706 850 1131 1417 1700

011110 9x 1x 600 675 747 900 1197 1500

011100 9.5x 1x 633 712 789 950 1264 1583

101010 10x 1x 667 750 830 1000 1333 1667

100010 10.5x 1x 700 938 872 1050 1397
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Figure 17. MPC7448 Power Down Sequencing Requirements

There is no requirement regarding AVDD during power down, but it is recommended that AVDD track VDD 
within the RC time constant of the PLL filter circuit described in Section 9.2.2, “PLL Power Supply 
Filtering” (nominally 100 µs).

9.2.2 PLL Power Supply Filtering
The AVDD power signal is provided on the MPC7448 to provide power to the clock generation PLL. To 
ensure stability of the internal clock, the power supplied to the AVDD input signal should be filtered of any 
noise in the 500-KHz to 10-MHz resonant frequency range of the PLL. The circuit shown in Figure 18 
using surface mount capacitors with minimum effective series inductance (ESL) is strongly recommended. 
In addition to filtering noise from the AVDD input, it also provides the required delay between VDD and 
AVDD as described in Section 9.2.1, “Power Supply Sequencing.”

The circuit should be placed as close as possible to the AVDD pin to minimize noise coupled from nearby 
circuits. It is often possible to route directly from the capacitors to the AVDD pin, which is on the periphery 
of the device footprint.

Figure 18. PLL Power Supply Filter Circuit

VDD

OVDD

no restrictions between VDD and OVDD

SYSCLK

0.9 V
AVDD

no restrictions between VDD and AVDD

note also restrictions between SYSCLK and OVDD

0.9 V

limit imposed by VDD if VDD ramps down first

limit imposed by OVDD if OVDD ramps down first

 VDD AVDD

   10 Ω

 2.2 µF  2.2 µF

 GND
Low ESL Surface Mount Capacitors
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9.4 Output Buffer DC Impedance
The MPC7448 processor bus drivers are characterized over process, voltage, and temperature. To measure 
Z0, an external resistor is connected from the chip pad to OVDD or GND. The value of each resistor is 
varied until the pad voltage is OVDD/2. Figure 20 shows the driver impedance measurement.

Figure 20. Driver Impedance Measurement

The output impedance is the average of two components—the resistances of the pull-up and pull-down 
devices. When data is held low, SW2 is closed (SW1 is open), and RN is trimmed until the voltage at the 
pad equals OVDD/2. RN then becomes the resistance of the pull-down devices. When data is held high, 
SW1 is closed (SW2 is open), and RP is trimmed until the voltage at the pad equals OVDD/2. RP then 
becomes the resistance of the pull-up devices. RP and RN are designed to be close to each other in value. 
Then, Z0 = (RP + RN)/2.

Table 15 summarizes the signal impedance results. The impedance increases with junction temperature 
and is relatively unaffected by bus voltage.

9.5 Pull-Up/Pull-Down Resistor Requirements
The MPC7448 requires high-resistive (weak: 4.7-KΩ) pull-up resistors on several control pins of the bus 
interface to maintain the control signals in the negated state after they have been actively negated and 
released by the MPC7448 or other bus masters. These pins are: TS, ARTRY, SHDO, and SHD1.

Some pins designated as being factory test pins must be pulled up to OVDD or down to GND to ensure 
proper device operation. The pins that must be pulled up to OVDD are LSSD_MODE and TEST[0:3]; the 
pins that must be pulled down to GND are L1_TSTCLK and TEST[4]. The CKSTP_IN signal should 

Table 15. Impedance Characteristics
At recommended operating conditions. See Table 4

Impedance Processor Bus Unit

Z0 Typical 33–42 Ω

Maximum 31–51 Ω

OVDD

OGND

RP

RN

Pad
Data

SW1

SW2
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to fully control the processor. If the target system has independent reset sources, such as voltage monitors, 
watchdog timers, power supply failures, or push-button switches, then the COP reset signals must be 
merged into these signals with logic.

The arrangement shown in Figure 21 allows the COP port to independently assert HRESET or TRST, 
while ensuring that the target can drive HRESET as well. If the JTAG interface and COP header will not 
be used, TRST should be tied to HRESET through a 0-Ω isolation resistor so that it is asserted when the 
system reset signal (HRESET) is asserted, ensuring that the JTAG scan chain is initialized during 
power-on. Although Freescale recommends that the COP header be designed into the system as shown in 
Figure 21, if this is not possible, the isolation resistor will allow future access to TRST in the case where 
a JTAG interface may need to be wired onto the system in debug situations.

