

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	C166SV2
Core Size	16-Bit
Speed	80MHz
Connectivity	EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	75
Program Memory Size	320KB (320K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	34K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-100-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-xe164kn-40f80l-aa

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Device Information

Key to Pin Definitions

Ctrl.: The output signal for a port pin is selected by bit field PC in the associated register Px_IOCRy. Output O0 is selected by setting the respective bit field PC to 1x00_B, output O1 is selected by 1x01_B, etc.

Output signal OH is controlled by hardware.

- **Type**: Indicates the pad type and its power supply domain (A, B, M, 1).
 - St: Standard pad
 - Sp: Special pad e.g. XTALx
 - DP: Double pad can be used as standard or high speed pad
 - In: Input only pad
 - PS: Power supply pad

Pin	Symbol	Ctrl.	Туре	Function				
3	TESTM	I	In/B	Testmode Enable Enables factory test modes, must be held HIGH for normal operation (connect to V_{DDPB}). An internal pull-up device will hold this pin high when nothing is driving it.				
4	P7.2	O0 / I	St/B	Bit 2 of Port 7, General Purpose Input/Output				
	EMUX0	01	St/B	External Analog MUX Control Output 0 (ADC1)				
	TDI_C	IH	St/B	JTAG Test Data Input If JTAG pos. C is selected during start-up, an internal pull-up device will hold this pin high wher nothing is driving it.				
5	TRST	I	In/B	Test-System Reset Input For normal system operation, pin TRST should be held low. A high level at this pin at the rising edge of PORST activates the XE164xN's debug system. In this case, pin TRST must be driven low once to reset the debug system. An internal pull-down device will hold this pin low when nothing is driving it.				

Table 5 Pin Definitions and Functions

General Device Information

Tabl	iable 5 Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function				
39	P2.0	O0 / I	St/B	Bit 0 of Port 2, General Purpose Input/Output				
	AD13	OH / IH	St/B	External Bus Interface Address/Data Line 13				
	RxDC0C	I	St/B	CAN Node 0 Receive Data Input				
	T5INB	I	St/B	GPT12E Timer T5 Count/Gate Input				
40	P2.1	O0 / I	St/B	Bit 1 of Port 2, General Purpose Input/Output				
	TxDC0	01	St/B	CAN Node 0 Transmit Data Output				
	AD14	OH / IH	St/B	External Bus Interface Address/Data Line 14				
	T5EUDB	I	St/B	GPT12E Timer T5 External Up/Down Control Input				
	ESR1_5	I	St/B	ESR1 Trigger Input 5				
41	P2.2	O0 / I	St/B	Bit 2 of Port 2, General Purpose Input/Output				
	TxDC1	01	St/B	CAN Node 1 Transmit Data Output				
	AD15	OH / IH	St/B	External Bus Interface Address/Data Line 15				
	ESR2_5	I	St/B	ESR2 Trigger Input 5				
42	P4.0	O0 / I	St/B	Bit 0 of Port 4, General Purpose Input/Output				
	CC2_CC24	O3 / I	St/B	CAPCOM2 CC24IO Capture Inp./ Compare Out.				
	CS0	OH	St/B	External Bus Interface Chip Select 0 Output				
43	P2.3	O0 / I	St/B	Bit 3 of Port 2, General Purpose Input/Output				
	U0C0_DOUT	01	St/B	USIC0 Channel 0 Shift Data Output				
	CC2_CC16	O3 / I	St/B	CAPCOM2 CC16IO Capture Inp./ Compare Out.				
	A16	ОН	St/B	External Bus Interface Address Line 16				
	ESR2_0	I	St/B	ESR2 Trigger Input 0				
	U0C0_DX0E	I	St/B	USIC0 Channel 0 Shift Data Input				
	U0C1_DX0D	I	St/B	USIC0 Channel 1 Shift Data Input				
	RxDC0A	I	St/B	CAN Node 0 Receive Data Input				

