

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C
Peripherals	LVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08sf4mtj

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	MCU	Block Diagram
2	Pin A	Assignments
3	Elect	rical Characteristics 5
	3.1	Introduction
	3.2	Parameter Classification 5
	3.3	Absolute Maximum Ratings 5
	3.4	Thermal Characteristics 6
	3.5	ESD Protection and Latch-Up Immunity 7
	3.6	DC Characteristics
	3.7	Supply Current Characteristics 14
	3.8	ICS Characteristics 16
	3.9	AC Characteristics
		3.9.1 Control Timing 18
		3.9.2 Timer/PWM (TPM) Module Timing 19
	3.10	ADC Characteristics

	3.11 PRACMP Characteristics	21
	3.12 Flash Specifications	22
4	Ordering Information	23
5	Package Information	23
	5.1 Mechanical Drawings	23

Revision History

The following revision history table summarizes changes contained in this document.

Revision	Date	Description of Changes
2	4/30/2009	Initial public release.
3	8/18/2009	Polished.
4	9/19/2011	Updated V _{AIN} in the Table 12.

Related Documentation

Reference Manual

(MC9S08SF4RM)

Contains extensive product information including modes of operation, memory, resets and interrupts, register definition, port pins, CPU, and all module information.

1 MCU Block Diagram

The block diagram, Figure 1, shows the structure of the MC9S08SF4 MCU.

I = Not available in the 16-pin TSSOP package

Figure 1. MC9S08SF4 Series Block Diagram

2 Pin Assignments

This section shows the pin assignments for the MC9S08SF4 series devices.

MC9S08SF4 Series MCU Data Sheet, Rev. 4

Figure 3. MC9S08SF4 in 16-Pin TSSOP Package

3 Electrical Characteristics

3.1 Introduction

This section contains electrical and timing specifications for the MC9S08SF4 series of microcontrollers available at the time of publication.

3.2 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Ρ	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

3.3 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 2 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pullup resistor associated with the pin is enabled.

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	–0.3 to 5.8	V
Maximum current into V _{DD}	I _{DD}	120	mA
Digital input voltage	V _{In}	–0.3 to V _{DD} + 0.3	V
Instantaneous maximum current Single pin limit (applies to all port pins) ^{1, 2, 3}	۱ _D	±25	mA
Storage temperature range	T _{stg}	–55 to 150	°C

Table 2. Absolute Maximum Ratings

Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

 $^2\,$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD}

³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in the external power supply going out of regulation. Ensure external V_{DD} load shunts current greater than the maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low (which would reduce overall power consumption).

3.4 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be small.

Rating	Symbol	Value	Unit
Operating temperature range (packaged)	T _A	T _L to T _H –40 to 125	°C
Thermal resistance (single-layer board)			
20-pin TSSOP 16-pin TSSOP	θ_{JA}	115 123	°C/W
Thermal resistance (four-layer board)			
20-pin TSSOP 16-pin TSSOP	θ_{JA}	76 75	°C/W

Table 3. Th	hermal Char	acteristics
-------------	-------------	-------------

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

Model	Description	Symbol	Value	Unit
	Series resistance	R1	1500	Ω
Human Body	Storage capacitance	С	100	pF
	Number of pulses per pin	—	1	
Latch-up	Minimum input voltage limit	—	-2.5	V
	Maximum input voltage limit	—	7.5	V

 Table 4. ESD and Latch-up Test Conditions

Table 5. ESD and Latch-Up Protection Characteristics

No.	Rating ¹	Symbol	Min	Мах	Unit
1	Human body model (HBM)	V _{HBM}	±2000	—	V
2	Charge device model (CDM)	V _{CDM}	±500	—	V
3	Latch-up current at $T_A = 125 \degree C$	ILAT	±100		mA

¹ Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted.

