

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	C166SV2
Core Size	16-Bit
Speed	80MHz
Connectivity	EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	75
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	18K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-100-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/sak-xe164hn-16f80l-aa

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

VE464vN Data Chast

Revision H	listory: V1.4 2013-02
Previous V	ersions:
V1.3, 2011	-07
V1.2, 2010	-04
V1.1, 2009	-07
V1.0, 2009	-03 Preliminary
Page	Subjects (major changes since last revision)
36	Added AB step marking.
87	Errata SWD_X.P002 implemented: $V_{\rm SWD}$ tolerance boundaries for 5.5 V are changed.
89	Clarified "Coding of bit fields LEVxV" descriptions. Matched with Operating Conditions: marked some coding values "out of valid operation range".
90	Errata FLASH_X.P001 implemented: Test Condition for Flash parameter $N_{\rm ER}$ corrected

Trademarks

C166[™], TriCore[™] and DAVE[™] are trademarks of Infineon Technologies AG.

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

General Device Information

Table	Table 5Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
31	P5.9	I	In/A	Bit 9 of Port 5, General Purpose Input			
	ADC0_CH9	Ι	In/A	Analog Input Channel 9 for ADC0			
	ADC1_CH9	I	In/A	Analog Input Channel 9 for ADC1			
	CC2_T7IN	I	In/A	CAPCOM2 Timer T7 Count Input			
32	P5.10	I	In/A	Bit 10 of Port 5, General Purpose Input			
	ADC0_CH10	I	In/A	Analog Input Channel 10 for ADC0			
	ADC1_CH10	I	In/A	Analog Input Channel 10 for ADC1			
	BRKIN_A	Ι	In/A	OCDS Break Signal Input			
	U2C1_DX0F	I	In/A	USIC2 Channel 1 Shift Data Input			
	CCU61_T13 HRA	1	In/A	External Run Control Input for T13 of CCU61			
33	P5.11	I	In/A	Bit 11 of Port 5, General Purpose Input			
	ADC0_CH11	I	In/A	Analog Input Channel 11 for ADC0			
	ADC1_CH11	I	In/A	Analog Input Channel 11 for ADC1			
34	P5.13	I	In/A	Bit 13 of Port 5, General Purpose Input			
	ADC0_CH13	Ι	In/A	Analog Input Channel 13 for ADC0			
35	P5.15	I	In/A	Bit 15 of Port 5, General Purpose Input			
	ADC0_CH15	I	In/A	Analog Input Channel 15 for ADC0			
36	P2.12	O0 / I	St/B	Bit 12 of Port 2, General Purpose Input/Output			
	U0C0_SELO 4	O1	St/B	USIC0 Channel 0 Select/Control 4 Output			
	U0C1_SELO 3	O2	St/B	USIC0 Channel 1 Select/Control 3 Output			
	READY	IH	St/B	External Bus Interface READY Input			
37	P2.11	O0 / I	St/B	Bit 11 of Port 2, General Purpose Input/Output			
	U0C0_SELO 2	O1	St/B	USIC0 Channel 0 Select/Control 2 Output			
	U0C1_SELO 2	02	St/B	USIC0 Channel 1 Select/Control 2 Output			
	BHE/WRH	ОН	St/B	External Bus Interf. High-Byte Control Output Can operate either as Byte High Enable (BHE) or as Write strobe for High Byte (WRH).			

General Device Information

Table	Table 5 Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function				
48	P2.6	O0 / I	St/B	Bit 6 of Port 2, General Purpose Input/Output				
	U0C0_SELO 0	01	St/B	USIC0 Channel 0 Select/Control 0 Output				
	U0C1_SELO 1	02	St/B	USIC0 Channel 1 Select/Control 1 Output				
	CC2_CC19	O3 / I	St/B	CAPCOM2 CC19IO Capture Inp./ Compare Out.				
	A19	OH	St/B	External Bus Interface Address Line 19				
	U0C0_DX2D	I	St/B	USIC0 Channel 0 Shift Control Input				
	RxDC0D	I	St/B	CAN Node 0 Receive Data Input				
	ESR2_6	I	St/B	ESR2 Trigger Input 6				
49	P4.3	O0 / I	St/B	Bit 3 of Port 4, General Purpose Input/Output				
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output				
	CC2_CC27	O3 / I	St/B	CAPCOM2 CC27IO Capture Inp./ Compare Out.				
	CS3	OH	St/B	External Bus Interface Chip Select 3 Output				
	T2EUDA	I	St/B	GPT12E Timer T2 External Up/Down Control Input				
53	P0.0	O0 / I	St/B	Bit 0 of Port 0, General Purpose Input/Output				
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output				
	CCU61_CC6 0	O3	St/B	CCU61 Channel 0 IOutput				
	A0	OH	St/B	External Bus Interface Address Line 0				
	U1C0_DX0A	I	St/B	USIC1 Channel 0 Shift Data Input				
	CCU61_CC6 0INA	I	St/B	CCU61 Channel 0 Input				
	ESR1_11	I	St/B	ESR1 Trigger Input 11				

