

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	C166SV2
Core Size	16-Bit
Speed	80MHz
Connectivity	EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	75
Program Memory Size	320KB (320K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	34K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-100-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/sak-xe164kn-40f80l-aa

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

VE464vN Data Chast

Revision F	Jata Sheet listory: V1.4 2013-02
Previous V	ersions:
V1.3, 2011	-07
V1.2, 2010	-04
V1.1, 2009	
V1.0, 2009	-03 Preliminary
Page	Subjects (major changes since last revision)
36	Added AB step marking.
87	Errata SWD_X.P002 implemented: $V_{\rm SWD}$ tolerance boundaries for 5.5 V are changed.
89	Clarified "Coding of bit fields LEVxV" descriptions. Matched with Operating Conditions: marked some coding values "out of valid operation range".
90	Errata FLASH_X.P001 implemented: Test Condition for Flash parameter $N_{\rm ER}$ corrected

Trademarks

C166[™], TriCore[™] and DAVE[™] are trademarks of Infineon Technologies AG.

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

Table	e 5 Pin De	finitior	ns and	Functions (cont'd)
Pin	Symbol	Ctrl.	Туре	Function
6	P7.0	O0 / I	St/B	Bit 0 of Port 7, General Purpose Input/Output
	T3OUT	01	St/B	GPT12E Timer T3 Toggle Latch Output
	T6OUT	02	St/B	GPT12E Timer T6 Toggle Latch Output
	TDO_A	OH / IH	St/B	JTAG Test Data Output / DAP1 Input/Output If DAP pos. 0 or 2 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it.
	ESR2_1	I	St/B	ESR2 Trigger Input 1
7	P7.3	O0 / I	St/B	Bit 3 of Port 7, General Purpose Input/Output
	EMUX1	01	St/B	External Analog MUX Control Output 1 (ADC1)
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output
	U0C0_DOUT	O3	St/B	USIC0 Channel 0 Shift Data Output
	TMS_C	IH	St/B	JTAG Test Mode Selection Input If JTAG pos. C is selected during start-up, an internal pull-up device will hold this pin low when nothing is driving it.
	U0C1_DX0F	I	St/B	USIC0 Channel 1 Shift Data Input
8	P7.1	O0 / I	St/B	Bit 1 of Port 7, General Purpose Input/Output
	EXTCLK	01	St/B	Programmable Clock Signal Output
	BRKIN_C	I	St/B	OCDS Break Signal Input
9 P7.4 O0 / I St/B Bit 4 of Por		St/B	Bit 4 of Port 7, General Purpose Input/Output	
	EMUX2	01	St/B	External Analog MUX Control Output 2 (ADC1)
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output
	U0C1_SCLK OUT	O3	St/B	USIC0 Channel 1 Shift Clock Output
	тск_с	IH	St/B	DAP0/JTAG Clock Input If JTAG pos. C is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it. If DAP pos. 2 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it.
	U0C0_DX0D	I	St/B	USIC0 Channel 0 Shift Data Input
	U0C1_DX1E	I	St/B	USIC0 Channel 1 Shift Clock Input

Pin	Symbol	n Symbol Ctrl. Type Function						
19	P15.6	1	In/A	Bit 6 of Port 15, General Purpose Input				
19	ADC1_CH6	1	In/A	Analog Input Channel 6 for ADC1				
00		1						
20	V _{AREF}	-	PS/A	Reference Voltage for A/D Converters ADC0/1				
21	V _{AGND}	-	PS/A	Reference Ground for A/D Converters ADC0/1				
22	P5.0	I	In/A	Bit 0 of Port 5, General Purpose Input				
	ADC0_CH0	I	In/A	Analog Input Channel 0 for ADC0				
23	P5.2	I	In/A	Bit 2 of Port 5, General Purpose Input				
	ADC0_CH2	I	In/A	Analog Input Channel 2 for ADC0				
	TDI_A	I	In/A	JTAG Test Data Input				
24	P5.3	I	In/A	Bit 3 of Port 5, General Purpose Input				
	ADC0_CH3	I	In/A	Analog Input Channel 3 for ADC0				
	T3INA	I	In/A	GPT12E Timer T3 Count/Gate Input				
28	P5.4	I	In/A	Bit 4 of Port 5, General Purpose Input				
	ADC0_CH4	I	In/A	Analog Input Channel 4 for ADC0				
	T3EUDA	I	In/A	GPT12E Timer T3 External Up/Down Control Input				
	TMS_A	I	In/A	JTAG Test Mode Selection Input				
29	P5.5	I	In/A	Bit 5 of Port 5, General Purpose Input				
	ADC0_CH5	I	In/A	Analog Input Channel 5 for ADC0				
	CCU60_T12 HRB	I	In/A	External Run Control Input for T12 of CCU60				
30	P5.8	I	In/A	Bit 8 of Port 5, General Purpose Input				
	ADC0_CH8	I	In/A	Analog Input Channel 8 for ADC0				
	ADC1_CH8	I	In/A	Analog Input Channel 8 for ADC1				
	CCU6x_T12H RC	I	In/A	External Run Control Input for T12 of CCU60/1				
	CCU6x_T13H RC	I	In/A	External Run Control Input for T13 of CCU60/1				
	U2C0 DX0F	I	In/A	USIC2 Channel 0 Shift Data Input				