General Device Information

Table 5Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function		
48	P2.6	O0 / I	St/B	Bit 6 of Port 2, General Purpose Input/Output		
	U0C0_SELO 0	01	St/B	USIC0 Channel 0 Select/Control 0 Output		
	U0C1_SELO 1	02	St/B	USIC0 Channel 1 Select/Control 1 Output		
	CC2_CC19	O3 / I	St/B	CAPCOM2 CC19IO Capture Inp./ Compare Out.		
	A19	OH	St/B	External Bus Interface Address Line 19		
	U0C0_DX2D	I	St/B	USIC0 Channel 0 Shift Control Input		
	RxDC0D	I	St/B	CAN Node 0 Receive Data Input		
	ESR2_6	I	St/B	ESR2 Trigger Input 6		
49	P4.3	O0 / I	St/B	Bit 3 of Port 4, General Purpose Input/Output		
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output		
	CC2_CC27	O3 / I	St/B	CAPCOM2 CC27IO Capture Inp./ Compare Out.		
	CS3	OH	St/B	External Bus Interface Chip Select 3 Output		
	T2EUDA	I	St/B	GPT12E Timer T2 External Up/Down Control Input		
53	P0.0	O0 / I	St/B	Bit 0 of Port 0, General Purpose Input/Output		
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output		
	CCU61_CC6 0	O3	St/B	CCU61 Channel 0 IOutput		
	A0	OH	St/B	External Bus Interface Address Line 0		
	U1C0_DX0A	I	St/B	USIC1 Channel 0 Shift Data Input		
	CCU61_CC6 0INA	I	St/B	CCU61 Channel 0 Input		
	ESR1_11	I	St/B	ESR1 Trigger Input 11		

General Device Information

Table	Fable 5Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function				
62	P10.2	O0 / I	St/B	Bit 2 of Port 10, General Purpose Input/Output				
	U0C0_SCLK OUT	01	St/B	USIC0 Channel 0 Shift Clock Output				
	CCU60_CC6 2	O2	St/B	CCU60 Channel 2 Output				
	AD2	OH / IH	St/B	External Bus Interface Address/Data Line 2				
	CCU60_CC6 2INA	I	St/B	CCU60 Channel 2 Input				
	U0C0_DX1B	I	St/B	USIC0 Channel 0 Shift Clock Input				
63	P0.4	O0 / I	St/B	Bit 4 of Port 0, General Purpose Input/Output				
	U1C1_SELO 0	01	St/B	USIC1 Channel 1 Select/Control 0 Output				
	U1C0_SELO 1	O2	St/B	USIC1 Channel 0 Select/Control 1 Output				
	CCU61_COU T61	O3	St/B	CCU61 Channel 1 Output				
	A4	OH	St/B	External Bus Interface Address Line 4				
	U1C1_DX2A	I	St/B	USIC1 Channel 1 Shift Control Input				
	RxDC1B	I	St/B	CAN Node 1 Receive Data Input				
	ESR2_8	I	St/B	ESR2 Trigger Input 8				
65	P2.13	00 / 1	St/B	Bit 13 of Port 2, General Purpose Input/Output				
	U2C1_SELO 2	01	St/B	USIC2 Channel 1 Select/Control 2 Output				
66	P2.10	00 / I	St/B	Bit 10 of Port 2, General Purpose Input/Output				
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output				
	U0C0_SELO 3	O2	St/B	USIC0 Channel 0 Select/Control 3 Output				
	CC2_CC23	O3 / I	St/B	CAPCOM2 CC23IO Capture Inp./ Compare Out.				
	A23	OH	St/B	External Bus Interface Address Line 23				
	U0C1_DX0E	I	St/B	USIC0 Channel 1 Shift Data Input				
	CAPINA	I	St/B	GPT12E Register CAPREL Capture Input				

3.3 Central Processing Unit (CPU)

The core of the CPU consists of a 5-stage execution pipeline with a 2-stage instructionfetch pipeline, a 16-bit arithmetic and logic unit (ALU), a 32-bit/40-bit multiply and accumulate unit (MAC), a register-file providing three register banks, and dedicated SFRs. The ALU features a multiply-and-divide unit, a bit-mask generator, and a barrel shifter.

Figure 5 CPU Block Diagram

3.8 Capture/Compare Unit (CC2)

The CAPCOM unit supports generation and control of timing sequences on up to 16 channels with a maximum resolution of one system clock cycle (eight cycles in staggered mode). The CAPCOM unit is typically used to handle high-speed I/O tasks such as pulse and waveform generation, pulse width modulation (PWM), digital to analog (D/A) conversion, software timing, or time recording with respect to external events.

