

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	508
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	39
Program Memory Size	60KB (60K × 8)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/s9s08rn60w1mlf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Input/Output
 - Up to 55 GPIOs including one output-only pin
 - Two 8-bit keyboard interrupt modules (KBI)
 - Two true open-drain output pins
 - Eight, ultra-high current sink pins supporting 20 mA source/sink current
- Package options
 - 64-pin LQFP
 - 48-pin LQFP
 - 32-pin LQFP

Symbol	Description	Min.	Max.	Unit
V _{DIO}	Digital input voltage (except RESET, EXTAL, XTAL, or true open drain pin PTA2 and PTA3)	-0.3	V _{DD} + 0.3	V
	Digital input voltage (true open drain pin PTA2 and PTA3)	-0.3	6	V
V _{AIO}	Analog ¹ , RESET, EXTAL, and XTAL input voltage	-0.3	V _{DD} + 0.3	V
Ι _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V

1. All digital I/O pins, except open-drain pin PTA2 and PTA3, are internally clamped to V_{SS} and V_{DD}. PTA2 and PTA3 is only clamped to V_{SS}.

5 General

5.1 Nonswitching electrical specifications

5.1.1 DC characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Symbol	С	Descriptions			Min	Typical ¹	Max	Unit
—	—	Oper	rating voltage	—	2.7	—	5.5	V
V _{OH}	С	Output high voltage	All I/O pins, standard- drive strength	5 V, I _{load} = -5 mA	V _{DD} - 0.8		_	V
	С			3 V, I _{load} = -2.5 mA	V _{DD} - 0.8			V
	С		High current drive pins, high-drive	5 V, I _{load} = -20 mA	V _{DD} - 0.8	—	—	V
	С		strength ^{2, 2}	3 V, I _{load} = -10 mA	V _{DD} - 0.8	—	—	V
I _{OHT}	D	Output high	Max total I _{OH} for all	5 V	_	_	-100	mA
		current	ports	3 V	_	—	-50	
V _{OL}	С	Output low voltage	All I/O pins, standard- drive strength	5 V, I _{load} = 5 mA			0.8	V
	С			3 V, I _{load} = 2.5 mA			0.8	V
	С		High current drive pins, high-drive	5 V, I _{load} =20 mA			0.8	V
	С		strength ²	3 V, I _{load} = 10 mA			0.8	V

Table 2. DC characteristics

Table continues on the next page...

Symbol	С	Desc	ription	Min	Тур	Мах	Unit
V _{LVDH}	С	Falling low-v threshold - hig =	oltage detect h range (LVDV 1) ³	4.2	4.3	4.4	V
V _{LVW1H}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	4.3	4.4	4.5	V
V _{LVW2H}	С	warning threshold -	Level 2 falling (LVWV = 01)	4.5	4.5	4.6	V
V _{LVW3H}	С		Level 3 falling (LVWV = 10)	4.6	4.6	4.7	V
V _{LVW4H}	С		Level 4 falling (LVWV = 11)	4.7	4.7	4.8	V
V _{HYSH}	С	High range detect/warni	High range low-voltage detect/warning hysteresis		100		mV
V _{LVDL}	С	Falling low-v threshold - low (Falling low-voltage detect threshold - low range (LVDV = 0)		2.61	2.66	V
V _{LVDW1L}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	2.62	2.7	2.78	V
V _{LVDW2L}	С	warning threshold -	Level 2 falling (LVWV = 01)	2.72	2.8	2.88	V
V _{LVDW3L}	С		Level 3 falling (LVWV = 10)	2.82	2.9	2.98	V
V _{LVDW4L}	С		Level 4 falling (LVWV = 11)	2.92	3.0	3.08	V
V _{HYSDL}	С	Low range low hyste	Low range low-voltage detect hysteresis		40		mV
V _{HYSWL}	С	Low range warning l	low-voltage nysteresis		80		mV
V _{BG}	Р	Buffered ban	dgap output ⁴	1.14	1.16	1.18	V

