

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	C166SV2
Core Size	16-Bit
Speed	80MHz
Connectivity	EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	75
Program Memory Size	192KB (192K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	26K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-100-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/sak-xe164kn-24f80l-aa

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Features

16-Bit Single-Chip Real Time Signal Controller XE164xN (XE166 Family)

1 Summary of Features

For a quick overview and easy reference, the features of the XE164xN are summarized here.

- · High-performance CPU with five-stage pipeline and MPU
 - 12.5 ns instruction cycle @ 80 MHz CPU clock (single-cycle execution)
 - One-cycle 32-bit addition and subtraction with 40-bit result
 - One-cycle multiplication (16 × 16 bit)
 - Background division (32 / 16 bit) in 21 cycles
 - One-cycle multiply-and-accumulate (MAC) instructions
 - Enhanced Boolean bit manipulation facilities
 - Zero-cycle jump execution
 - Additional instructions to support HLL and operating systems
 - Register-based design with multiple variable register banks
 - Fast context switching support with two additional local register banks
 - 16 Mbytes total linear address space for code and data
 - 1,024 Bytes on-chip special function register area (C166 Family compatible)
 Integrated Memory Protection Unit (MPU)
- Interrupt system with 16 priority levels providing 96 interrupt nodes
 - Selectable external inputs for interrupt generation and wake-up
 - Fastest sample-rate 12.5 ns
- Eight-channel interrupt-driven single-cycle data transfer with Peripheral Event Controller (PEC), 24-bit pointers cover total address space
- Clock generation from internal or external clock sources, using on-chip PLL or prescaler
- Hardware CRC-Checker with Programmable Polynomial to Supervise On-Chip Memory Areas
- On-chip memory modules
 - 8 Kbytes on-chip stand-by RAM (SBRAM)
 - 2 Kbytes on-chip dual-port RAM (DPRAM)
 - Up to 16 Kbytes on-chip data SRAM (DSRAM)
 - Up to 16 Kbytes on-chip program/data SRAM (PSRAM)
 - Up to 320 Kbytes on-chip program memory (Flash memory)
 - Memory content protection through Error Correction Code (ECC)

Summary of Features

The XE164xN types are offered with several SRAM memory sizes. **Figure 1** shows the allocation rules for PSRAM and DSRAM. Note that the rules differ:

- PSRAM allocation starts from the lower address
- DSRAM allocation starts from the higher address

For example 8 Kbytes of PSRAM will be allocated at E0'0000h-E0'1FFFh and 8 Kbytes of DSRAM will be at 00'C000h-00'DFFFh.

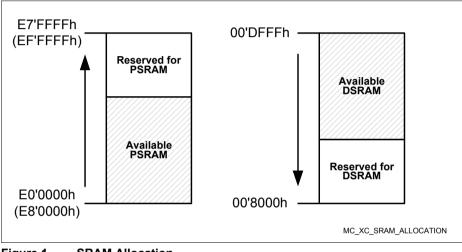


Figure 1 SRAM Allocation

General Device Information

Key to Pin Definitions

Ctrl.: The output signal for a port pin is selected by bit field PC in the associated register Px_IOCRy. Output O0 is selected by setting the respective bit field PC to 1x00_B, output O1 is selected by 1x01_B, etc.

Output signal OH is controlled by hardware.

- **Type**: Indicates the pad type and its power supply domain (A, B, M, 1).
 - St: Standard pad
 - Sp: Special pad e.g. XTALx
 - DP: Double pad can be used as standard or high speed pad
 - In: Input only pad
 - PS: Power supply pad

Pin	Symbol	Ctrl.	Туре	Function				
3	TESTM	I	In/B	Testmode Enable Enables factory test modes, must be held HIGH fo normal operation (connect to $V_{\rm DDPB}$). An internal pull-up device will hold this pin high when nothing is driving it.				
4	P7.2	O0 / I	St/B	Bit 2 of Port 7, General Purpose Input/Output				
	EMUX0	01	St/B	External Analog MUX Control Output 0 (ADC1)				
	TDI_C	IH	St/B	JTAG Test Data Input If JTAG pos. C is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it.				
5	TRST	1	In/B	Test-System Reset Input For normal system operation, pin TRST should be held low. A high level at this pin at the rising edge of PORST activates the XE164xN's debug system. In this case, pin TRST must be driven low once to reset the debug system. An internal pull-down device will hold this pin low when nothing is driving it.				