Two 16-bit timers with reload registers provide two independent time bases for the capture/compare register array.

The input clock for the timers is programmable to several prescaled values of the internal system clock, or may be derived from an overflow/underflow of timer T6 in module GPT2. This provides a wide range of variation for the timer period and resolution and allows precise adjustments to the application specific requirements. In addition, external count inputs allow event scheduling for the capture/compare registers relative to external events.

The capture/compare register array contains 16 dual purpose capture/compare registers, each of which may be individually allocated to either CAPCOM timer and programmed for capture or compare function.

All registers have each one port pin associated with it which serves as an input pin for triggering the capture function, or as an output pin to indicate the occurrence of a compare event.

When a capture/compare register has been selected for capture mode, the current contents of the allocated timer will be latched ('captured') into the capture/compare register in response to an external event at the port pin which is associated with this register. In addition, a specific interrupt request for this capture/compare register is generated. Either a positive, a negative, or both a positive and a negative external signal transition at the pin can be selected as the triggering event.

The contents of all registers which have been selected for one of the five compare modes are continuously compared with the contents of the allocated timers.

When a match occurs between the timer value and the value in a capture/compare register, specific actions will be taken based on the selected compare mode.

Compare Modes	Function
Mode 0	Interrupt-only compare mode; Several compare interrupts per timer period are possible
Mode 1	Pin toggles on each compare match; Several compare events per timer period are possible

Table 8 Compare Modes

Compare Modes	Function
Mode 2	Interrupt-only compare mode; Only one compare interrupt per timer period is generated
Mode 3	Pin set '1' on match; pin reset '0' on compare timer overflow; Only one compare event per timer period is generated
Double Register Mode	Two registers operate on one pin; Pin toggles on each compare match; Several compare events per timer period are possible
Single Event Mode	Generates single edges or pulses; Can be used with any compare mode

Table 8Compare Modes (cont'd)

When a capture/compare register has been selected for capture mode, the current contents of the allocated timer will be latched ('captured') into the capture/compare register in response to an external event at the port pin associated with this register. In addition, a specific interrupt request for this capture/compare register is generated. Either a positive, a negative, or both a positive and a negative external signal transition at the pin can be selected as the triggering event.

The contents of all registers selected for one of the five compare modes are continuously compared with the contents of the allocated timers.

When a match occurs between the timer value and the value in a capture/compare register, specific actions will be taken based on the compare mode selected.

3.19 Instruction Set Summary

Table 10 lists the instructions of the XE164xN.

The addressing modes that can be used with a specific instruction, the function of the instructions, parameters for conditional execution of instructions, and the opcodes for each instruction can be found in the **"Instruction Set Manual"**.

This document also provides a detailed description of each instruction.

Mnemonic	Description	Bytes
ADD(B)	Add word (byte) operands	2/4
ADDC(B)	Add word (byte) operands with Carry	2/4
SUB(B)	Subtract word (byte) operands	2/4
SUBC(B)	Subtract word (byte) operands with Carry	2/4
MUL(U)	(Un)Signed multiply direct GPR by direct GPR (16- \times 16-bit)	2
DIV(U)	(Un)Signed divide register MDL by direct GPR (16-/16-bit)	2
DIVL(U)	(Un)Signed long divide reg. MD by direct GPR (32-/16-bit)	2
CPL(B)	Complement direct word (byte) GPR	2
NEG(B)	Negate direct word (byte) GPR	2
AND(B)	Bitwise AND, (word/byte operands)	2/4
OR(B)	Bitwise OR, (word/byte operands)	2/4
XOR(B)	Bitwise exclusive OR, (word/byte operands)	2/4
BCLR/BSET	Clear/Set direct bit	2
BMOV(N)	Move (negated) direct bit to direct bit	4
BAND/BOR/BXOR	AND/OR/XOR direct bit with direct bit	4
BCMP	Compare direct bit to direct bit	4
BFLDH/BFLDL	Bitwise modify masked high/low byte of bit-addressable direct word memory with immediate data	4
CMP(B)	Compare word (byte) operands	2/4
CMPD1/2	Compare word data to GPR and decrement GPR by 1/2	2/4
CMPI1/2	Compare word data to GPR and increment GPR by 1/2	2/4
PRIOR	Determine number of shift cycles to normalize direct word GPR and store result in direct word GPR	2
SHL/SHR	Shift left/right direct word GPR	2