Table 3.	LVD and POR S	Specification	(continued))
----------	---------------	---------------	-------------	---

1. Maximum is highest voltage that POR is guaranteed.

2. POR ramp time must be longer than 20us/V to get a stable startup.

3. Rising thresholds are falling threshold + hysteresis.

4. Voltage factory trimmed at V_{DD} = 5.0 V, Temp = 125 °C

nonswitching electrical specifications

Figure 5. Typical I_{OL} Vs. V_{OL} (standard drive strength) (V_{DD} = 5 V)

Figure 6. Typical I_{OL} Vs. V_{OL} (standard drive strength) (V_{DD} = 3 V)

5.1.2 Supply current characteristics

This section includes information about power supply current in various operating modes.

Num	С	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typical ¹	Мах	Unit	Temp
1	С	Run supply current FEI	RI _{DD}	20 MHz	5	12.6	—	mA	-40 to 125 °C
	С	mode, all modules on; run		10 MHz		7.2	—		
		nomnasn		1 MHz		2.4	—		
	С			20 MHz	3	9.6	—		
	С			10 MHz		6.1	_		
				1 MHz		2.1	_		
2	С	Run supply current FEI	RI _{DD}	20 MHz	5	10.5	_	mA	-40 to 125 °C
	С	mode, all modules off &		10 MHz		6.2	—		
		gated, full north hash		1 MHz		2.3	—		
	С			20 MHz	3	7.4			
	С			10 MHz		5.0	_		
				1 MHz		2.0			
3	Ρ	Run supply current FBE	RI _{DD}	20 MHz	5	12.1	14.8	mA	-40 to 125 °C
	С	mode, all modules on; run		10 MHz		6.5			
				1 MHz		1.8			
	Ρ			20 MHz	3	9.1	11.8		
	С			10 MHz		5.5	—		
				1 MHz		1.5	_		
4	Ρ	Run supply current FBE	RI _{DD}	20 MHz	5	9.8	12.3	mA	-40 to 125 °C
	С	mode, all modules off &		10 MHz		5.4	—		
		gated, full non fir and		1 MHz		1.6	—		
	Ρ			20 MHz	3	6.9	9.2		
	С			10 MHz		4.4	—		
				1 MHz		1.4	—		
5	С	Wait mode current FEI	WI _{DD}	20 MHz	5	7.8	—	mA	-40 to 125 °C
	С	mode, all modules on		10 MHz		4.5	—		
				1 MHz		1.3	_		
	С			20 MHz	3	5.1	—		
				10 MHz		3.5	—		
				1 MHz		1.2			
6	С	Stop3 mode supply	S3I _{DD}		5	3.8		μA	-40 to 125 °C
	С	current no clocks active (except 1 kHz LPO clock) ^{2, 3}			3	3			-40 to 125 °C

Table 4. Supply current characteristics

Table continues on the next page...

5.2 Switching specifications

5.2.1 Control timing

Table 5. Control timing

Num	С	Rating	Symbol	Min	Typical ¹	Max	Unit	
1	Р	Bus frequency (t _{cyc} = 1/f _{Bus}))	f _{Bus}	DC	_	20	MHz
2	Р	Internal low power oscillator	r frequency	f _{LPO}	0.67	1.0	1.25	KHz
3	D	External reset pulse width ^{2,}	2	t _{extrst}	1.5 ×	_	—	ns
					t _{Self_reset}			
4	D	Reset low drive		t _{rstdrv}	$34 imes t_{cyc}$	_	—	ns
5	D	BKGD/MS setup time after debug force reset to enter u	3D/MS setup time after issuing background ug force reset to enter user or BDM modes			_	_	ns
6	D	BKGD/MS hold time after is debug force reset to enter u	d time after issuing background eset to enter user or BDM modes ³		100	_	_	ns
7	D	Keyboard interrupt pulse width	Asynchronous path ²	tı∟ıн	100	_	_	ns
	D		Synchronous path	t _{IHIL}	$1.5 \times t_{cyc}$	_	—	ns
8	С	Port rise and fall time -	_	t _{Rise}	—	10.2	—	ns
	С	Normal drive strength (HDRVE_PTXx = 0) (load = 50 pF) ^{4, 4}		t _{Fall}	—	9.5	—	ns
	С	Port rise and fall time -	_	t _{Rise}	—	5.4	_	ns
	С	Extreme high drive strength (HDRVE_PTXx = 1) (load = 50 pF) ⁴		t _{Fall}	_	4.6	_	ns

1. Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.