General Device Information

Table 5 Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function			
67	P10.3	O0 / I	St/B	Bit 3 of Port 10, General Purpose Input/Output			
	CCU60_COU T60	02	St/B	CCU60 Channel 0 Output			
	AD3	OH / IH	St/B	External Bus Interface Address/Data Line 3			
	U0C0_DX2A	I	St/B	USIC0 Channel 0 Shift Control Input			
	U0C1_DX2A	I	St/B	USIC0 Channel 1 Shift Control Input			
68	P0.5	O0 / I	St/B	Bit 5 of Port 0, General Purpose Input/Output			
	U1C1_SCLK OUT	01	St/B	USIC1 Channel 1 Shift Clock Output			
	U1C0_SELO 2	02	St/B	USIC1 Channel 0 Select/Control 2 Output			
	CCU61_COU T62	O3	St/B	CCU61 Channel 2 Output			
	A5	OH	St/B	External Bus Interface Address Line 5			
	U1C1_DX1A	I	St/B	USIC1 Channel 1 Shift Clock Input			
	U1C0_DX1C	I	St/B	USIC1 Channel 0 Shift Clock Input			
69	P10.4	O0 / I	St/B	Bit 4 of Port 10, General Purpose Input/Output			
	U0C0_SELO 3	01	St/B	USIC0 Channel 0 Select/Control 3 Output			
	CCU60_COU T61	02	St/B	CCU60 Channel 1 Output			
	AD4	OH / IH	St/B	External Bus Interface Address/Data Line 4			
	U0C0_DX2B	I	St/B	USIC0 Channel 0 Shift Control Input			
	U0C1_DX2B	I	St/B	USIC0 Channel 1 Shift Control Input			
	ESR1_9	I	St/B	ESR1 Trigger Input 9			

Functional Description

Figure 7 CCU6 Block Diagram

Timer T12 can work in capture and/or compare mode for its three channels. The modes can also be combined. Timer T13 can work in compare mode only. The multi-channel control unit generates output patterns that can be modulated by timer T12 and/or timer T13. The modulation sources can be selected and combined for signal modulation.

3.10 General Purpose Timer (GPT12E) Unit

The GPT12E unit is a very flexible multifunctional timer/counter structure which can be used for many different timing tasks such as event timing and counting, pulse width and duty cycle measurements, pulse generation, or pulse multiplication.

The GPT12E unit incorporates five 16-bit timers organized in two separate modules, GPT1 and GPT2. Each timer in each module may either operate independently in a number of different modes or be concatenated with another timer of the same module.

Each of the three timers T2, T3, T4 of **module GPT1** can be configured individually for one of four basic modes of operation: Timer, Gated Timer, Counter, and Incremental Interface Mode. In Timer Mode, the input clock for a timer is derived from the system clock and divided by a programmable prescaler. Counter Mode allows timer clocking in reference to external events.

Pulse width or duty cycle measurement is supported in Gated Timer Mode, where the operation of a timer is controlled by the 'gate' level on an external input pin. For these purposes each timer has one associated port pin (TxIN) which serves as a gate or clock input. The maximum resolution of the timers in module GPT1 is 4 system clock cycles.

The counting direction (up/down) for each timer can be programmed by software or altered dynamically by an external signal on a port pin (TxEUD), e.g. to facilitate position tracking.

In Incremental Interface Mode the GPT1 timers can be directly connected to the incremental position sensor signals A and B through their respective inputs TxIN and TxEUD. Direction and counting signals are internally derived from these two input signals, so that the contents of the respective timer Tx corresponds to the sensor position. The third position sensor signal TOP0 can be connected to an interrupt input.