3.6 DC Characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Table 6. DC Characteristics (Temperature Range = -40 to 125 °C Ambient)

Num	С	Parameter	Symbol	Min	Typical	Max	Unit
1	Ρ	Supply voltage (run, wait, and stop modes.)	V _{DD}	2.7	_	5.5	V
	Р	Low-voltage detection threshold — high range $(V_{DD}$ falling) $(V_{DD}$ rising)	V _{LVDH}	3.9 4.0		4.1 4.2	V V
2	Ρ	Low-voltage detection threshold — low range $(V_{DD}$ falling) $(V_{DD}$ rising)	V _{LVDL}	2.48 2.54	2.56 2.62	2.64 2.7	> >
3	Р	Low-voltage warning threshold — high range (V _{DD} falling) (V _{DD} rising)	V _{LVWH}	2.66 2.72		2.82 2.88	V V
3	Ρ	Low-voltage warning threshold — low range (V _{DD} falling) (V _{DD} rising)	V _{LVWL}	2.84 2.90		3.00 3.06	V V
4	D	Low-voltage inhibit reset/recover hysteresis 5 V 3 V	V _{hys}		100 60		mV mV
5	Ρ	Bandgap voltage reference Factory trimmed at V_{DD} = 3.0 V, Temp = 25 °C	V _{BG}	1.185	1.200	1.215	V
6	Ρ	Input high voltage (2.7 V \leq V_{DD} \leq 5.5 V) (all digital inputs)	V _{IH}	$0.65 \times V_{DD}$		V _{DD} + 0.3	V

Num	С	Parameter	Symbol	Min	Typical	Мах	Unit
7	Р	Input low voltage (2.7 V \leq V_{DD} \leq 5.5 V) (all digital inputs)	V _{IL}	V _{SS} -0.3	_	$0.35 \times V_{DD}$	V
8	D	Input hysteresis (all digital inputs)	V _{hys}	$0.06 \times V_{DD}$	_	$0.30 \times V_{DD}$	V
9	Р	Input Leakage Current (pins in high ohmic input mode) ¹ V _{in} = V _{DD5} or V _{SS5}	I _{in}	-1	_	1	μA
10	Р	Internal pullup resistors ²	R _{PU}	17.5	40.0	52.5	kΩ
10	Р	Internal pulldown resistor (IRQ)	R _{PD}	12.5	_	62.5	kΩ
	С	Output high voltage All I/O pins, low-drive strength, 5 V, I _{load} = -4 mA		V _{DD} – 1.5	_	_	V
	Р	Output high voltage All I/O pins, low-drive strength, 5 V, I _{load} = -2 mA		V _{DD} – 0.8	_	_	V
11	с	Output high voltage All I/O pins, low-drive strength, 3 V, $I_{load} = -1 \text{ mA}$	V	V _{DD} – 0.8	_	_	V
	С	Output high voltage All I/O pins, high-drive strength, 5 V, I _{load} = -15 mA	• он	V _{DD} – 1.5	_	_	V
	Ρ	Output high voltage All I/O pins, high-drive strength, 5 V, I _{load} = -10 mA		V _{DD} – 0.8	—		V
	С	Output high voltage All I/O pins, high-drive strength, 3 V, I _{load} = -5 mA		V _{DD} – 0.8	_	_	V
	С	Output low voltage All I/O pins, low-drive strength, 5 V, I _{load} = 4 mA		_	_	1.5	V
	Ρ	Output low voltage All I/O pins, low-drive strength, 5 V, I _{load} = 2 mA		_	_	0.8	V
12	С	Output low voltage All I/O pins, low-drive strength, 3 V, I _{load} = 1 mA	V	_	_	0.8	V
12	С	Output low voltage All I/O pins, high-drive strength, 5 V, I _{load} = 15 mA	OL	_	_	1.5	V
	Ρ	Output low voltage All I/O pins, high-drive strength, 5 V, I _{load} = 10 mA		_	_	0.8	V
	с	Output low voltage All I/O pins, high-drive strength, 3 V, I _{load} = 5 mA		—	—	0.8	V
13	D	Maximum total I _{OH} for all port pins 5 V 3 V	II _{OHT} I		_	100 60	mA
10	D	Maximum total I _{OL} for all port pins 5 V 3 V	ll _{OLT} I		_	100 60	mA
14	D	dc injection current ^{2, 3, 4, 5} $V_{IN} < V_{SS}, V_{IN} > V_{DD}$ Single pin limit Total MCU limit, includes sum of all stressed pins	ll _{IC} I		_	0.2 5	mA mA
15	D	Input capacitance (all non-supply pins)	C _{In}	_		7	pF