- 2. This is the shortest pulse that is guaranteed to be recognized as a reset pin request.
- 3. To enter BDM mode following a POR, BKGD/MS must be held low during the powerup and for a hold time of t_{MSH} after V_{DD} rises above V_{LVD}.
- 4. Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range -40 °C to 125 °C.

Figure 10. KBIPx timing

5.2.2 Debug trace timing specifications

Table 6.	Debug	trace	operating	behaviors
----------	-------	-------	-----------	-----------

Symbol	Description	Min.	Max.	Unit
t _{cyc}	Clock period	Frequency	MHz	
t _{wl}	Low pulse width	2	—	ns
t _{wh}	High pulse width	2	—	ns
tr	Clock and data rise time		3	ns
t _f	Clock and data fall time		3	ns
t _s	Data setup	3		ns
t _h	Data hold	2	—	ns

Figure 11. TRACE_CLKOUT specifications

Figure 12. Trace data specifications

5.2.3 FTM module timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

No.	С	Function	Symbol	Min	Max	Unit
1	D	External clock frequency	f _{TCLK}	0	f _{Bus} /4	Hz

Table 7. FTM input timing

Table continues on the next page...

No.	С	Function	Symbol	Min	Мах	Unit
2	D	External clock period	t _{TCLK}	4	_	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	_	t _{cyc}
4	D	External clock low time	t _{clkl}	1.5	_	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	—	t _{cyc}

 Table 7. FTM input timing (continued)

Figure 13. Timer external clock

Figure 14. Timer input capture pulse

5.3 Thermal specifications

5.3.1 Thermal characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Rating	Symbol	Value	Unit
Operating temperature range (packaged)	T _A	T_L to T_H -40 to 125	٦°
Junction temperature range	TJ	-40 to 135	°C
	Thermal resistance	e single-layer board	
64-pin LQFP	θ _{JA}	71	°C/W
48-pin LQFP	θ_{JA}	81	°C/W
32-pin LQFP	θ_{JA}	86	°C/W
	Thermal resistance	e four-layer board	
64-pin LQFP	θ_{JA}	53	°C/W
48-pin LQFP	θ_{JA}	57	°C/W
32-pin LQFP	θ _{JA}	57	°C/W

Table 8. Thermal characteristics

The average chip-junction temperature (T_J) in °C can be obtained from:

 $T_{J} = T_{A} + (P_{D} \times \theta_{JA})$

Where:

 T_A = Ambient temperature, °C

 θ_{JA} = Package thermal resistance, junction-to-ambient, °C/W

 $P_D = P_{int} + P_{I/O}$

 $P_{int} = I_{DD} \times V_{DD}$, Watts - chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins - user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

 $P_{\rm D} = K \div (T_{\rm J} + 273 \ ^{\circ}{\rm C})$

Solving the equations above for K gives:

 $\mathbf{K} = \mathbf{P}_{\mathrm{D}} \times (\mathbf{T}_{\mathrm{A}} + 273 \ ^{\circ}\mathrm{C}) + \mathbf{\theta}_{\mathrm{JA}} \times (\mathbf{P}_{\mathrm{D}})^2$

where K is a constant pertaining to the particular part. K can be determined by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving the above equations iteratively for any value of T_A .