Timer T3 has an output toggle latch (T3OTL) which changes its state on each timer overflow/underflow. The state of this latch may be output on pin T3OUT e.g. for time out monitoring of external hardware components. It may also be used internally to clock timers T2 and T4 for measuring long time periods with high resolution.

In addition to the basic operating modes, T2 and T4 may be configured as reload or capture register for timer T3. A timer used as capture or reload register is stopped. The contents of timer T3 is captured into T2 or T4 in response to a signal at the associated input pin (TxIN). Timer T3 is reloaded with the contents of T2 or T4, triggered either by an external signal or a selectable state transition of its toggle latch T3OTL. When both T2 and T4 are configured to alternately reload T3 on opposite state transitions of T3OTL with the low and high times of a PWM signal, this signal can be continuously generated without software intervention.

The RTC module can be used for different purposes:

- · System clock to determine the current time and date
- Cyclic time-based interrupt, to provide a system time tick independent of CPU frequency and other resources
- 48-bit timer for long-term measurements
- Alarm interrupt at a defined time

3.13 Universal Serial Interface Channel Modules (USIC)

The XE164xN features the USIC modules USIC0, USIC1, USIC2. Each module provides two serial communication channels.

The Universal Serial Interface Channel (USIC) module is based on a generic data shift and data storage structure which is identical for all supported serial communication protocols. Each channel supports complete full-duplex operation with a basic data buffer structure (one transmit buffer and two receive buffer stages). In addition, the data handling software can use FIFOs.

The protocol part (generation of shift clock/data/control signals) is independent of the general part and is handled by protocol-specific preprocessors (PPPs).

The USIC's input/output lines are connected to pins by a pin routing unit. The inputs and outputs of each USIC channel can be assigned to different interface pins, providing great flexibility to the application software. All assignments can be made during runtime.

Figure 11 General Structure of a USIC Module

The regular structure of the USIC module brings the following advantages:

- Higher flexibility through configuration with same look-and-feel for data management
- Reduced complexity for low-level drivers serving different protocols
- Wide range of protocols with improved performances (baud rate, buffer handling)

3.14 MultiCAN Module

The MultiCAN module contains independently operating CAN nodes with Full-CAN functionality which are able to exchange Data and Remote Frames using a gateway function. Transmission and reception of CAN frames is handled in accordance with CAN specification V2.0 B (active). Each CAN node can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers.

All CAN nodes share a common set of message objects. Each message object can be individually allocated to one of the CAN nodes. Besides serving as a storage container for incoming and outgoing frames, message objects can be combined to build gateways between the CAN nodes or to set up a FIFO buffer.

Note: The number of CAN nodes and message objects depends on the selected device type.

The message objects are organized in double-chained linked lists, where each CAN node has its own list of message objects. A CAN node stores frames only into message objects that are allocated to its own message object list and it transmits only messages belonging to this message object list. A powerful, command-driven list controller performs all message object list operations.

Figure 12 Block Diagram of MultiCAN Module

Table 12Operating Conditions (cont'd)

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Overload current coupling factor for digital I/O pins	K _{OVD} CC	-	1.0 x 10 ⁻²	3.0 x 10 ⁻²	-	<i>I</i> _{OV} < 0 mA; not subject to production test
		_	1.0 x 10 ⁻⁴	5.0 x 10 ⁻³	-	<i>I</i> _{OV} > 0 mA; not subject to production test
Absolute sum of overload currents	$\Sigma I_{OV} $ SR	-	-	50	mA	not subject to production test
Digital core supply voltage for domain M ⁸⁾	V _{DDIM} CC	-	1.5	-		
Digital core supply voltage for domain 1 ⁸⁾	V _{DDI1} CC	-	1.5	-		
Digital supply voltage for IO pads and voltage regulators	$V_{\rm DDP}{ m SR}$	3.0	-	5.5	V	
Digital ground voltage	$V_{\rm SS}{\rm SR}$	-	0	-	V	

1) To ensure the stability of the voltage regulators the EVRs must be buffered with ceramic capacitors. Separate buffer capacitors with the recomended values shall be connected as close as possible to each V_{DDIM} and V_{DDI1} pin to keep the resistance of the board tracks below 2 Ohm. Connect all V_{DDI1} pins together. The minimum capacitance value is required for proper operation under all conditions (e.g. temperature). Higher values slightly increase the startup time.