Table 5 Pin Definitions and Functions

General Device Information

Table	e 5 Pin De	finitior	ns and	Functions (cont'd)			
Pin	Symbol	Ctrl.	Туре	Function			
6	P7.0	O0 / I	St/B	Bit 0 of Port 7, General Purpose Input/Output			
	T3OUT	01	St/B	GPT12E Timer T3 Toggle Latch Output			
	T6OUT	02	St/B	GPT12E Timer T6 Toggle Latch Output			
	TDO_A	OH / IH	St/B	JTAG Test Data Output / DAP1 Input/Output If DAP pos. 0 or 2 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it.			
	ESR2_1	I	St/B	ESR2 Trigger Input 1			
7	P7.3	O0 / I	St/B	Bit 3 of Port 7, General Purpose Input/Output			
	EMUX1	01	St/B	External Analog MUX Control Output 1 (ADC1)			
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output			
	U0C0_DOUT	O3	St/B	USIC0 Channel 0 Shift Data Output			
	TMS_C	IH	St/B	JTAG Test Mode Selection Input If JTAG pos. C is selected during start-up, an internal pull-up device will hold this pin low when nothing is driving it.			
	U0C1_DX0F	I	St/B	USIC0 Channel 1 Shift Data Input			
8	P7.1	O0 / I	St/B	Bit 1 of Port 7, General Purpose Input/Output			
	EXTCLK	01	St/B	Programmable Clock Signal Output			
	BRKIN_C	I	St/B	OCDS Break Signal Input			
9	P7.4	00 / 1	St/B	Bit 4 of Port 7, General Purpose Input/Output			
	EMUX2	01	St/B	External Analog MUX Control Output 2 (ADC1)			
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output			
	U0C1_SCLK OUT	O3	St/B	USIC0 Channel 1 Shift Clock Output			
	тск_с	IH	St/B	DAP0/JTAG Clock Input If JTAG pos. C is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it. If DAP pos. 2 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it.			
	U0C0_DX0D	I	St/B	USIC0 Channel 0 Shift Data Input			
	U0C1_DX1E	I	St/B	USIC0 Channel 1 Shift Clock Input			

General Device Information

Pin	Symbol	Pin Symbol Ctrl. Type Function							
19	P15.6	1	In/A	Bit 6 of Port 15, General Purpose Input					
19	ADC1_CH6	1	In/A	Analog Input Channel 6 for ADC1					
00		1							
20	V _{AREF}	-	PS/A	Reference Voltage for A/D Converters ADC0/1					
21	V _{AGND}	-	PS/A	Reference Ground for A/D Converters ADC0/1					
22	P5.0	I	In/A	Bit 0 of Port 5, General Purpose Input					
	ADC0_CH0	I	In/A	Analog Input Channel 0 for ADC0					
23	P5.2	I	In/A	Bit 2 of Port 5, General Purpose Input					
	ADC0_CH2	I	In/A	Analog Input Channel 2 for ADC0					
	TDI_A	I	In/A	JTAG Test Data Input					
24	P5.3	I	In/A	Bit 3 of Port 5, General Purpose Input					
	ADC0_CH3	I	In/A	Analog Input Channel 3 for ADC0					
	T3INA	I	In/A	GPT12E Timer T3 Count/Gate Input					
28	P5.4	I	In/A	Bit 4 of Port 5, General Purpose Input					
	ADC0_CH4	I	In/A	Analog Input Channel 4 for ADC0					
	T3EUDA	I	In/A	GPT12E Timer T3 External Up/Down Control Input					
	TMS_A	I	In/A	JTAG Test Mode Selection Input					
29	P5.5	I	In/A	Bit 5 of Port 5, General Purpose Input					
	ADC0_CH5	I	In/A	Analog Input Channel 5 for ADC0					
	CCU60_T12 HRB	I	In/A	External Run Control Input for T12 of CCU60					
30	P5.8	I	In/A	Bit 8 of Port 5, General Purpose Input					
	ADC0_CH8	I	In/A	Analog Input Channel 8 for ADC0					
	ADC1_CH8	I	In/A	Analog Input Channel 8 for ADC1					
	CCU6x_T12H RC	I	In/A	External Run Control Input for T12 of CCU60/1					
	CCU6x_T13H RC	I	In/A	External Run Control Input for T13 of CCU60/1					
	U2C0 DX0F	I	In/A	USIC2 Channel 0 Shift Data Input					