PinSymbolCtrl.TypeFunction44P4.1O0 / ISt/BBit 1 of Port 4, General Purpose Input/OuCC2_CC25O3 / ISt/BCAPCOM2 CC25IO Capture Inp./ CompareCS1OHSt/BExternal Bus Interface Chip Select 1 OutpT4EUDBISt/BGPT12E Timer T4 External Up/Down ContESR1_8ISt/BESR1 Trigger Input 845P2.4O0 / ISt/BBit 4 of Port 2, General Purpose Input/OuU0C1_DOUTO1St/BUSIC0 Channel 1 Shift Data OutputTxDC0O2St/BCAN Node 0 Transmit Data Output	out rol		
CC2_CC25 O3 / I St/B CAPCOM2 CC25IO Capture Inp./ Compare CS1 OH St/B External Bus Interface Chip Select 1 Outp T4EUDB I St/B GPT12E Timer T4 External Up/Down Continput ESR1_8 I St/B ESR1 Trigger Input 8 45 P2.4 O0 / I St/B Bit 4 of Port 2, General Purpose Input/Output U0C1_DOUT O1 St/B USIC0 Channel 1 Shift Data Output	out rol		
CS1 OH St/B External Bus Interface Chip Select 1 Outperface T4EUDB I St/B GPT12E Timer T4 External Up/Down Continuut ESR1_8 I St/B ESR1 Trigger Input 8 45 P2.4 O0 / I St/B Bit 4 of Port 2, General Purpose Input/Ou U0C1_DOUT O1 St/B USIC0 Channel 1 Shift Data Output	out rol		
T4EUDB I St/B GPT12E Timer T4 External Up/Down Continput ESR1_8 I St/B ESR1 Trigger Input 8 45 P2.4 O0 / I St/B Bit 4 of Port 2, General Purpose Input/Ou U0C1_DOUT O1 St/B USIC0 Channel 1 Shift Data Output	rol		
Input ESR1_8 I St/B ESR1 Trigger Input 8 45 P2.4 O0 / I St/B Bit 4 of Port 2, General Purpose Input/Ou U0C1_DOUT O1 St/B USIC0 Channel 1 Shift Data Output			
45 P2.4 O0 / I St/B Bit 4 of Port 2, General Purpose Input/Ou U0C1_DOUT O1 St/B USIC0 Channel 1 Shift Data Output	tput		
U0C1_DOUT 01 St/B USIC0 Channel 1 Shift Data Output	tput		
TxDC0 O2 St/B CAN Node 0 Transmit Data Output			
CC2_CC17 O3 / I St/B CAPCOM2 CC17IO Capture Inp./ Compare	CAPCOM2 CC17IO Capture Inp./ Compare Out.		
A17 OH St/B External Bus Interface Address Line 17			
ESR1_0 I St/B ESR1 Trigger Input 0			
U0C0_DX0F I St/B USIC0 Channel 0 Shift Data Input			
RxDC1A I St/B CAN Node 1 Receive Data Input			
46 P2.5 O0 / I St/B Bit 5 of Port 2, General Purpose Input/Out	tput		
U0C0_SCLK O1 St/B USIC0 Channel 0 Shift Clock Output OUT			
TxDC0 O2 St/B CAN Node 0 Transmit Data Output			
CC2_CC18 O3 / I St/B CAPCOM2 CC18IO Capture Inp./ Compare	Out.		
A18 OH St/B External Bus Interface Address Line 18			
U0C0_DX1D I St/B USIC0 Channel 0 Shift Clock Input			
ESR1_10 I St/B ESR1 Trigger Input 10			
47 P4.2 O0 / I St/B Bit 2 of Port 4, General Purpose Input/Out	tput		
CC2_CC26 O3 / I St/B CAPCOM2 CC26IO Capture Inp./ Compare	Out.		
	ut		
CS2 OH St/B External Bus Interface Chip Select 2 Outplace			