Table 6. DC Characteristics (Temperature Range = -40 to 125 °C Ambient) (continued)

- ¹ Maximum leakage current occurs at a maximum operating temperature. The current decreases by approximately one-half for each 8 °C to 12 °C in the temperature range from 50 °C to 125 °C.
- ² Measurement condition for pull resistors: $V_{In} = V_{SS}$ for pullup and $V_{In} = V_{DD}$ for pulldown.
- $^3\,$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD}
- ⁴ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.
- ⁵ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{In} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load shunts current greater than maximum injection current. This is the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low (which reduces overall power consumption).

Figure 4. Typical Low-Side Driver (Sink) Characteristics Low Drive (PTxDSn = 0), V_{DD} = 5.0 V, V_{OL} vs. I_{OL}

Figure 5. Typical Low-Side Driver (Sink) Characteristics Low Drive (PTxDSn = 0), V_{DD} = 3.0 V, V_{OL} vs. I_{OL}

Figure 6. Typical Low-Side Driver (Sink) Characteristics High Drive (PTxDSn = 1), V_{DD} = 5.0 V, V_{OL} vs. I_{OL}

Figure 7. Typical Low-Side Driver (Sink) Characteristics High Drive (PTxDSn = 1), V_{DD} = 3.0 V, V_{OL} vs. I_{OL}

Figure 8. Typical High-Side Driver (Source) Characteristics Low Drive (PTxDSn = 0), V_{DD} = 5.0 V, V_{OH} vs. I_{OH}

Figure 9. Typical High-Side Driver (Source) Characteristics Low Drive (PTxDSn = 0), V_{DD} = 3.0 V, V_{OH} vs. I_{OH}

Figure 10. Typical High-Side Driver (Source) Characteristics High Drive (PTxDSn = 1), V_{DD} = 5.0 V, V_{OH} vs. I_{OH}

Supply Current Characteristics

Num	С	Parameter	Symbol	V _{DD} (V)	Typical ¹	Max ²	Unit
	Р	Stop3 mode supply current		_		19.4	
_		-40 to 125 °C		5	2	10.4	
7			S3I _{DD}			100	μA
	D	−40 to 85 °C −40 to 125 °C		3	1.97	16.82	
	D	+0.10.120.0				90	
8	D	PRACMP (PRG disabled) adder to stop3,	_	5	28.87	_	nA
	D	25 °C		3	27.06		nA
q	D	PRACMP (PRG enabled) adder to stop3,		5	79.42	_	nA
0	D	25 °C		3	57.4	_	nA
10	D	ADC adder to stop? or stop? 25 °C		5	25		nA
10	D	ADC adder to stop2 of stop3, 25°C	_	3	6	-	nA
	D			5	83.52	_	nA
11	D	LVD adder to stop3 ($LVDE = LVDSE = 1$)	_	3	83.52		nA
10	D	Adder to stop3 for oscillator enabled		5	0.03	_	μA
12	D	(IREFSTEN = 1)	_	3	0.01	_	μA
12	D	TPM1 and TPM2 adder to run mode, 25 °C		5	0.16	_	mA
15	D	(CPU clock = 40 MHz, f _{Bus} = 20 MHz)		3	0.18	_	mA
14	D	PWT1 and PWT2 adder to run mode, 25 °C		5	0.43	_	mA
14	D	(CPU clock = 40 MHz, f_{Bus} = 20 MHz)	_	3	0.41	_	mA
15	D	PRACMP adder to run mode, 25 °C		5	0.35	-	mA
15	D	(CPU clock = 40 MHz, f_{Bus} = 20 MHz)	_	3	0.35		mA
16	D	MTIM1 and MTIM2 adder to run mode, 25 °C		5	0.26	_	mA
10	D	(CPU clock = 40 MHz, f _{Bus} = 20 MHz)		3	0.24	_	mA
17	D	ADC adder to run mode, 25 °C		5	0.42	—	mA
17	D	(CPU clock = 40 MHz, f _{Bus} = 20 MHz)	_	3	0.32	_	mA
10	D	IIC adder to run mode, 25 °C	_	5	0.56	—	mA
10	D	(CPU clock = 40 MHz, f_{Bus} = 20 MHz)		3	0.53		mA