Table 10 Instruction Set Summary

Table 12Operating Conditions (cont'd)

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Overload current coupling factor for digital I/O pins	K _{OVD} CC	-	1.0 x 10 ⁻²	3.0 x 10 ⁻²	-	<i>I</i> _{OV} < 0 mA; not subject to production test
		_	1.0 x 10 ⁻⁴	5.0 x 10 ⁻³	-	<i>I</i> _{OV} > 0 mA; not subject to production test
Absolute sum of overload currents	$\Sigma I_{OV} $ SR	-	-	50	mA	not subject to production test
Digital core supply voltage for domain M ⁸⁾	V _{DDIM} CC	-	1.5	-		
Digital core supply voltage for domain 1 ⁸⁾	V _{DDI1} CC	-	1.5	-		
Digital supply voltage for IO pads and voltage regulators	$V_{\rm DDP}{ m SR}$	3.0	-	5.5	V	
Digital ground voltage	$V_{\rm SS}{\rm SR}$	-	0	-	V	

1) To ensure the stability of the voltage regulators the EVRs must be buffered with ceramic capacitors. Separate buffer capacitors with the recomended values shall be connected as close as possible to each V_{DDIM} and V_{DDI1} pin to keep the resistance of the board tracks below 2 Ohm. Connect all V_{DDI1} pins together. The minimum capacitance value is required for proper operation under all conditions (e.g. temperature). Higher values slightly increase the startup time.

- 2) Use one Capacitor for each pin.
- This is the reference load. For bigger capacitive loads, use the derating factors listed in the pad properties section.
- 4) The timing is valid for pin drivers operating in default current mode (selected after reset). Reducing the output current may lead to increased delays or reduced driving capability (C_L).
- 5) The operating frequency range may be reduced for specific device types. This is indicated in the device designation (...FxxL). 80 MHz devices are marked ...F80L.
- 6) Overload conditions occur if the standard operating conditions are exceeded, i.e. the voltage on any pin exceeds the specified range: V_{OV} > V_{IHmax} (I_{OV} > 0) or V_{OV} < V_{ILmin} ((I_{OV} < 0). The absolute sum of input overload currents on all pins may not exceed 50 mA. The supply voltages must remain within the specified limits. Proper operation under overload conditions depends on the application. Overload conditions must not occur on pin XTAL1 (powered by V_{DDIM}).

4.3.1 DC Parameters for Upper Voltage Area

Keeping signal levels within the limits specified in this table ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current $I_{\rm OV}$.

Note: Operating Conditions apply.

Table 15 is valid under the following conditions: $V_{\text{DDP}} \le 5.5 \text{ V}$; V_{DDP} typ. 5 V; $V_{\text{DDP}} \ge 4.5 \text{ V}$

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Pin capacitance (digital inputs/outputs). To be doubled for double bond pins. ¹⁾	C _{IO} CC	_	_	10	pF	not subject to production test
Input Hysteresis ²⁾	HYS CC	0.11 x V _{DDP}	-	-	V	R _S = 0 Ohm
Absolute input leakage current on pins of analog ports ³⁾	I _{OZ1} CC	-	10	200	nA	$V_{\rm IN}$ > $V_{\rm SS}$; $V_{\rm IN}$ < $V_{\rm DDP}$
Absolute input leakage current for all other pins. To be double	I _{OZ2} CC	-	0.2	5	μA	$T_{J} \leq 110 \text{ °C};$ $V_{IN} > V_{SS};$ $V_{IN} < V_{DDP}$
bond pins. ³⁾¹⁾⁴⁾		_	0.2	15	μA	$\begin{array}{l} T_{\rm J} \!$
Pull Level Force Current ⁵⁾	I _{PLF} SR	250	_	-	μA	$ \begin{array}{l} V_{\rm IN} \geq V_{\rm IHmin}(pull \\ down_enabled); \\ V_{\rm IN} \leq V_{\rm ILmax}(pull \\ up_enabled) \end{array} $
Pull Level Keep Current ⁶⁾	I _{PLK} SR	_	_	30	μA	$ \begin{array}{l} V_{\rm IN} \geq V_{\rm IHmin}(pull \\ up = enabled); \\ V_{\rm IN} \leq V_{\rm ILmax}(pull \\ down_enabled) \end{array} $
Input high voltage (all except XTAL1)	V _{IH} SR	0.7 х V _{DDP}	-	V _{DDP} + 0.3	V	
Input low voltage (all except XTAL1)	$V_{\rm IL}$ SR	-0.3	_	0.3 x V _{DDP}	V	