Table	Fin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function		
48	P2.6	O0 / I	St/B	Bit 6 of Port 2, General Purpose Input/Output		
	U0C0_SELO 0	01	St/B	USIC0 Channel 0 Select/Control 0 Output		
	U0C1_SELO 1	O2	St/B	USIC0 Channel 1 Select/Control 1 Output		
	CC2_CC19	O3 / I	St/B	CAPCOM2 CC19IO Capture Inp./ Compare Out.		
	A19	ОН	St/B	External Bus Interface Address Line 19		
	U0C0_DX2D	I	St/B	USIC0 Channel 0 Shift Control Input		
	RxDC0D	I	St/B	CAN Node 0 Receive Data Input		
	ESR2_6	I	St/B	ESR2 Trigger Input 6		
49	P4.3	O0 / I	St/B	Bit 3 of Port 4, General Purpose Input/Output		
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output		
	CC2_CC27	O3 / I	St/B	CAPCOM2 CC27IO Capture Inp./ Compare Out.		
	CS3	OH	St/B	External Bus Interface Chip Select 3 Output		
	T2EUDA	I	St/B	GPT12E Timer T2 External Up/Down Control Input		
53	P0.0	O0 / I	St/B	Bit 0 of Port 0, General Purpose Input/Output		
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output		
	CCU61_CC6 0	O3	St/B	CCU61 Channel 0 IOutput		
	A0	OH	St/B	External Bus Interface Address Line 0		
	U1C0_DX0A	I	St/B	USIC1 Channel 0 Shift Data Input		
	CCU61_CC6 0INA	I	St/B	CCU61 Channel 0 Input		
	ESR1_11	I	St/B	ESR1 Trigger Input 11		

Table	Table 5 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
54	P2.7	O0 / I	St/B	Bit 7 of Port 2, General Purpose Input/Output			
	U0C1_SELO 0	01	St/B	USIC0 Channel 1 Select/Control 0 Output			
	U0C0_SELO 1	O2	St/B	USIC0 Channel 0 Select/Control 1 Output			
	CC2_CC20	O3 / I	St/B	CAPCOM2 CC20IO Capture Inp./ Compare Out.			
	A20	ОН	St/B	External Bus Interface Address Line 20			
	U0C1_DX2C	I	St/B	USIC0 Channel 1 Shift Control Input			
	RxDC1C	I	St/B	CAN Node 1 Receive Data Input			
	ESR2_7	I	St/B	ESR2 Trigger Input 7			
55	P0.1	O0 / I	St/B	Bit 1 of Port 0, General Purpose Input/Output			
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output			
	TxDC0	02	St/B	CAN Node 0 Transmit Data Output			
	CCU61_CC6 1	O3	St/B	CCU61 Channel 1 Output			
	A1	OH	St/B	External Bus Interface Address Line 1			
	U1C0_DX0B	I	St/B	USIC1 Channel 0 Shift Data Input			
	CCU61_CC6 1INA	I	St/B	CCU61 Channel 1 Input			
	U1C0_DX1A	I	St/B	USIC1 Channel 0 Shift Clock Input			
56	P2.8	O0 / I	DP/B	Bit 8 of Port 2, General Purpose Input/Output			
	U0C1_SCLK OUT	01	DP/B	USIC0 Channel 1 Shift Clock Output			
	EXTCLK	O2	DP/B	Programmable Clock Signal Output			
	CC2_CC21	O3 / I	DP/B	CAPCOM2 CC21IO Capture Inp./ Compare Out.			
	A21	OH	DP/B	External Bus Interface Address Line 21			
	U0C1_DX1D	I	DP/B	USIC0 Channel 1 Shift Clock Input			