Table 7. Supply Current Characteristics (continued)

¹ Typicals are measured at 25 °C.

² Values given here are preliminary estimates prior to completing characterization.

³ All modules except ADC active, and does not include any dc loads on port pins.

⁴ Most customers are expected to find that the auto-wakeup from a stop mode can be used instead of the higher current wait mode.

3.9.2 Timer/PWM (TPM) Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

Function	Symbol	Min	Max	Unit
External clock frequency	f _{TCLK}	dc	f _{timer} /4	MHz
External clock period	t _{TCLK}	4	_	t _{cyc}
External clock high time	t _{clkh}	1.5	_	t _{cyc}
External clock low time	t _{clkl}	1.5	_	t _{cyc}
Input capture pulse width for TPM	t _{ICPW}	1.5	_	t _{cyc}
Timer clock frequency	f _{timer}	—	40	MHz

Figure 16. Timer External Clock

Figure 17. Timer Input Capture Pulse

3.10 ADC Characteristics

Table 11.	ADC	Characteristics
-----------	-----	-----------------

Num	С	Characteristic	Conditions	Symb	Min	Typical ¹	Max	Unit	Comment
1	D	Supply current ADLPC = 1	V _{DDA} ≤ 3.6 V (3.0 V Typ)			110	_		
	D	ADLSMP = 1 ADCO = 1	V _{DDA} ≤ 5.5 V (5.0 V Typ)	DDA		130	_	μΑ	
2	D	Supply current ADLPC = 1	V _{DDA} ≤ 3.6 V (3.0 V Typ)		—	200	_		
2	D	ADLSMP = 0 ADCO = 1	V _{DDA} ≤ 5.5 V (5.0 V Typ)	UDA	_	220	_	μιτ	Quer
3	D	Supply current ADLPC = 0	V _{DDA} ≤ 3.6 V (3.0 V Typ)			320	—	цА	temperature (Typ 25°C)
U	D	ADLSMP = 1 ADCO = 1	V _{DDA} ≤ 5.5 V (5.0 V Typ)	UDA	_	360	—	μ	(),)
4	D	Supply current ADLPC = 0	V _{DDA} ≤ 3.6V (3.0 V Typ)		—	580	—		
-	D	ADLSMP = 0 ADCO = 1	V _{DDA} ≤ 5.5V (5.0 V Typ)	DDA	_	660	—	μΑ	
5	D	Supply current	Stop, Reset, Module Off	I _{DDA}	_	<1	100	nA	
6	D	Ref voltage high	—	V _{REFH}	2.7	V _{DDA}	V _{DDA}	V	
0	D	Ref coltage low	—	V _{REFL}	V _{SSA}	V _{SSA}	V _{SSA}	V	
7	D	ADC conversion	High speed (ADLPC = 0)	facer	0.4	—	8.0	MHz	t _{ADCK} =
,	D	clock	Low power (ADLPC = 1)	ADCK	0.4	—	4.0	11112	1/f _{ADCK}
8	D	ADC	High speed (ADLPC = 0)	function	2.5	4	6.6	MHz	t _{ADACK} =
U	D	clock source	Low power (ADLPC = 1)	'ADACK	1.25	2	3.3	11112	1/f _{ADACK}
٩	D	Conversion time	Short sample (ADLSMP = 0)	tuno	20	20	23	t _{ADCK}	Add 2 to 5 t_ $-1/f_{-}$
5	D		Long sample (ADLSMP = 1)	ADC	40	40	43	cycles	cycles
10	D	Sampla tima	Short sample (ADLSMP = 0)	+	4	4	4	t _{ADCK}	
10	D	Sample line	Long sample (ADLSMP = 1)	¹ ADS	24	24	24	cycles	
11	D	Input voltage	—	V _{ADIN}	V _{REFL}	—	V _{REFH}	V	
12	D	Input capacitance	_	C _{ADIN}	_	7	10	pF	Not Tested
13	D	Input impedance	—	R _{ADIN}	—	5	15	kΩ	Not Tested
14	D	Analog source impedance	_	R _{AS}	_	_	10 ²	kΩ	External to MCU