General Device Information

Table	Table 5 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
54	P2.7	O0 / I	St/B	Bit 7 of Port 2, General Purpose Input/Output			
	U0C1_SELO 0	01	St/B	USIC0 Channel 1 Select/Control 0 Output			
	U0C0_SELO 1	O2	St/B	USIC0 Channel 0 Select/Control 1 Output			
	CC2_CC20	O3 / I	St/B	CAPCOM2 CC20IO Capture Inp./ Compare Out.			
	A20	OH	St/B	External Bus Interface Address Line 20			
	U0C1_DX2C	I	St/B	USIC0 Channel 1 Shift Control Input			
	RxDC1C	I	St/B	CAN Node 1 Receive Data Input			
	ESR2_7	I	St/B	ESR2 Trigger Input 7			
55	P0.1	O0 / I	St/B	Bit 1 of Port 0, General Purpose Input/Output			
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output			
	TxDC0	02	St/B	CAN Node 0 Transmit Data Output			
	CCU61_CC6 1	O3	St/B	CCU61 Channel 1 Output			
	A1	OH	St/B	External Bus Interface Address Line 1			
	U1C0_DX0B	I	St/B	USIC1 Channel 0 Shift Data Input			
	CCU61_CC6 1INA	I	St/B	CCU61 Channel 1 Input			
	U1C0_DX1A	I	St/B	USIC1 Channel 0 Shift Clock Input			
56	P2.8	O0 / I	DP/B	Bit 8 of Port 2, General Purpose Input/Output			
	U0C1_SCLK OUT	01	DP/B	USIC0 Channel 1 Shift Clock Output			
	EXTCLK	O2	DP/B	Programmable Clock Signal Output			
	CC2_CC21	O3 / I	DP/B	CAPCOM2 CC21IO Capture Inp./ Compare Out.			
	A21	OH	DP/B	External Bus Interface Address Line 21			
	U0C1_DX1D	I	DP/B	USIC0 Channel 1 Shift Clock Input			

XE164FN, XE164GN, XE164HN, XE164KN XE166 Family / Value Line

General Device Information

Table	Table 5 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
73	P10.7	O0 / I	St/B	Bit 7 of Port 10, General Purpose Input/Output			
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output			
	CCU60_COU T63	02	St/B	CCU60 Channel 3 Output			
	AD7	OH / IH	St/B	External Bus Interface Address/Data Line 7			
	U0C1_DX0B	I	St/B	USIC0 Channel 1 Shift Data Input			
	CCU60_CCP OS0A	I	St/B	CCU60 Position Input 0			
	T4INB	I	St/B	GPT12E Timer T4 Count/Gate Input			
74	P0.7	O0 / I	St/B	Bit 7 of Port 0, General Purpose Input/Output			
	U1C1_DOUT	01	St/B	USIC1 Channel 1 Shift Data Output			
	U1C0_SELO 3	O2	St/B	USIC1 Channel 0 Select/Control 3 Output			
	A7	ОН	St/B	External Bus Interface Address Line 7			
	U1C1_DX0B	I	St/B	USIC1 Channel 1 Shift Data Input			
	CCU61_CTR APB	I	St/B	CCU61 Emergency Trap Input			
78	P1.0	O0 / I	St/B	Bit 0 of Port 1, General Purpose Input/Output			
	U1C0_MCLK OUT	01	St/B	USIC1 Channel 0 Master Clock Output			
	U1C0_SELO 4	02	St/B	USIC1 Channel 0 Select/Control 4 Output			
	A8	ОН	St/B	External Bus Interface Address Line 8			
	ESR1_3	I	St/B	ESR1 Trigger Input 3			
	T6INB	I	St/B	GPT12E Timer T6 Count/Gate Input			