 Table 15
 DC Characteristics for Upper Voltage Range

Note: A fraction of the leakage current flows through domain DMP_A (pin V_{DDPA}). This current can be calculated as 7,000 × e^{- α}, with α = 5000 / (273 + 1.3 × T_{J}). For T_{J} = 150°C, this results in a current of 160 μ A.

Leakage Power Consumption Calculation

The leakage power consumption can be calculated according to the following formula: I_{LK1} = 530,000 × e^{- α} with α = 5000 / (273 + B × $T_{\rm J}$)

Parameter B must be replaced by

- 1.0 for typical values
- 1.3 for maximum values

Figure 15 Leakage Supply Current as a Function of Temperature

Parameter	Symbol		Values	6	Unit	Note / Test Condition											
		Min.	Тур.	Max.													
Rise and Fall times (10% - 90%)	t _{RF} CC	-	-	37 + 0.65 x C _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Medium											
		-	-	24 + 0.3 x C _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Strong; Driver_Edge= Medium											
		-	-	6.2 + 0.24 x C _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Strong; Driver_Edge= Sharp											
													-	-	34 + 0.3 x C _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Strong; Driver_Edge= Slow
		_	_	500 + 2.5 x C _L	ns	C_{L} ≥ 20 pF; C_{L} ≤ 100 pF; Driver_Strength = Weak											

Table 28 Standard Pad Parameters for Lower Voltage Range (cont'd)

1) An output current above $|I_{OXnom}|$ may be drawn from up to three pins at the same time. For any group of 16 neighboring output pins, the total output current in each direction (ΣI_{OL} and $\Sigma - I_{OH}$) must remain below 50 mA.

duration of an asynchronous READY signal for safe synchronization is one CLKOUT period plus the input setup time.

An active READY signal can be deactivated in response to the trailing (rising) edge of the corresponding command (RD or WR).

If the next bus cycle is controlled by READY, an active READY signal must be disabled before the first valid sample point in the next bus cycle. This sample point depends on the programmed phases of the next cycle.

Figure 25 READY Timing

4.7.6 Synchronous Serial Interface Timing

The following parameters are applicable for a USIC channel operated in SSC mode.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Table 33 is valid under the following conditions: C_L = 20 pF; *SSC*= master; voltage_range= upper

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Slave select output SELO active to first SCLKOUT transmit edge	t ₁ CC	t _{SYS} - 8 ¹⁾	-	-	ns	
Slave select output SELO inactive after last SCLKOUT receive edge	t ₂ CC	t _{SYS} - 6 ¹⁾	-	-	ns	
Data output DOUT valid time	t ₃ CC	-6	-	9	ns	
Receive data input setup time to SCLKOUT receive edge	t ₄ SR	31	-	-	ns	
Data input DX0 hold time from SCLKOUT receive edge	t ₅ SR	-4	-	-	ns	
1) 110						

Table 33 USIC SSC Master Mode Timing for Upper Voltage Range

1) $t_{SYS} = 1 / f_{SYS}$

Table 34 is valid under the following conditions: C_L = 20 pF; *SSC*= master ; voltage_range= lower