- 2) Use one Capacitor for each pin.
- This is the reference load. For bigger capacitive loads, use the derating factors listed in the pad properties section.
- 4) The timing is valid for pin drivers operating in default current mode (selected after reset). Reducing the output current may lead to increased delays or reduced driving capability (C_L).
- 5) The operating frequency range may be reduced for specific device types. This is indicated in the device designation (...FxxL). 80 MHz devices are marked ...F80L.
- 6) Overload conditions occur if the standard operating conditions are exceeded, i.e. the voltage on any pin exceeds the specified range: V_{OV} > V_{IHmax} (I_{OV} > 0) or V_{OV} < V_{ILmin} ((I_{OV} < 0). The absolute sum of input overload currents on all pins may not exceed 50 mA. The supply voltages must remain within the specified limits. Proper operation under overload conditions depends on the application. Overload conditions must not occur on pin XTAL1 (powered by V_{DDIM}).

4.3.1 DC Parameters for Upper Voltage Area

Keeping signal levels within the limits specified in this table ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current $I_{\rm OV}$.

Note: Operating Conditions apply.

Table 15 is valid under the following conditions: $V_{\text{DDP}} \le 5.5 \text{ V}$; V_{DDP} typ. 5 V; $V_{\text{DDP}} \ge 4.5 \text{ V}$

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Pin capacitance (digital inputs/outputs). To be doubled for double bond pins. ¹⁾	C _{IO} CC	_	_	10	pF	not subject to production test
Input Hysteresis ²⁾	HYS CC	0.11 x V _{DDP}	-	-	V	R _S = 0 Ohm
Absolute input leakage current on pins of analog ports ³⁾	I _{OZ1} CC	-	10	200	nA	$V_{\rm IN}$ > $V_{\rm SS}$; $V_{\rm IN}$ < $V_{\rm DDP}$
Absolute input leakage current for all other pins. To be doubled for double bond pins. ³⁾¹⁾⁴⁾	I _{OZ2} CC	-	0.2	5	μA	$T_{J} \leq 110 \text{ °C};$ $V_{IN} > V_{SS};$ $V_{IN} < V_{DDP}$
		_	0.2	15	μA	$\begin{array}{l} T_{\rm J} \!$
Pull Level Force Current ⁵⁾	I _{PLF} SR	250	_	-	μA	$ \begin{array}{l} V_{\rm IN} \geq V_{\rm IHmin}(pull \\ down_enabled); \\ V_{\rm IN} \leq V_{\rm ILmax}(pull \\ up_enabled) \end{array} $
Pull Level Keep Current ⁶⁾	I _{PLK} SR	_	_	30	μA	$ \begin{array}{l} V_{\rm IN} \geq V_{\rm IHmin}(pull \\ up = enabled); \\ V_{\rm IN} \leq V_{\rm ILmax}(pull \\ down_enabled) \end{array} $
Input high voltage (all except XTAL1)	V _{IH} SR	0.7 х V _{DDP}	-	V _{DDP} + 0.3	V	
Input low voltage (all except XTAL1)	$V_{\rm IL}$ SR	-0.3	_	0.3 x V _{DDP}	V	

 Table 15
 DC Characteristics for Upper Voltage Range

4.3.3 Power Consumption

The power consumed by the XE164xN depends on several factors such as supply voltage, operating frequency, active circuits, and operating temperature. The power consumption specified here consists of two components:

- The switching current $I_{\rm S}$ depends on the device activity
- The leakage current $I_{\rm LK}$ depends on the device temperature

To determine the actual power consumption, always both components, switching current $I_{\rm S}$ and leakage current $I_{\rm LK}$ must be added:

 $I_{\text{DDP}} = I_{\text{S}} + I_{\text{LK}}.$

Note: The power consumption values are not subject to production test. They are verified by design/characterization.

To determine the total power consumption for dimensioning the external power supply, also the pad driver currents must be considered.

The given power consumption parameters and their values refer to specific operating conditions:

Active mode:

Regular operation, i.e. peripherals are active, code execution out of Flash.

Stopover mode:

Crystal oscillator and PLL stopped, Flash switched off, clock in domain DMP_1 stopped.

Note: The maximum values cover the complete specified operating range of all manufactured devices.

The typical values refer to average devices under typical conditions, such as nominal supply voltage, room temperature, application-oriented activity.

After a power reset, the decoupling capacitors for $V_{\rm DDIM}$ and $V_{\rm DDI1}$ are charged with the maximum possible current.

For additional information, please refer to Section 5.2, Thermal Considerations.