XE164FN, XE164GN, XE164HN, XE164KN XE166 Family / Value Line

General Device Information

Table	Table 5 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
98	ESR1	O0 / I	St/B	External Service Request 1 After power-up, an internal weak pull-up device holds this pin high when nothing is driving it.			
	RxDC0E	I	St/B	CAN Node 0 Receive Data Input			
	U1C0_DX0F	I	St/B	USIC1 Channel 0 Shift Data Input			
	U1C0_DX2C	I	St/B	USIC1 Channel 0 Shift Control Input			
	U1C1_DX0C	I	St/B	USIC1 Channel 1 Shift Data Input			
	U1C1_DX2B	I	St/B	USIC1 Channel 1 Shift Control Input			
	U2C1_DX2C	I	St/B	USIC2 Channel 1 Shift Control Input			
99	ESR0	O0 / I	St/B	External Service Request 0 After power-up, ESR0 operates as open-drain bidirectional reset with a weak pull-up.			
	U1C0_DX0E	I	St/B	USIC1 Channel 0 Shift Data Input			
	U1C0_DX2B	I	St/B	USIC1 Channel 0 Shift Control Input			
10	V _{DDIM}	-	PS/M	Digital Core Supply Voltage for Domain M Decouple with a ceramic capacitor, see Data Sheet for details.			
38, 64, 88	V _{DDI1}	-	PS/1	Digital Core Supply Voltage for Domain 1 Decouple with a ceramic capacitor, see Data Sheet for details. All V_{DDI1} pins must be connected to each other.			
14	V _{DDPA}	-	PS/A	Digital Pad Supply Voltage for Domain A Connect decoupling capacitors to adjacent $V_{\text{DDP}}/V_{\text{SS}}$ pin pairs as close as possible to the pins.			
				Note: The A/D_Converters and ports P5, P6 and P15 are fed from supply voltage V_{DDPA} .			

With this hardware most XE164xN instructions are executed in a single machine cycle of 12.5 ns @ 80-MHz CPU clock. For example, shift and rotate instructions are always processed during one machine cycle, no matter how many bits are shifted. Also, multiplication and most MAC instructions execute in one cycle. All multiple-cycle instructions have been optimized so that they can be executed very fast; for example, a 32-/16-bit division is started within 4 cycles while the remaining cycles are executed in the background. Another pipeline optimization, the branch target prediction, eliminates the execution time of branch instructions if the prediction was correct.

The CPU has a register context consisting of up to three register banks with 16 wordwide GPRs each at its disposal. One of these register banks is physically allocated within the on-chip DPRAM area. A Context Pointer (CP) register determines the base address of the active register bank accessed by the CPU at any time. The number of these register bank copies is only restricted by the available internal RAM space. For easy parameter passing, a register bank may overlap others.

A system stack of up to 32 Kwords is provided for storage of temporary data. The system stack can be allocated to any location within the address space (preferably in the on-chip RAM area); it is accessed by the CPU with the stack pointer (SP) register. Two separate SFRs, STKOV and STKUN, are implicitly compared with the stack pointer value during each stack access to detect stack overflow or underflow.

The high performance of the CPU hardware implementation can be best utilized by the programmer with the highly efficient XE164xN instruction set. This includes the following instruction classes:

- Standard Arithmetic Instructions
- DSP-Oriented Arithmetic Instructions
- Logical Instructions
- Boolean Bit Manipulation Instructions
- Compare and Loop Control Instructions
- Shift and Rotate Instructions
- Prioritize Instruction
- Data Movement Instructions
- System Stack Instructions
- Jump and Call Instructions
- Return Instructions
- System Control Instructions
- Miscellaneous Instructions

The basic instruction length is either 2 or 4 bytes. Possible operand types are bits, bytes and words. A variety of direct, indirect or immediate addressing modes are provided to specify the required operands.