Table	1	1	i	Functions (cont'd)		
Pin	Symbol	Ctrl.	Туре			
62	P10.2	O0 / I		Bit 2 of Port 10, General Purpose Input/Output		
	U0C0_SCLK OUT	01	St/B	USIC0 Channel 0 Shift Clock Output		
	CCU60_CC6 2	O2	St/B	CCU60 Channel 2 Output		
	AD2	OH / IH	St/B	External Bus Interface Address/Data Line 2		
	CCU60_CC6 2INA	I	St/B	CCU60 Channel 2 Input		
	U0C0_DX1B	I	St/B	USIC0 Channel 0 Shift Clock Input		
63	P0.4	O0 / I	St/B	Bit 4 of Port 0, General Purpose Input/Output		
	U1C1_SELO 0	O1	St/B	USIC1 Channel 1 Select/Control 0 Output		
	U1C0_SELO 1	02	St/B	USIC1 Channel 0 Select/Control 1 Output		
	CCU61_COU T61	O3	St/B	CCU61 Channel 1 Output		
	A4	OH	St/B	External Bus Interface Address Line 4		
	U1C1_DX2A	I	St/B	USIC1 Channel 1 Shift Control Input		
	RxDC1B	I	St/B	CAN Node 1 Receive Data Input		
	ESR2_8	I	St/B	ESR2 Trigger Input 8		
65	P2.13	O0 / I	St/B	Bit 13 of Port 2, General Purpose Input/Output		
	U2C1_SELO 2	O1	St/B	USIC2 Channel 1 Select/Control 2 Output		
66	P2.10	O0 / I	St/B	Bit 10 of Port 2, General Purpose Input/Output		
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output		
	U0C0_SELO 3	O2	St/B	USIC0 Channel 0 Select/Control 3 Output		
	CC2_CC23	O3 / I	St/B	CAPCOM2 CC23IO Capture Inp./ Compare Out.		
	A23	ОН	St/B	External Bus Interface Address Line 23		
	U0C1_DX0E	I	St/B	USIC0 Channel 1 Shift Data Input		
	CAPINA	I	St/B	GPT12E Register CAPREL Capture Input		

Table	Table 5 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
87	P1.3	O0 / I	St/B	Bit 3 of Port 1, General Purpose Input/Output			
	U1C0_SELO 7	O2	St/B	USIC1 Channel 0 Select/Control 7 Output			
	U2C0_SELO 4	O3	St/B	USIC2 Channel 0 Select/Control 4 Output			
	A11	ОН	St/B	External Bus Interface Address Line 11			
	ESR2_4	I	St/B	ESR2 Trigger Input 4			
89	P10.14	O0 / I	St/B	Bit 14 of Port 10, General Purpose Input/Output			
	U1C0_SELO 1	O1	St/B	USIC1 Channel 0 Select/Control 1 Output			
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output			
	RD	ОН	St/B	External Bus Interface Read Strobe Output			
	ESR2_2	I	St/B	ESR2 Trigger Input 2			
	U0C1_DX0C	I	St/B	USIC0 Channel 1 Shift Data Input			
90	P1.4	00 / 1	St/B	Bit 4 of Port 1, General Purpose Input/Output			
	U1C1_SELO 4	O2	St/B	USIC1 Channel 1 Select/Control 4 Output			
	U2C0_SELO 5	O3	St/B	USIC2 Channel 0 Select/Control 5 Output			
	A12	OH	St/B	External Bus Interface Address Line 12			
	U2C0_DX2B	I	St/B	USIC2 Channel 0 Shift Control Input			
91	P10.15	O0 / I	St/B	Bit 15 of Port 10, General Purpose Input/Output			
	U1C0_SELO 2	01	St/B	USIC1 Channel 0 Select/Control 2 Output			
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output			
	U1C0_DOUT	O3	St/B	USIC1 Channel 0 Shift Data Output			
	ALE	ОН	St/B	External Bus Interf. Addr. Latch Enable Output			
	U0C1_DX1C	I	St/B	USIC0 Channel 1 Shift Clock Input			