PRACMP Characteristics

Num	С	Characteristic	Conditions	Symb	Min	Typical ¹	Мах	Unit	Comment
15	D	Ideal resolution	10-bit mode	BES	2.637	4.883	5.371	m\/	N/2N
15	D	(1LSB)	8-bit mode	nL0	10.547	19.53	21.48	111V	VREFH/≁
16	D	Total unadjusted	10-bit mode	F	0	±1.5	±3.5	I SB	Includes
10	D	error	8-bit mode	TUE	0	±0.7	±1.0	LOD	quantization
17	Ρ	Differential	10-bit mode		0	±0.5	±1.0	ICR	
17	С	non-linearity ³	8-bit mode	DINL	0	±0.3	±0.5	LSD	
18	Ρ	Integral	10-bit mode	INI	0	±0.5	±1.0	I SB	
10	С	non-linearity	8-bit mode		0	±0.3	±0.5	LOD	
10	D	Zero-scale error	10-bit mode	E	0	±1.5	±3.1	I SB	V
19	D	Zero-scale error	8-bit mode	⊢zs	0	±0.5	±0.7	LOD	VADIN - VSSA
20	D	Full-scale error	10-bit mode	E-a	0	±1.0	±1.5	I SB	V
20	D	i uli-scale enoi	8-bit mode	FS	0	±0.5	±0.5	100	VADIN − VDDA
21	D	Quantization error	10-bit mode	EQ	_	_	±0.5	LSB	8-bit mode is not truncated
22	Р	Temp sensor	_40_25 °C	—	—	3.266	_	—	
22		slope	25–125 °C	—	—	3.638	_	—	
23	Р	Temp sensor voltage	_	_	_	1.396	_	_	

Table 11. ADC Characteristics (continued)

¹ Typical values assume V_{DDA} = 5.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

 2 At 4 MHz, for maximum frequency, use proportionally lower source impedance.

³ Monotonicity and no-missing-codes guaranteed

3.11 **PRACMP** Characteristics

Table 12. PRACMP Specifications

Num	С	Characteristic	Symbol	Min	Typical	Max	Unit
1	Р	Supply voltage	V _{PWR}	2.70	_	5.50	V
2	С	Supply current (active) (PRG enabled)	I _{DDACT1}	—	_	60	μA
3	С	Supply current (active) (PRG disabled)	I _{DDACT2}	—	_	40	μA
4	С	Supply current (ACMP and PRG all disabled)	I _{DDDIS}	—	_	2	nA
5	С	Analog input voltage	V _{AIN}	$V_{SS} - 0.3$	_	V_{DD}	V
6	С	Analog input offset voltage	V _{AIO}	—	5	40	mV
7	С	Analog comparator hysteresis	V _H	3.0	_	20.0	mV
8	С	Analog input leakage current	I _{ALKG}	—	_	1	nA
9	С	Analog comparator initialization delay	t _{AINIT}	—		1.0	μS