The COP header shown in Figure 21 adds many benefits—breakpoints, watchpoints, register and memory 
examination/modification, and other standard debugger features are possible through this interface—and 
can be as inexpensive as an unpopulated footprint for a header to be added when needed.

The COP interface has a standard header for connection to the target system, based on the 0.025" 
square-post, 0.100" centered header assembly (often called a Berg header). The connector typically has 
pin 14 removed as a connector key.

There is no standardized way to number the COP header shown in Figure 21; consequently, many different 
pin numbers have been observed from emulator vendors. Some are numbered top-to-bottom then 
left-to-right, while others use left-to-right then top-to-bottom, while still others number the pins counter 
clockwise from pin 1 (as with an IC). Regardless of the numbering, the signal placement recommended in 
Figure 21 is common to all known emulators.

The QACK signal shown in Figure 21 is usually connected to the bridge chip or other system control logic 
in a system and is an input to the MPC7448 informing it that it can go into the quiescent state. Under 
normal operation this occurs during a low-power mode selection. In order for COP to work, the MPC7448 
must see this signal asserted (pulled down). While shown on the COP header, not all emulator products 
drive this signal. If the product does not, a pull-down resistor can be populated to assert this signal. 
Additionally, some emulator products implement open-drain type outputs and can only drive QACK 
asserted; for these tools, a pull-up resistor can be implemented to ensure this signal is negated when it is 
not being driven by the tool. Note that the pull-up and pull-down resistors on the QACK signal are 
mutually exclusive and it is never necessary to populate both in a system. To preserve correct power-down 
operation, QACK should be merged through logic so that it also can be driven by the bridge or system 
logic.
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Figure 23. LGA Package Exploded Cross-Sectional View with Several Heat Sink Options

There are several commercially-available heat sinks for the MPC7448 provided by the following vendors:

Aavid Thermalloy 603-224-9988
80 Commercial St.
Concord, NH 03301
Internet: www.aavidthermalloy.com

Alpha Novatech 408-567-8082
473 Sapena Ct. #12
Santa Clara, CA 95054
Internet: www.alphanovatech.com

Calgreg Thermal Solutions 888-732-6100
60 Alhambra Road, Suite 1
Warwick, RI 02886
Internet: www.calgregthermalsolutions.com

International Electronic Research Corporation (IERC) 818-842-7277
413 North Moss St.
Burbank, CA 91502
Internet: www.ctscorp.com

Tyco Electronics 800-522-6752
Chip Coolers™
P.O. Box 3668
Harrisburg, PA 17105-3668
Internet: www.tycoelectronics.com

Wakefield Engineering 603-635-2800
33 Bridge St.
Pelham, NH 03076
Internet: www.wakefield.com

Ultimately, the final selection of an appropriate heat sink depends on many factors, such as thermal 
performance at a given air velocity, spatial volume, mass, attachment method, assembly, and cost. 

Thermal

Heat Sink
HCTE LGA Package

Heat Sink
Clip

Printed-Circuit Board

Interface Material
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9.7.4 Temperature Diode
The MPC7448 has a temperature diode on the microprocessor that can be used in conjunction with other 
system temperature monitoring devices (such as Analog Devices, ADT7461™). These devices use the 
negative temperature coefficient of a diode operated at a constant current to determine the temperature of 
the microprocessor and its environment. For proper operation, the monitoring device used should 
auto-calibrate the device by canceling out the VBE variation of each MPC7448’s internal diode.

The following are the specifications of the MPC7448 on-board temperature diode:

Vf > 0.40 V 

Vf < 0.90 V

Operating range 2–300 μA

Diode leakage < 10 nA @ 125°C

Ideality factor over 5–150 μA at 60°C: n = 1.0275 ± 0.9%

Ideality factor is defined as the deviation from the ideal diode equation:

Another useful equation is:

Where:

Ifw = Forward current

Is = Saturation current

Vd = Voltage at diode

Vf = Voltage forward biased

VH = Diode voltage while IH is flowing

VL = Diode voltage while IL is flowing

IH = Larger diode bias current

IL = Smaller diode bias current

q = Charge of electron (1.6 x 10 –19 C)

n = Ideality factor (normally 1.0)

K = Boltzman’s constant (1.38 x 10–23 Joules/K)

T = Temperature (Kelvins)

The ratio of IH to IL is usually selected to be 10:1. The previous equation simplifies to the following:

 Ifw = Is e  – 1 

 qVf___
nKT

 VH – VL = n ln  – 1 
KT__
q

 IH__
IL

 VH – VL = 1.986 × 10–4 × nT 