XE164FN, XE164GN, XE164HN, XE164KN XE166 Family / Value Line

General Device Information

Table	Table 5 Pin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function		
98	ESR1	O0 / I	St/B	External Service Request 1 After power-up, an internal weak pull-up device holds this pin high when nothing is driving it.		
	RxDC0E	I	St/B	CAN Node 0 Receive Data Input		
	U1C0_DX0F	I	St/B	USIC1 Channel 0 Shift Data Input		
	U1C0_DX2C	I	St/B	USIC1 Channel 0 Shift Control Input		
	U1C1_DX0C	I	St/B	USIC1 Channel 1 Shift Data Input		
	U1C1_DX2B	I	St/B	USIC1 Channel 1 Shift Control Input		
	U2C1_DX2C	I	St/B	USIC2 Channel 1 Shift Control Input		
99	ESR0	O0 / I	St/B	External Service Request 0 After power-up, ESR0 operates as open-drain bidirectional reset with a weak pull-up.		
	U1C0_DX0E	I	St/B	USIC1 Channel 0 Shift Data Input		
	U1C0_DX2B	I	St/B	USIC1 Channel 0 Shift Control Input		
10	V _{DDIM}	-	PS/M	Digital Core Supply Voltage for Domain M Decouple with a ceramic capacitor, see Data Sheet for details.		
38, 64, 88	V _{DDI1}	-	PS/1	Digital Core Supply Voltage for Domain 1 Decouple with a ceramic capacitor, see Data Sheet for details. All V _{DDI1} pins must be connected to each other.		
14	V _{DDPA}	-	PS/A	Digital Pad Supply Voltage for Domain A Connect decoupling capacitors to adjacent $V_{\text{DDP}}/V_{\text{SS}}$ pin pairs as close as possible to the pins.		
				Note: The A/D_Converters and ports P5, P6 and P15 are fed from supply voltage V_{DDPA} .		

General Device Information

2.2 Identification Registers

The identification registers describe the current version of the XE164xN and of its modules.

Table 6 XE164xN Identification Registers

Short Name	Value	Address	Notes
SCU_IDMANUF	1820 _H	00'F07E _H	
SCU_IDCHIP	3001 _H	00'F07C _H	marking EES-AA or ES-AA
	3002 _H	00'F07C _H	marking AA, AB
SCU_IDMEM	304F _H	00'F07A _H	
SCU_IDPROG	1313 _H	00'F078 _H	
JTAG_ID	0018'B083 _H		marking EES-AA or ES-AA
	1018'B083 _H		marking AA, AB

Address Area	Start Loc.	End Loc.	Area Size ²⁾	Notes
Reserved for DSRAM	00'8000 _H	00'9FFF _H	8 Kbytes	
External memory area	00'000 _H	00'7FFF _H	32 Kbytes	

Table 7 XE164xN Memory Map (cont'd)¹⁾

 Accesses to the shaded areas are reserved. In devices with external bus interface these accesses generate external bus accesses.

- 2) The areas marked with "<" are slightly smaller than indicated, see column "Notes".
- 3) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0'F000_H to C0'FFFF_H).
- Several pipeline optimizations are not active within the external IO area. This is necessary to control external peripherals properly.

This common memory space consists of 16 Mbytes organized as 256 segments of 64 Kbytes; each segment contains four data pages of 16 Kbytes. The entire memory space can be accessed bytewise or wordwise. Portions of the on-chip DPRAM and the register spaces (ESFR/SFR) additionally are directly bit addressable.

The internal data memory areas and the Special Function Register areas (SFR and ESFR) are mapped into segment 0, the system segment.

The Program Management Unit (PMU) handles all code fetches and, therefore, controls access to the program memories such as Flash memory and PSRAM.

The Data Management Unit (DMU) handles all data transfers and, therefore, controls access to the DSRAM and the on-chip peripherals.

Both units (PMU and DMU) are connected to the high-speed system bus so that they can exchange data. This is required if operands are read from program memory, code or data is written to the PSRAM, code is fetched from external memory, or data is read from or written to external resources. These include peripherals on the LXBus such as USIC or MultiCAN. The system bus allows concurrent two-way communication for maximum transfer performance.