Table 34 USIC SSC Master Mode Timing for Lower Voltage Range

Symbol	Values			Unit	Note /
	Min.	Тур.	Max.	1	Test Condition
t ₁ CC	t _{SYS} - 10 ¹⁾	-	-	ns	
t ₂ CC	t _{SYS} - 9 ¹⁾	-	-	ns	
t ₃ CC	-7	-	11	ns	
t ₄ SR	40	-	-	ns	
t ₅ SR	-5	-	-	ns	
	Symbol t_1 CC t_2 CC t_3 CC t_4 SR t_5 SR	Symbol Min. t_1 CC $t_{SYS} - 10^{(1)}$ t_2 CC $t_{SYS} - 9^{(1)}$ t_3 CC -7 t_4 SR 40 t_5 SR -5	Symbol Values Min. Typ. t_1 CC $t_{SYS} - 10^{11}$ - t_2 CC $t_{SYS} - 9^{11}$ - t_3 CC -7 - t_4 SR 40 - t_5 SR -5 -	Symbol Values Min. Typ. Max. t_1 CC t_{SYS}^{-1} - - t_2 CC t_{SYS}^{-1} - - t_3 CC -7 - 11 t_4 SR 40 - - t_5 SR -5 - -	Symbol Values Unit Min. Typ. Max. Unit t_1 CC t_{SYS}^{-1} - - ns t_2 CC t_{SYS}^{-1} - - ns t_3 CC -7 - 11 ns t_4 SR 40 - - ns t_5 SR -5 - - ns

1) $t_{SYS} = 1 / f_{SYS}$

Table 35 is valid under the following conditions: $C_L = 20 \text{ pF}$; *SSC*= slave; voltage_range= upper

Table 35 USIC SSC Slave Mode Timing for Upper Voltage Range

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Select input DX2 setup to first clock input DX1 transmit edge ¹⁾	<i>t</i> ₁₀ SR	7	-	-	ns	
Select input DX2 hold after last clock input DX1 receive edge ¹⁾	<i>t</i> ₁₁ SR	7	-	-	ns	
Receive data input setup time to shift clock receive edge ¹⁾	<i>t</i> ₁₂ SR	7	-	-	ns	

4.7.7 Debug Interface Timing

The debugger can communicate with the XE164xN either via the 2-pin DAP interface or via the standard JTAG interface.

Debug via DAP

The following parameters are applicable for communication through the DAP debug interface.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Table 37 is valid under the following conditions: $C_1 = 20 \text{ pF}$; voltage_range= upper

Parameter	Symbol		Values	;	Unit	Note / Test Condition
		Min.	Тур.	Max.		
DAP0 clock period ¹⁾	<i>t</i> ₁₁ SR	25	-	-	ns	
DAP0 high time	<i>t</i> ₁₂ SR	8	-	_	ns	
DAP0 low time ¹⁾	t ₁₃ SR	8	-	-	ns	
DAP0 clock rise time	t ₁₄ SR	-	-	4	ns	
DAP0 clock fall time	t ₁₅ SR	-	-	4	ns	
DAP1 setup to DAP0 rising edge	<i>t</i> ₁₆ SR	6	-	-	ns	
DAP1 hold after DAP0 rising edge	<i>t</i> ₁₇ SR	6	-	-	ns	
DAP1 valid per DAP0 clock period ²⁾	<i>t</i> ₁₉ CC	17	20	-	ns	

 Table 37
 DAP Interface Timing for Upper Voltage Range

1) See the DAP chapter for clock rate restrictions in the Active::IDLE protocol state.

2) The Host has to find a suitable sampling point by analyzing the sync telegram response.

Table 38 is valid under the following conditions: C_{L} = 20 pF; voltage_range = lower

Table 39 JTAG Interface Timing for Upper Voltage Range (cont'd)

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
TCK low time	t ₃ SR	16	_	_	ns	
TCK clock rise time	t ₄ SR	_	_	8	ns	
TCK clock fall time	t ₅ SR	_	_	8	ns	
TDI/TMS setup to TCK rising edge	t ₆ SR	6	-	-	ns	
TDI/TMS hold after TCK rising edge	t ₇ SR	6	-	-	ns	
TDO valid from TCK falling edge (propagation delay) ²⁾	t ₈ CC	-	25	29	ns	
TDO high impedance to valid output from TCK falling edge ³⁾²⁾	t ₉ CC	-	25	29	ns	
TDO valid output to high impedance from TCK falling edge ²⁾	<i>t</i> ₁₀ CC	-	25	29	ns	
TDO hold after TCK falling edge ²⁾	<i>t</i> ₁₈ CC	5	-	-	ns	

1) Under typical conditions, the JTAG interface can operate at transfer rates up to 20 MHz.