6 Peripheral operating requirements and behaviors

Table 9. XOSC and ICS specifications (temperature range = -40 to 125 °C ambient) (continued)

Num	С	C	Characteristic	Symbol	Min	Typical ¹	Мах	Unit
11	Ρ	Total deviation of DCO output from trimmed	Over full voltage range and temperature range of -40 to 125 °C	Δf_{dco_t}	_	_	±2.0	
	С	frequency ⁵	Over full voltage range and temperature range of -40 to 105 °C	1			±1.5	%f _{dco}
	С		Over fixed voltage and temperature range of 0 to 70 °C				±1.0	
12	С	FLL a	acquisition time ⁵ , ⁷	t _{Acquire}	—	—	2	ms
13	С	Long term ji (average	itter of DCO output clock d over 2 ms interval) ⁸	C _{Jitter}		0.02	0.2	%f _{dco}

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. When ICS is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz.
- 3. See crystal or resonator manufacturer's recommendation.
- Load capacitors (C₁,C₂), feedback resistor (R_F) and series resistor (R_S) are incorporated internally when RANGE = HGO = 0.
- 5. This parameter is characterized and not tested on each device.
- 6. Proper PC board layout procedures must be followed to achieve specifications.
- 7. This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, DMX32 bit is changed, DRS bit is changed, or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 8. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

Figure 15. Typical crystal or resonator circuit

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Memory section.

6.3 Analog

6.3.1 ADC characteristics

Table 11.	5 V	12-bit	ADC c	perating	conditions

Characteri stic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Supply	Absolute	V _{DDA}	2.7	—	5.5	V	—
voltage	Delta to V_{DD} (V_{DD} - V_{DDAD})	ΔV_{DDA}	-100	0	+100	mV	
Ground voltage	Delta to $V_{SS} (V_{SS} - V_{SSA})^2$	ΔV _{SSA}	-100	0	+100	mV	
Input voltage		V _{ADIN}	V _{REFL}	—	V _{REFH}	V	
Input capacitance		C _{ADIN}	—	4.5	5.5	pF	
Input resistance		R _{ADIN}	—	3	5	kΩ	_
Analog source	12-bit mode facer > 4 MHz	R _{AS}	_	_	2	kΩ	External to MCU
resistance	• $f_{ADCK} < 4 \text{ MHz}$		—	—	5		
	10-bit mode face > 4 MHz			_	5		
	• f _{ADCK} < 4 MHz		—	—	10		
	8-bit mode	-	_	—	10		
	(all valid f _{ADCK})						
ADC	High speed (ADLPC=0)	f _{ADCK}	0.4	—	8.0	MHz	_
conversion clock frequency	Low power (ADLPC=1)		0.4		4.0		

1. Typical values assume $V_{DDA} = 5.0 \text{ V}$, Temp = 25°C, $f_{ADCK}=1.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

2. DC potential difference.

Figure 16. ADC input impedance equivalency diagram

Table 12.	12-bit ADC	Characteristics	(V _{REFH} =	V _{DDA} ,	$V_{REFL} = $	V _{SSA})
-----------	------------	-----------------	----------------------	--------------------	---------------	--------------------

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit
Supply current		Т	I _{DDA}	_	133	—	μA
ADLPC = 1							
ADLSMP = 1							
ADCO = 1							
Supply current		Т	I _{DDA}	_	218	_	μA
ADLPC = 1							
ADLSMP = 0							
ADCO = 1							
Supply current		Т	I _{DDA}	_	327	_	μA
ADLPC = 0							
ADLSMP = 1							
ADCO = 1							
Supply current		Т	I _{DDAD}	_	582	990	μA
ADLPC = 0							
ADLSMP = 0							
ADCO = 1							
Supply current	Stop, reset, module off	Т	I _{DDA}	_	0.011	1	μA

Table continues on the next page...