Note: Operating Conditions apply.

Table 19ADC Parameters (cont'd)

Parameter	Symbol		Values	;	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Broken wire detection delay against VAGND ²⁾	t _{BWG} CC	-	-	50 ³⁾		
Broken wire detection delay against VAREF ²⁾	t _{BWR} CC	-	-	50 ⁴⁾		
Conversion time for 8-bit result ²⁾	t _{c8} CC	$(11+S)$ $TC) \times$ $t_{ADCI} +$ $2 \times$ t_{SVS}	_	-		
Conversion time for 10-bit result ²⁾	<i>t</i> _{c10} CC	$(13+S)$ $TC) \times$ $t_{ADCI} +$ $2 \times$ t_{SYS}	-	-		
Total Unadjusted Error	TUE CC	_	1	2	LSB	5)
Wakeup time from analog powerdown, fast mode	t _{WAF} CC	-	-	4	μS	
Wakeup time from analog powerdown, slow mode	t _{WAS} CC	-	-	15	μS	
Analog reference ground	V_{AGND} SR	V _{SS} - 0.05	-	1.5	V	
Analog input voltage range	$V_{\rm AIN}{ m SR}$	V_{AGND}	-	V_{AREF}	V	6)
Analog reference voltage	V _{AREF} SR	V _{AGND} + 1.0	-	V _{DDPA} + 0.05	V	

 These parameter values cover the complete operating range. Under relaxed operating conditions (temperature, supply voltage) typical values can be used for calculation. At room temperature and nominal supply voltage the following typical values can be used: C_{AINTtyp} = 12 pF, C_{AINStyp} = 5 pF, R_{AINtyp} = 1.0 kOhm, C_{AREFTtyp} = 15 pF, C_{AREFStyp} = 10 pF, R_{AREFStyp} = 1.0 kOhm.

2) This parameter includes the sample time (also the additional sample time specified by STC), the time to determine the digital result and the time to load the result register with the conversion result. Values for the basic clock t_{ADCI} depend on programming.

3) The broken wire detection delay against V_{AGND} is measured in numbers of consecutive precharge cycles at a conversion rate of not more than 500 μ s. Result below 10% (66_H)

Parameter	Symbol	Values			Unit	Note /			
		Min.	Тур.	Max.		Test Condition			
Rise and Fall times (10% - 90%)	t _{RF} CC	-	-	23 + 0.6 x C _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Medium			
		-	-	11.6 + 0.22 x <i>C</i> _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Strong; Driver_Edge= Medium			
				-	_	4.2 + 0.14 x C _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Strong; Driver_Edge= Sharp	
							-	-	20.6 + 0.22 x <i>C</i> _L
		_	-	212 + 1.9 x C _L	ns	C_{l} ≥ 20 pF; C_{L} ≤ 100 pF; Driver_Strength = Weak			

Table 27 Standard Pad Parameters for Upper Voltage Range (cont'd)

 1) An output current above $|I_{OXnom}|$ may be drawn from up to three pins at the same time. For any group of 16 neighboring output pins, the total output current in each direction (ΣI_{OL} and $\Sigma - I_{OH}$) must remain below 50 mA.

Parameter	Symbol		Values	6	Unit	Note /			
		Min.	Тур.	Max.		Test Condition			
Rise and Fall times (10% - 90%)	t _{RF} CC	-	-	37 + 0.65 x C _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Medium			
		-	-	24 + 0.3 x C _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Strong; Driver_Edge= Medium			
				-	-	6.2 + 0.24 x C _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Strong; Driver_Edge= Sharp	
							-	-	34 + 0.3 x C _L
		_	_	500 + 2.5 x C _L	ns	C_{L} ≥ 20 pF; C_{L} ≤ 100 pF; Driver_Strength = Weak			

Table 28 Standard Pad Parameters for Lower Voltage Range (cont'd)

1) An output current above $|I_{OXnom}|$ may be drawn from up to three pins at the same time. For any group of 16 neighboring output pins, the total output current in each direction (ΣI_{OL} and $\Sigma - I_{OH}$) must remain below 50 mA.