3.4 Memory Protection Unit (MPU)

The XE164xN's Memory Protection Unit (MPU) protects user-specified memory areas from unauthorized read, write, or instruction fetch accesses. The MPU can protect the whole address space including the peripheral area. This completes established mechanisms such as the register security mechanism or stack overrun/underrun detection.

Four Protection Levels support flexible system programming where operating system, low level drivers, and applications run on separate levels. Each protection level permits different access restrictions for instructions and/or data.

Every access is checked (if the MPU is enabled) and an access violating the permission rules will be marked as invalid and leads to a protection trap.

A set of protection registers for each protection level specifies the address ranges and the access permissions. Applications requiring more than 4 protection levels can dynamically re-program the protection registers.

3.5 Memory Checker Module (MCHK)

The XE164xN's Memory Checker Module calculates a checksum (fractional polynomial division) on a block of data, often called Cyclic Redundancy Code (CRC). It is based on a 32-bit linear feedback shift register and may, therefore, also be used to generate pseudo-random numbers.

The Memory Checker Module is a 16-bit parallel input signature compression circuitry which enables error detection within a block of data stored in memory, registers, or communicated e.g. via serial communication lines. It reduces the probability of error masking due to repeated error patterns by calculating the signature of blocks of data.

The polynomial used for operation is configurable, so most of the commonly used polynomials may be used. Also, the block size for generating a CRC result is configurable via a local counter. An interrupt may be generated if testing the current data block reveals an error.

An autonomous CRC compare circuitry is included to enable redundant error detection, e.g. to enable higher safety integrity levels.

The Memory Checker Module provides enhanced fault detection (beyond parity or ECC) for data and instructions in volatile and non volatile memories. This is especially important for the safety and reliability of embedded systems.

Functional Description

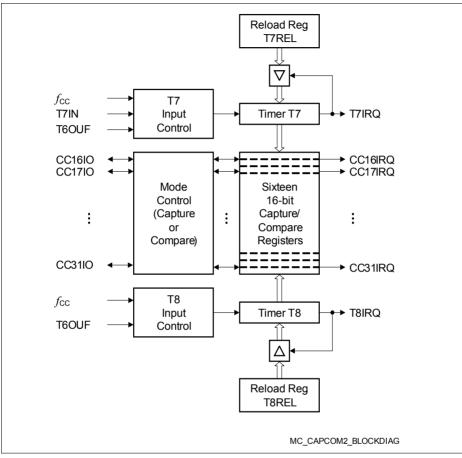


Figure 6 CAPCOM Unit Block Diagram

3.9 Capture/Compare Units CCU6x

The XE164xN types feature the CCU60, CCU61 unit(s).

CCU6 is a high-resolution capture and compare unit with application-specific modes. It provides inputs to start the timers synchronously, an important feature in devices with several CCU6 modules.

The module provides two independent timers (T12, T13), that can be used for PWM generation, especially for AC motor control. Additionally, special control modes for block commutation and multi-phase machines are supported.

Timer 12 Features

- Three capture/compare channels, where each channel can be used either as a capture or as a compare channel.
- Supports generation of a three-phase PWM (six outputs, individual signals for highside and low-side switches)
- 16-bit resolution, maximum count frequency = peripheral clock
- · Dead-time control for each channel to avoid short circuits in the power stage
- Concurrent update of the required T12/13 registers
- Center-aligned and edge-aligned PWM can be generated
- Single-shot mode supported
- Many interrupt request sources
- Hysteresis-like control mode
- Automatic start on a HW event (T12HR, for synchronization purposes)

Timer 13 Features

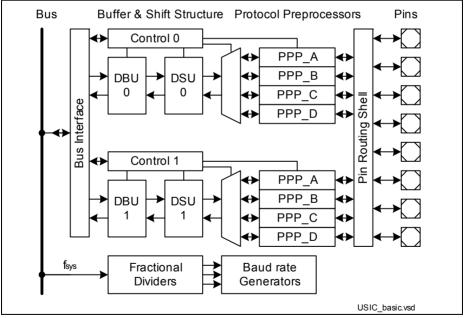
- One independent compare channel with one output
- 16-bit resolution, maximum count frequency = peripheral clock
- Can be synchronized to T12
- · Interrupt generation at period match and compare match
- Single-shot mode supported
- Automatic start on a HW event (T13HR, for synchronization purposes)