2) The falling edge on TCK is used to generate the TDO timing.

3) The setup time for TDO is given implicitly by the TCK cycle time.

Table 40 is valid under the following conditions: $C_1 = 20 \text{ pF}$; voltage_range= lower

Parameter	Symbol		Values	5	Unit	Note / Test Condition
		Min.	Тур.	Max.		
TCK clock period	t ₁ SR	50	-	-	ns	
TCK high time	t ₂ SR	16	-	-	ns	
TCK low time	t ₃ SR	16	-	-	ns	
TCK clock rise time	t ₄ SR	-	-	8	ns	
TCK clock fall time	t ₅ SR	_	-	8	ns	
TDI/TMS setup to TCK rising edge	t ₆ SR	6	-	-	ns	

 Table 40
 JTAG Interface Timing for Lower Voltage Range

Electrical Parameters

Figure 31 JTAG Timing

Package and Reliability

5 Package and Reliability

The XE166 Family devices use the package type PG-LQFP (Plastic Green - Low Profile Quad Flat Package). The following specifications must be regarded to ensure proper integration of the XE164xN in its target environment.

5.1 Packaging

These parameters specify the packaging rather than the silicon.

Parameter	Symbol	Lin	nit Values	Unit	Notes
		Min.	Max.		
Exposed Pad Dimension	$E x \times E y$	-	5.2 × 5.2	mm	-
Power Dissipation	P_{DISS}	-	0.8	W	-
Thermal resistance Junction-Ambient	$R_{\Theta JA}$	-	54	K/W	No thermal via ¹⁾
			49	K/W	4-layer, no pad ²⁾
			27	K/W	4-layer, pad ³⁾

Table 41 Package Parameters (PG-LQFP-100-8)

1) Device mounted on a 4-layer board without thermal vias; exposed pad not soldered.

 Device mounted on a 4-layer JEDEC board (according to JESD 51-7) with thermal vias; exposed pad not soldered.

 Device mounted on a 4-layer JEDEC board (according to JESD 51-7) with thermal vias; exposed pad soldered to the board.

Note: To improve the EMC behavior, it is recommended to connect the exposed pad to the board ground, independent of the thermal requirements. Board layout examples are given in an application note.

Package Compatibility Considerations

The XE164xN is a member of the XE166 Family of microcontrollers. It is also compatible to a certain extent with members of similar families or subfamilies.

Each package is optimized for the device it houses. Therefore, there may be slight differences between packages of the same pin-count but for different device types. In particular, the size of the Exposed Pad (if present) may vary.

If different device types are considered or planned for an application, it must be ensured that the board layout fits all packages under consideration.

Package and Reliability

5.2 Thermal Considerations

When operating the XE164xN in a system, the total heat generated in the chip must be dissipated to the ambient environment to prevent overheating and the resulting thermal damage.

The maximum heat that can be dissipated depends on the package and its integration into the target board. The "Thermal resistance $R_{\Theta JA}$ " quantifies these parameters. The power dissipation must be limited so that the average junction temperature does not exceed 150 °C.

The difference between junction temperature and ambient temperature is determined by $\Delta T = (P_{INT} + P_{IOSTAT} + P_{IODYN}) \times R_{\Theta,IA}$

The internal power consumption is defined as

 $P_{\text{INT}} = V_{\text{DDP}} \times I_{\text{DDP}}$ (switching current and leakage current).

The static external power consumption caused by the output drivers is defined as $P_{\text{IOSTAT}} = \Sigma((V_{\text{DDP}}-V_{\text{OH}}) \times I_{\text{OH}}) + \Sigma(V_{\text{OL}} \times I_{\text{OL}})$

The dynamic external power consumption caused by the output drivers (P_{IODYN}) depends on the capacitive load connected to the respective pins and their switching frequencies.

If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation:

- Reduce V_{DDP} , if possible in the system
- · Reduce the system frequency
- · Reduce the number of output pins
- Reduce the load on active output drivers