4.7.5 External Bus Timing

The following parameters specify the behavior of the XE164xN bus interface.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Table 29 Parameters

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
CLKOUT Cycle Time ¹⁾	t ₅ CC	-	$1/f_{\rm SYS}$	-	ns	
CLKOUT high time	t ₆ CC	3	-	-		
CLKOUT low time	t ₇ CC	3	_	_		
CLKOUT rise time	t ₈ CC	-	-	3	ns	
CLKOUT fall time	t ₉ CC	-	-	3		

1) The CLKOUT cycle time is influenced by PLL jitter. For longer periods the relative deviation decreases (see PLL deviation formula).

Figure 22 CLKOUT Signal Timing

Note: The term CLKOUT refers to the reference clock output signal which is generated by selecting f_{SYS} as the source signal for the clock output signal EXTCLK on pin P2.8 and by enabling the high-speed clock driver on this pin.

duration of an asynchronous READY signal for safe synchronization is one CLKOUT period plus the input setup time.

An active READY signal can be deactivated in response to the trailing (rising) edge of the corresponding command (RD or WR).

If the next bus cycle is controlled by READY, an active READY signal must be disabled before the first valid sample point in the next bus cycle. This sample point depends on the programmed phases of the next cycle.

Figure 25 READY Timing

Table 35 USIC SSC Slave Mode Timing for Upper Voltage Range (cont'd)

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Data input DX0 hold time from clock input DX1 receive edge ¹⁾	<i>t</i> ₁₃ SR	5	-	-	ns	
Data output DOUT valid time	<i>t</i> ₁₄ CC	7	-	33	ns	

 These input timings are valid for asynchronous input signal handling of slave select input, shift clock input, and receive data input (bits DXnCR.DSEN = 0).

Table 36 is valid under the following conditions: C_L = 20 pF; *SSC*= slave ; voltage range= lower

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	1	Test Condition
Select input DX2 setup to first clock input DX1 transmit edge ¹⁾	<i>t</i> ₁₀ SR	7	-	-	ns	
Select input DX2 hold after last clock input DX1 receive edge ¹⁾	<i>t</i> ₁₁ SR	7	-	_	ns	
Receive data input setup time to shift clock receive edge ¹⁾	<i>t</i> ₁₂ SR	7	-	-	ns	
Data input DX0 hold time from clock input DX1 receive edge ¹⁾	<i>t</i> ₁₃ SR	5	-	-	ns	
Data output DOUT valid time	<i>t</i> ₁₄ CC	8	-	41	ns	

Table 36 USIC SSC Slave Mode Timing for Lower Voltage Range

 These input timings are valid for asynchronous input signal handling of slave select input, shift clock input, and receive data input (bits DXnCR.DSEN = 0).

Electrical Parameters

Figure 26 USIC - SSC Master/Slave Mode Timing

Note: This timing diagram shows a standard configuration where the slave select signal is low-active and the serial clock signal is not shifted and not inverted.

Table 39 JTAG Interface Timing for Upper Voltage Range (cont'd)

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	1	Test Condition
TCK low time	t_3 SR	16	_	_	ns	
TCK clock rise time	t ₄ SR	_	_	8	ns	
TCK clock fall time	t ₅ SR	_	_	8	ns	
TDI/TMS setup to TCK rising edge	t ₆ SR	6	-	-	ns	
TDI/TMS hold after TCK rising edge	t ₇ SR	6	-	-	ns	
TDO valid from TCK falling edge (propagation delay) ²⁾	t ₈ CC	-	25	29	ns	
TDO high impedance to valid output from TCK falling edge ³⁾²⁾	t ₉ CC	-	25	29	ns	
TDO valid output to high impedance from TCK falling edge ²⁾	<i>t</i> ₁₀ CC	-	25	29	ns	
TDO hold after TCK falling edge ²⁾	<i>t</i> ₁₈ CC	5	-	-	ns	

1) Under typical conditions, the JTAG interface can operate at transfer rates up to 20 MHz.

2) The falling edge on TCK is used to generate the TDO timing.

3) The setup time for TDO is given implicitly by the TCK cycle time.

Table 40 is valid under the following conditions: $C_1 = 20 \text{ pF}$; voltage_range= lower

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
TCK clock period	t ₁ SR	50	-	-	ns	
TCK high time	t ₂ SR	16	-	-	ns	
TCK low time	t ₃ SR	16	-	-	ns	
TCK clock rise time	t ₄ SR	-	-	8	ns	
TCK clock fall time	t ₅ SR	_	-	8	ns	
TDI/TMS setup to TCK rising edge	t ₆ SR	6	-	-	ns	

 Table 40
 JTAG Interface Timing for Lower Voltage Range