Additional Features

- Block commutation for brushless DC drives implemented
- Position detection via Hall sensor pattern
- Automatic rotational speed measurement for block commutation
- Integrated error handling
- Fast emergency stop without CPU load via external signal (CTRAP)
- · Control modes for multi-channel AC drives
- · Output levels can be selected and adapted to the power stage

The RTC module can be used for different purposes:

- · System clock to determine the current time and date
- Cyclic time-based interrupt, to provide a system time tick independent of CPU frequency and other resources
- 48-bit timer for long-term measurements
- Alarm interrupt at a defined time


3.13 Universal Serial Interface Channel Modules (USIC)

The XE164xN features the USIC modules USIC0, USIC1, USIC2. Each module provides two serial communication channels.

The Universal Serial Interface Channel (USIC) module is based on a generic data shift and data storage structure which is identical for all supported serial communication protocols. Each channel supports complete full-duplex operation with a basic data buffer structure (one transmit buffer and two receive buffer stages). In addition, the data handling software can use FIFOs.

The protocol part (generation of shift clock/data/control signals) is independent of the general part and is handled by protocol-specific preprocessors (PPPs).

The USIC's input/output lines are connected to pins by a pin routing unit. The inputs and outputs of each USIC channel can be assigned to different interface pins, providing great flexibility to the application software. All assignments can be made during runtime.

Figure 11 General Structure of a USIC Module

The regular structure of the USIC module brings the following advantages:

- Higher flexibility through configuration with same look-and-feel for data management
- Reduced complexity for low-level drivers serving different protocols
- Wide range of protocols with improved performances (baud rate, buffer handling)

Functional Description

Table 10Instruction Set Summary (cont'd)						
Mnemonic	Description	Bytes				
NOP	Null operation	2				
CoMUL/CoMAC	Multiply (and accumulate)	4				
CoADD/CoSUB	Add/Subtract	4				
Co(A)SHR	(Arithmetic) Shift right	4				
CoSHL	Shift left	4				
CoLOAD/STORE	Load accumulator/Store MAC register	4				
CoCMP	Compare	4				
CoMAX/MIN	Maximum/Minimum	4				
CoABS/CoRND	Absolute value/Round accumulator	4				
CoMOV	Data move	4				
CoNEG/NOP	Negate accumulator/Null operation	4				

 The Enter Power Down Mode instruction is not used in the XE164xN, due to the enhanced power control scheme. PWRDN will be correctly decoded, but will trigger no action.

4.3.1 DC Parameters for Upper Voltage Area

Keeping signal levels within the limits specified in this table ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current $I_{\rm OV}$.

Note: Operating Conditions apply.

Table 15 is valid under the following conditions: $V_{\text{DDP}} \le 5.5 \text{ V}$; V_{DDP} typ. 5 V; $V_{\text{DDP}} \ge 4.5 \text{ V}$

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Pin capacitance (digital inputs/outputs). To be doubled for double bond pins. ¹⁾	C _{IO} CC	_	-	10	pF	not subject to production test
Input Hysteresis ²⁾	HYS CC	0.11 x V _{DDP}	-	-	V	R _S = 0 Ohm
Absolute input leakage current on pins of analog ports ³⁾	I _{oz1} CC	-	10	200	nA	$V_{\rm IN}$ > $V_{\rm SS}$; $V_{\rm IN}$ < $V_{\rm DDP}$
Absolute input leakage current for all other pins. To be doubled for double	I _{OZ2} CC	-	0.2	5	μA	$T_{\rm J} \leq$ 110 °C; $V_{\rm IN} > V_{\rm SS}$; $V_{\rm IN} < V_{\rm DDP}$
bond pins. ³⁾¹⁾⁴⁾		_	0.2	15	μA	$T_{ m J} \leq$ 150 °C; $V_{ m IN} > V_{ m SS}$; $V_{ m IN} < V_{ m DDP}$
Pull Level Force Current ⁵⁾	$ I_{PLF} $ SR	250	-	-	μA	$V_{\text{IN}} \ge V_{\text{IHmin}}(pull down_enabled); V_{\text{IN}} \le V_{\text{ILmax}}(pull up_enabled)$
Pull Level Keep Current ⁶⁾	I _{PLK} SR	_	-	30	μA	$ \begin{array}{l} V_{\rm IN} \geq V_{\rm IHmin}(pull \\ up_enabled); \\ V_{\rm IN} \leq V_{\rm ILmax}(pull \\ down_enabled) \end{array} $
Input high voltage (all except XTAL1)	V _{IH} SR	0.7 x V _{DDP}	-	V _{DDP} + 0.3	V	
Input low voltage (all except XTAL1)	$V_{\rm IL}{ m SR}$	-0.3	-	0.3 x V _{DDP}	V	