Up to 16 Kbytes of on-chip Program SRAM (PSRAM) are provided to store user code or data. The PSRAM is accessed via the PMU and is optimized for code fetches. A section of the PSRAM with programmable size can be write-protected.

Note: The actual size of the PSRAM depends on the quoted device type.

3.8 Capture/Compare Unit (CC2)

The CAPCOM unit supports generation and control of timing sequences on up to 16 channels with a maximum resolution of one system clock cycle (eight cycles in staggered mode). The CAPCOM unit is typically used to handle high-speed I/O tasks such as pulse and waveform generation, pulse width modulation (PWM), digital to analog (D/A) conversion, software timing, or time recording with respect to external events.

Two 16-bit timers with reload registers provide two independent time bases for the capture/compare register array.

The input clock for the timers is programmable to several prescaled values of the internal system clock, or may be derived from an overflow/underflow of timer T6 in module GPT2. This provides a wide range of variation for the timer period and resolution and allows precise adjustments to the application specific requirements. In addition, external count inputs allow event scheduling for the capture/compare registers relative to external events.

The capture/compare register array contains 16 dual purpose capture/compare registers, each of which may be individually allocated to either CAPCOM timer and programmed for capture or compare function.

All registers have each one port pin associated with it which serves as an input pin for triggering the capture function, or as an output pin to indicate the occurrence of a compare event.

When a capture/compare register has been selected for capture mode, the current contents of the allocated timer will be latched ('captured') into the capture/compare register in response to an external event at the port pin which is associated with this register. In addition, a specific interrupt request for this capture/compare register is generated. Either a positive, a negative, or both a positive and a negative external signal transition at the pin can be selected as the triggering event.

The contents of all registers which have been selected for one of the five compare modes are continuously compared with the contents of the allocated timers.

When a match occurs between the timer value and the value in a capture/compare register, specific actions will be taken based on the selected compare mode.

Compare Modes	Function
Mode 0	Interrupt-only compare mode; Several compare interrupts per timer period are possible
Mode 1	Pin toggles on each compare match; Several compare events per timer period are possible

Table 8 Compare Modes

Functional Description

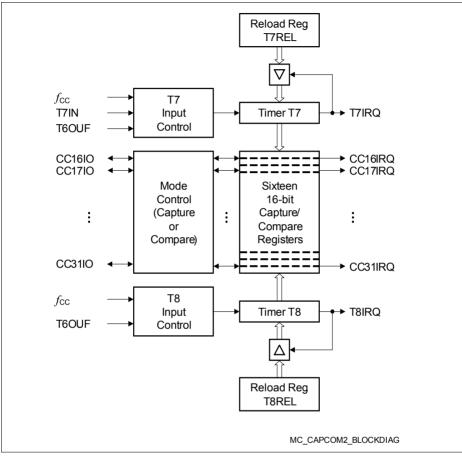


Figure 6 CAPCOM Unit Block Diagram

MultiCAN Features

- CAN functionality conforming to CAN specification V2.0 B active for each CAN node (compliant to ISO 11898)
- Independent CAN nodes
- Set of independent message objects (shared by the CAN nodes)
- · Dedicated control registers for each CAN node
- Data transfer rate up to 1 Mbit/s, individually programmable for each node
- · Flexible and powerful message transfer control and error handling capabilities
- · Full-CAN functionality for message objects:
 - Can be assigned to one of the CAN nodes
 - Configurable as transmit or receive objects, or as message buffer FIFO
 - Handle 11-bit or 29-bit identifiers with programmable acceptance mask for filtering
 - Remote Monitoring Mode, and frame counter for monitoring
- Automatic Gateway Mode support
- 16 individually programmable interrupt nodes
- Analyzer mode for CAN bus monitoring

3.15 System Timer

The System Timer consists of a programmable prescaler and two concatenated timers (10 bits and 6 bits). Both timers can generate interrupt requests. The clock source can be selected and the timers can also run during power reduction modes.

Therefore, the System Timer enables the software to maintain the current time for scheduling functions or for the implementation of a clock.

3.16 Watchdog Timer

The Watchdog Timer is one of the fail-safe mechanisms which have been implemented to prevent the controller from malfunctioning for longer periods of time.