Flash Specifications

Num	С	Characteristic	Symbol	Min	Typical	Мах	Unit
10	D	Programmable reference generator inputs	V _{In1} (V _{DD50})	2.7	5.0	5.5	V
11	D	Programmable reference generator inputs	V _{In2} (V _{DD25})	2.25	2.5	2.75	V
12	С	Programmable reference generator step size	V _{step}	-0.25	0	0.25	LSB
13	Ρ	Programmable reference generator voltage range	V _{prgout}	V _{In} /32	_	V _{in}	V

Table 12. PRACMP Specifications (continued)

3.12 Flash Specifications

This section provides details about program/erase times and program-erase endurance for the flash memory.

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Memory section.

Characteristic Symbol Min Typical Max Unit Supply voltage for program/erase V 2.7 5.5 V_{prog/erase} -40°C to 125°C Supply voltage for read operation 2.7 5.5 v V_{Read} _ Internal FCLK frequency¹ 150 kHz 200 f_{FCLK} Internal FCLK period (1/FCLK) 5 6.67 μS t_{Fcvc} Byte program time (random location)⁽²⁾ 9 tprog t_{Fcvc} Byte program time (burst mode)⁽²⁾ 4 t_{Burst} t_{Fcyc} Page erase time² 4000 tPage t_{Fcyc} Mass erase time⁽²⁾ 20,000 t_{Mass} t_{Fcyc} Program/erase endurance³ T_L to $T_H = -40 \text{ °C}$ to 125 °C 10,000 cycles T = 25°C 100,000 Data retention⁴ 15 100 t_{D ret} _ vears

Table 13. Flash Characteristics

¹ The frequency of this clock is controlled by a software setting.

² These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase.

³ Typical endurance for flash was evaluated for this product family on the 9S12Dx64. For additional information on how Delta defines typical endurance, please refer to engineering bulletin *Typical Endurance for Nonvolatile Memory* (document EB619/D).

⁴ Typical data retention values are based on intrinsic capability of the technology measured at a high temperature and de-rated to 25 °C using the Arrhenius equation. For additional information on how Delta defines typical data retention, please refer to engineering bulletin *Typical Data Retention for Nonvolatile Memory* (document EB618/D).

4 Ordering Information

This section contains ordering information for the device numbering system.

Example of the device numbering system:

5 Package Information

Table 14. Fackage Descriptions	Table 14.	Package	Descriptions
--------------------------------	-----------	---------	--------------

Pin Count	Package Type	Abbreviation	Designator	Case No.	Document No.
20	Thin Shrink Small Outline Package	TSSOP	TJ	948E	98ASH70169A
16	Thin Shrink Small Outline Package	TSSOP	TG	948F	98ASH70247A

5.1 Mechanical Drawings

The following pages are mechanical drawings for the packages described in Table 14. For the latest available drawings, please visit our web site (http://www.freescale.com) and enter the package's document number into the keyword search box.

© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.	L OUTLINE	PRINT VERSION NE	IT TO SCALE	
TITLE:		DOCUMENT NE]: 98ASH70169A	RE∨: C
20 LD TSSOP, PITCH	20 LD TSSOP, PITCH 0.65MM		2: 948E-02	25 MAY 2005
	STANDARD: JE	DEC		

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NE	IT TO SCALE
TITLE: 16 LD TSSOP, PITCH 0.65MM		DOCUMENT NO: 98ASH70247A		RE∨: B
		CASE NUMBER: 948F-01		19 MAY 2005
	STANDARD: JEDEC			

© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE	
TITLE: 16 I.D. TSSOP, PITCH 0.65MM		DOCUMENT NE	: 98ASH70247A	RE∨: B
		CASE NUMBER: 948F-01		19 MAY 2005
		STANDARD: JE	DEC	