 Table 15
 DC Characteristics for Upper Voltage Range

4.3.2 DC Parameters for Lower Voltage Area

Keeping signal levels within the limits specified in this table ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current $I_{\rm OV}$.

Note: Operating Conditions apply.

Table 16 is valid under the following conditions: $V_{\rm DDP} \ge 3.0$ V; $V_{\rm DDP}$ typ. 3.3 V; $V_{\rm DDP} \le 4.5$ V

Parameter	Symbol		Values	6	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Pin capacitance (digital inputs/outputs). To be doubled for double bond pins. ¹⁾	C _{IO} CC	_	-	10	pF	not subject to production test
Input Hysteresis ²⁾	HYS CC	0.07 x V _{DDP}	-	-	V	R _S = 0 Ohm
Absolute input leakage current on pins of analog ports ³⁾	I _{oz1} CC	-	10	200	nA	$V_{\rm IN}$ > $V_{\rm SS}$; $V_{\rm IN}$ < $V_{\rm DDP}$
Absolute input leakage current for all other pins. To be doubled for double	I _{OZ2} CC	_	0.2	2.5	μA	$\begin{array}{l} T_{\rm J} \leq 110 ~^{\circ}{\rm C}; \\ V_{\rm IN} > V_{\rm SS} ~; \\ V_{\rm IN} < V_{\rm DDP} \end{array}$
bond pins. ³⁾¹⁾⁴⁾		_	0.2	8	μA	$T_{J} \le 150 \ ^{\circ}C;$ $V_{IN} > V_{SS};$ $V_{IN} < V_{DDP}$
Pull Level Force Current ⁵⁾	I _{PLF} SR	150	_	_	μA	$ \begin{array}{l} V_{\rm IN} \geq V_{\rm IHmin}(pull \\ down) ; \\ V_{\rm IN} \leq V_{\rm ILmax}(pull \\ up) \end{array} $
Pull Level Keep Current ⁶⁾	I _{PLK} SR	-	-	10	μA	$V_{\rm IN} \ge V_{\rm IHmin}(pull up);$ $V_{\rm IN} \le V_{\rm ILmax}(pull down)$
Input high voltage (all except XTAL1)	V _{IH} SR	0.7 x V _{DDP}	-	V _{DDP} + 0.3	V	
Input low voltage (all except XTAL1)	$V_{\rm IL}$ SR	-0.3	-	0.3 x V _{DDP}	V	

Table 16 DC Characteristics for Lower Voltage Range

Parameter	Symbol		Values	5	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Output High voltage ⁷⁾	V _{OH} CC	V _{DDP} - 1.0	-	-	V	$I_{\rm OH} \ge I_{\rm OHmax}$
		V _{DDP} - 0.4	-	-	V	$I_{\text{OH}} \ge I_{\text{OHnom}}^{8}$
Output Low Voltage ⁷⁾	V _{OL} CC	-	-	0.4	V	$I_{\rm OL} \le I_{\rm OLnom}^{8)}$
		-	-	1.0	V	$I_{\rm OL} \leq I_{\rm OLmax}$

Table 16 DC Characteristics for Lower Voltage Range (cont'd)

1) Because each double bond pin is connected to two pads (standard pad and high-speed pad), it has twice the normal value. For a list of affected pins refer to the pin definitions table in chapter 2.