The Watchdog Timer is always enabled after an application reset of the chip. It can be disabled and enabled at any time by executing the instructions DISWDT and ENWDT respectively. The software has to service the Watchdog Timer before it overflows. If this is not the case because of a hardware or software failure, the Watchdog Timer overflows, generating a prewarning interrupt and then a reset request.

The Watchdog Timer is a 16-bit timer clocked with the system clock divided by 16,384 or 256. The Watchdog Timer register is set to a prespecified reload value (stored in WDTREL) in order to allow further variation of the monitored time interval. Each time it is serviced by the application software, the Watchdog Timer is reloaded and the prescaler is cleared.

Time intervals between 3.2 μ s and 13.4 s can be monitored (@ 80 MHz).

The default Watchdog Timer interval after power-up is 6.5 ms (@ 10 MHz).

3.17 Clock Generation

The Clock Generation Unit can generate the system clock signal f_{SYS} for the XE164xN from a number of external or internal clock sources:

- · External clock signals with pad voltage or core voltage levels
- · External crystal or resonator using the on-chip oscillator
- · On-chip clock source for operation without crystal/resonator
- Wake-up clock (ultra-low-power) to further reduce power consumption

The programmable on-chip PLL with multiple prescalers generates a clock signal for maximum system performance from standard crystals, a clock input signal, or from the on-chip clock source. See also **Section 4.7.2**.

The Oscillator Watchdog (OWD) generates an interrupt if the crystal oscillator frequency falls below a certain limit or stops completely. In this case, the system can be supplied with an emergency clock to enable operation even after an external clock failure.

All available clock signals can be output on one of two selectable pins.

3.18 Parallel Ports

The XE164xN provides up to 76 I/O lines which are organized into 7 input/output ports and 2 input ports. All port lines are bit-addressable, and all input/output lines can be individually (bit-wise) configured via port control registers. This configuration selects the direction (input/output), push/pull or open-drain operation, activation of pull devices, and edge characteristics (shape) and driver characteristics (output current) of the port drivers. The I/O ports are true bidirectional ports which are switched to high impedance state when configured as inputs. During the internal reset, all port pins are configured as inputs without pull devices active.

All port lines have alternate input or output functions associated with them. These alternate functions can be programmed to be assigned to various port pins to support the best utilization for a given application. For this reason, certain functions appear several times in Table 9.

All port lines that are not used for alternate functions may be used as general purpose I/O lines.

Port	Width	I/O	Connected Modules					
P0	8	I/O	EBC (A7A0), CCU6, USIC, CAN					
P1	8	I/O	EBC (A15A8), CCU6, USIC					
P2	14	I/O	EBC (READY, BHE, A23A16, AD15AD13, D15D13), CAN, CC2, GPT12E, USIC, DAP/JTAG					
P4	4	I/O	EBC (CS3CS0), CC2, CAN, GPT12E, USIC					
P5	11	I	Analog Inputs, CCU6, DAP/JTAG, GPT12E, CAN					
P6	3	I/O	ADC, CAN, GPT12E					
P7	5	I/O	CAN, GPT12E, SCU, DAP/JTAG, CCU6, ADC, USIC					
P10	16	I/O	EBC (ALE, RD, WR, AD12AD0, D12D0), CCU6, USIC, DAP/JTAG, CAN					
P15	5	I	Analog Inputs, GPT12E					

Table 9Summary of the XE164xN's Ports

Functional Description

Table 10Instruction Set Summary (cont'd)						
Mnemonic	Description	Bytes				
NOP	Null operation	2				
CoMUL/CoMAC	Multiply (and accumulate)	4				
CoADD/CoSUB	Add/Subtract	4				
Co(A)SHR	(Arithmetic) Shift right	4				
CoSHL	Shift left	4				
CoLOAD/STORE	Load accumulator/Store MAC register	4				
CoCMP	Compare	4				
CoMAX/MIN	Maximum/Minimum	4				
CoABS/CoRND	Absolute value/Round accumulator	4				
CoMOV	Data move	4				
CoNEG/NOP	Negate accumulator/Null operation	4				

 The Enter Power Down Mode instruction is not used in the XE164xN, due to the enhanced power control scheme. PWRDN will be correctly decoded, but will trigger no action.