Characteristic	Conditions	С	Symb	Min	Typ ¹	Мах	Unit
ADC asynchronous clock source	High speed (ADLPC = 0)	Р	f _{ADACK}	2	3.3	5	MHz
	Low power (ADLPC = 1)			1.25	2	3.3	-
Conversion time (including sample	Short sample (ADLSMP = 0)	Т	t _{ADC}	_	20	_	ADCK cycles
time)	Long sample (ADLSMP = 1)				40		
Sample time	Short sample (ADLSMP = 0)	Т	t _{ADS}	_	3.5		ADCK cycles
	Long sample (ADLSMP = 1)			_	23.5		
Total unadjusted	12-bit mode	Т	E _{TUE}	—	±5.0	—	LSB ^{3, 3}
Error ^{2, 2}	10-bit mode	Р		_	±1.5	±2.0	
	8-bit mode	Р		—	±0.7	±1.0	
Differential Non-	12-bit mode	Т	DNL	—	±1.0	—	LSB ³
Linearity	10-bit mode ^{4, 4}	Р		—	±0.25	±0.5	
	8-bit mode ⁴	Р		—	±0.15	±0.25	
Integral Non-Linearity	12-bit mode	Т	INL	_	±1.0	—	LSB ³
	10-bit mode	Т		—	±0.3	±0.5	
	8-bit mode	Т		—	±0.15	±0.25	
Zero-scale error ^{5, 5}	12-bit mode	С	E _{ZS}	_	±2.0		LSB ³
	10-bit mode	Р		—	±0.25	±1.0	
	8-bit mode	Р		—	±0.65	±1.0	
Full-scale error ⁶	12-bit mode	Т	E _{FS}	_	±2.5		LSB ³
	10-bit mode	Т		—	±0.5	±1.0	
	8-bit mode	Т		—	±0.5	±1.0	
Quantization error	≤12 bit modes	D	Eq	_	—	±0.5	LSB ³
Input leakage error ⁷	all modes	D	E _{IL}		I _{In} * R _{AS}		mV
Temp sensor slope	-40°C– 25°C	D	m		3.266		mV/°C
	25°C– 125°C			_	3.638		
Temp sensor voltage	25°C	D	V _{TEMP25}		1.396		V

Table 12. 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

 Typical values assume V_{DDA} = 5.0 V, Temp = 25°C, f_{ADCK}=1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

- 2. Includes quantization.
- 3. 1 LSB = $(\dot{V}_{REFH} V_{REFL})/2^N$
- 4. Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes
- 5. $V_{ADIN} = V_{SSA}$
- 6. $V_{ADIN} = V_{DDA}$
- 7. I_{In} = leakage current (refer to DC characteristics)

Peripheral operating requirements and behaviors

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
10	t _{RI}	Rise time input	_	t _{Bus} - 25	ns	—
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	—	25	ns	
	t _{FO}	Fall time output				

Table 14. SPI master mode timing (continued)

1. If configured as an output.

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 17. SPI master mode timing (CPHA=0)

1.If configured as output

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 18. SPI master mode timing (CPHA=1)

rempheral operating requirements and behaviors

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
1	f _{op}	Frequency of operation	0	f _{Bus} /4	Hz	f _{Bus} is the bus clock as defined in .
2	t _{SPSCK}	SPSCK period	4 x t _{Bus}	—	ns	t _{Bus} = 1/f _{Bus}
3	t _{Lead}	Enable lead time	1	—	t _{Bus}	—
4	t _{Lag}	Enable lag time	1	—	t _{Bus}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{Bus} - 30	—	ns	_
6	t _{SU}	Data setup time (inputs)	15	—	ns	—
7	t _{HI}	Data hold time (inputs)	25	—	ns	—
8	t _a	Slave access time	-	t _{Bus}	ns	Time to data active from high-impedance state
9	t _{dis}	Slave MISO disable time	-	t _{Bus}	ns	Hold time to high- impedance state
10	t _v	Data valid (after SPSCK edge)	_	25	ns	—
11	t _{HO}	Data hold time (outputs)	0	—	ns	—
12	t _{RI}	Rise time input	_	t _{Bus} - 25	ns	—
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	—	25	ns	—
	t _{FO}	Fall time output				