 Not subject to production test - verified by design/characterization. Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It cannot suppress switching due to external system noise under all conditions.

- 3) If the input voltage exceeds the respective supply voltage due to ground bouncing ($V_{\rm IN} < V_{\rm SS}$) or supply ripple ($V_{\rm IN} > V_{\rm DDP}$), a certain amount of current may flow through the protection diodes. This current adds to the leakage current. An additional error current ($I_{\rm INJ}$) will flow if an overload current flows through an adjacent pin. Please refer to the definition of the overload coupling factor $K_{\rm CV}$.
- 4) The given values are worst-case values. In production test, this leakage current is only tested at 125 °C; other values are ensured by correlation. For derating, please refer to the following descriptions: Leakage derating depending on temperature (*T*_J = junction temperature [°C]): *I*_{OZ} = 0.05 x e^(1.5 + 0.028 x TJ⁻) [µA]. For example, at a temperature of 95 °C the resulting leakage current is 3.2 µA. Leakage derating depending on voltage level (DV = *V*_{DDP} *V*_{PIN} [V]): *I*_{OZ} = *I*_{OZtempmax} (1.6 x DV) (µA]. This voltage derating formula is an approximation which applies for maximum temperature.
- 5) Drive the indicated minimum current through this pin to change the default pin level driven by the enabled pull device: $V_{\text{PIN}} \leq V_{\text{IL}}$ for a pullup; $V_{\text{PIN}} \geq V_{\text{IL}}$ for a pullup; $V_{\text{PIN}} \geq V_{\text{IL}}$ for a pullup; $V_{\text{PIN}} \geq V_{\text{IL}}$ for a pullup value of the enabled pull device.
- 6) Limit the current through this pin to the indicated value so that the enabled pull device can keep the default pin level: V_{PIN} >= V_{IL} for a pullup; V_{PIN} <= V_{IL} for a pulldown.
- 7) The maximum deliverable output current of a port driver depends on the selected output driver mode. This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage is determined by the external circuit.
- 8) As a rule, with decreasing output current the output levels approach the respective supply level (V_{OL} -> V_{SS} , V_{OH} -> V_{DDP}). However, only the levels for nominal output currents are verified.

4.4 Analog/Digital Converter Parameters

These parameters describe the conditions for optimum ADC performance. *Note: Operating Conditions apply.*

Table 19 ADC Parameters

Parameter	Symbol		Values	Unit	Note /	
		Min.	Тур.	Max.	1	Test Condition
Switched capacitance at an analog input	C _{AINSW} CC	-	-	4	pF	not subject to production test
Total capacitance at an analog input	C_{AINT} CC	-	-	10	pF	not subject to production test
Switched capacitance at the reference input	C _{AREFSW} CC	-	-	7	pF	not subject to production test
Total capacitance at the reference input	C_{AREFT} CC	-	-	15	pF	not subject to production test
Differential Non-Linearity Error	EA _{DNL} CC	-	0.8	1	LSB	
Gain Error	EA _{GAIN} CC	-	0.4	0.8	LSB	
Integral Non-Linearity	EA _{INL} CC	-	0.8	1.2	LSB	
Offset Error	EA _{OFF} CC	-	0.5	0.8	LSB	
Analog clock frequency	$f_{\rm ADCI}{\rm SR}$	0.5	-	16.5	MHz	voltage_range= lower
		0.5	-	20	MHz	voltage_range= upper
Input resistance of the selected analog channel	R _{AIN} CC	-	-	2	kOh m	not subject to production test
Input resistance of the reference input	R _{AREF} CC	-	-	2	kOh m	not subject to production test

Note: If the READY input is sampled inactive at the indicated sampling point ("Not Rdy") a READY-controlled waitstate is inserted (tpRDY),

sampling the READY input active at the indicated sampling point ("Ready") terminates the currently running bus cycle.

Note the different sampling points for synchronous and asynchronous READY. This example uses one mandatory waitstate (see tpE) before the READY input value is used.