Electrical Parameters

4.3.3 Power Consumption

The power consumed by the XE164xN depends on several factors such as supply voltage, operating frequency, active circuits, and operating temperature. The power consumption specified here consists of two components:

- The switching current $I_{\rm S}$ depends on the device activity
- The leakage current $I_{\rm LK}$ depends on the device temperature

To determine the actual power consumption, always both components, switching current $I_{\rm S}$ and leakage current $I_{\rm LK}$ must be added:

 $I_{\text{DDP}} = I_{\text{S}} + I_{\text{LK}}.$

Note: The power consumption values are not subject to production test. They are verified by design/characterization.

To determine the total power consumption for dimensioning the external power supply, also the pad driver currents must be considered.

The given power consumption parameters and their values refer to specific operating conditions:

Active mode:

Regular operation, i.e. peripherals are active, code execution out of Flash.

Stopover mode:

Crystal oscillator and PLL stopped, Flash switched off, clock in domain DMP_1 stopped.

Note: The maximum values cover the complete specified operating range of all manufactured devices.

The typical values refer to average devices under typical conditions, such as nominal supply voltage, room temperature, application-oriented activity.

After a power reset, the decoupling capacitors for $V_{\rm DDIM}$ and $V_{\rm DDI1}$ are charged with the maximum possible current.

For additional information, please refer to Section 5.2, Thermal Considerations.

Note: Operating Conditions apply.

Electrical Parameters

4.7.7 Debug Interface Timing

The debugger can communicate with the XE164xN either via the 2-pin DAP interface or via the standard JTAG interface.

Debug via DAP

The following parameters are applicable for communication through the DAP debug interface.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Table 37 is valid under the following conditions: $C_1 = 20 \text{ pF}$; voltage_range= upper

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	1	Test Condition
DAP0 clock period ¹⁾	<i>t</i> ₁₁ SR	25	-	_	ns	
DAP0 high time	t ₁₂ SR	8	-	_	ns	
DAP0 low time ¹⁾	t ₁₃ SR	8	-	_	ns	
DAP0 clock rise time	t ₁₄ SR	-	-	4	ns	
DAP0 clock fall time	t ₁₅ SR	-	-	4	ns	
DAP1 setup to DAP0 rising edge	<i>t</i> ₁₆ SR	6	-	-	ns	
DAP1 hold after DAP0 rising edge	<i>t</i> ₁₇ SR	6	-	-	ns	
DAP1 valid per DAP0 clock period ²⁾	<i>t</i> ₁₉ CC	17	20	-	ns	

 Table 37
 DAP Interface Timing for Upper Voltage Range

1) See the DAP chapter for clock rate restrictions in the Active::IDLE protocol state.

2) The Host has to find a suitable sampling point by analyzing the sync telegram response.

Table 38 is valid under the following conditions: C_{L} = 20 pF; voltage_range = lower

Package and Reliability

5.2 Thermal Considerations

When operating the XE164xN in a system, the total heat generated in the chip must be dissipated to the ambient environment to prevent overheating and the resulting thermal damage.

The maximum heat that can be dissipated depends on the package and its integration into the target board. The "Thermal resistance $R_{\Theta JA}$ " quantifies these parameters. The power dissipation must be limited so that the average junction temperature does not exceed 150 °C.

The difference between junction temperature and ambient temperature is determined by $\Delta T = (P_{INT} + P_{IOSTAT} + P_{IODYN}) \times R_{\Theta,IA}$

The internal power consumption is defined as

 $P_{\text{INT}} = V_{\text{DDP}} \times I_{\text{DDP}}$ (switching current and leakage current).

The static external power consumption caused by the output drivers is defined as $P_{\text{IOSTAT}} = \Sigma((V_{\text{DDP}}-V_{\text{OH}}) \times I_{\text{OH}}) + \Sigma(V_{\text{OL}} \times I_{\text{OL}})$

The dynamic external power consumption caused by the output drivers (P_{IODYN}) depends on the capacitive load connected to the respective pins and their switching frequencies.

If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation:

- Reduce V_{DDP} , if possible in the system
- · Reduce the system frequency
- · Reduce the number of output pins
- Reduce the load on active output drivers