Table 15. SPI slave mode timing

NOTE: Not defined

	Pin Number	•	Lowest Priority <> Highest					
64-LQFP	48-LQFP	32-LQFP	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4	
20	16	11	PTC3	FTM2CH3		ADP11	_	
21	17	12	PTC2	FTM2CH2	_	ADP10	_	
22	18	_	PTD7	KBI1P7	TXD2			
23	19		PTD6	KBI1P6	RXD2			
24	20	_	PTD5	KBI1P5	_			
25	21	13	PTC1		FTM2CH1	ADP9	TSI7	
26	22	14	PTC0		FTM2CH0	ADP8	TSI6	
27	—	_	PTF7	—	_	ADP15		
28	—	_	PTF6			ADP14		
29	—	_	PTF5			ADP13		
30	—	_	PTF4	_	_	ADP12		
31	23	15	PTB3	KBI0P7	MOSI0	ADP7	TSI5	
32	24	16	PTB2	KBI0P6	SPSCK0	ADP6	TSI4	
33	25	17	PTB1	KBI0P5	TXD0	ADP5	TSI3	
34	26	18	PTB0	KBI0P4	RXD0	ADP4	TSI2	
35	—	_	PTF3		—	—	TSI15	
36	—	_	PTF2	_	—	—	TSI14	
37	27	19	PTA7	FTM2FAULT2	—	ADP3	TSI1	
38	28	20	PTA6	FTM2FAULT1		ADP2	TSI0	
39	29	_	PTE4	_	—	—	—	
40	30	_	_		_	—	V _{SS}	
41	31	—	_		—	—	V _{DD}	
42	—	_	PTF1		_	—	TSI13	
43	—	—	PTF0				TSI12	
44	32	—	PTD4	KBI1P4	_		_	
45	33	21	PTD3	KBI1P3	SS1		TSI11	
46	34	22	PTD2	KBI1P2	MISO1		TSI10	
47	35	23	PTA3 ^{2, 2}	KBI0P3	TXD0	SCL		
48	36	24	PTA2 ²	KBI0P2	RXD0	SDA		
49	37	25	PTA1	KBI0P1	FTM0CH1	ACMP1	ADP1	
50	38	26	PTA0	KBI0P0	FTM0CH0	ACMP0	ADP0	
51	39	27	PTC7		TxD1		TSI9	
52	40	28	PTC6		RxD1	—	TSI8	
53	41	—	PTE3		<u>SS0</u>			
54	42	_	PTE2		MISO0			
55		_	PTG3		_	_	_	
56		_	PTG2		_	_	_	
57	_		PTG1					

Table 17. Pin availability by package pin-count (continued)

Table continues on the next page...

	Pin Number			Lowest I	Priority <> H	ighest	hest			
64-LQFP	48-LQFP	32-LQFP	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4			
58	—	—	PTG0	—	—	—	—			
59	43	_	PTE1 ¹	_	MOSI0					
60	44	—	PTE0 ¹	_	SPSCK0	TCLK1				
61	45	29	PTC5	_	FTM1CH1	_	_			
62	46	30	PTC4	—	FTM1CH0	RTCO				
63	47	31					RESET			
64	48	32				BKGD	MS			

 Table 17. Pin availability by package pin-count (continued)

1. This is a high current drive pin when operated as output.

2. This is a true open-drain pin when operated as output.

Note

When an alternative function is first enabled, it is possible to get a spurious edge to the module. User software must clear any associated flags before interrupts are enabled. The table above illustrates the priority if multiple modules are enabled. The highest priority module will have control over the pin. Selecting a higher priority pin function with a lower priority function already enabled can cause spurious edges to the lower priority module. Disable all modules that share a pin before enabling another module.

8.2 Device pin assignment

Figure 21. S9S08RN60 64-pin LQFP package

9 Revision history

The following table provides a revision history for this document.

Table 18.	Revision	history
-----------	----------	---------

Rev. No.	Date	Substantial Changes
1	01/2014	Initial Release