

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	S08
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	26
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/s9s08rna32w0mlcr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Input/Output
 - Up to 55 GPIOs including one output-only pin
 - Two 8-bit keyboard interrupt modules (KBI)
 - Two true open-drain output pins
 - Eight, ultra-high current sink pins supporting 20 mA source/sink current
- Package options
 - 64-pin LQFP
 - 48-pin LQFP
 - 32-pin LQFP

1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to www.freescale.com and perform a part number search for the following device numbers: RN60, RN48 and RN32.

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

S 9 S08 RN AA F1 B CC

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
s	Qualification status	S = fully qualified, general market flow
9	Memory	9 = flash based
S08	Core	• S08 = 8-bit CPU
RN	Device family	• RN
AA	Approximate flash size in KB	 60 = 60 KB 48 = 48 KB 32 = 32 KB
F1	Fab and mask set identifier	• W1
В	Temperature range (°C)	• M = -40 to 125

Field	Description	Values		
CC	Package designator	 LH = 64-pin LQFP LF = 48-pin LQFP LC = 32-pin LQFP 		

2.4 Example

This is an example part number:

S9S08RN60W1MLH

3 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 1. Parameter Classifications

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

4 Ratings

4.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	- 55	150	°C	1
T _{SDR}	Solder temperature, lead-free	_	260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

Symbol	Description	Min.	Max.	Unit
V_{DIO}	Digital input voltage (except RESET, EXTAL, XTAL, or true open drain pin PTA2 and PTA3)	-0.3	V _{DD} + 0.3	V
	Digital input voltage (true open drain pin PTA2 and PTA3)	-0.3	6	V
V_{AIO}	Analog ¹ , RESET, EXTAL, and XTAL input voltage	-0.3	V _{DD} + 0.3	V
I _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V_{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V

^{1.} All digital I/O pins, except open-drain pin PTA2 and PTA3, are internally clamped to V_{SS} and V_{DD} . PTA2 and PTA3 is only clamped to V_{SS} .

5 General

5.1 Nonswitching electrical specifications

5.1.1 DC characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Symbol C **Descriptions** Min Typical¹ Max Unit Operating voltage 2.7 5.5 V V_{OH} С Output high All I/O pins, standard-5 V, $I_{load} =$ $V_{DD} - 0.8$ ٧ drive strength voltage -5 mA V С 3 V, $I_{load} =$ $V_{DD} - 0.8$ -2.5 mA 5 V, $I_{load} =$ С High current drive $V_{DD} - 0.8$ ٧ pins, high-drive -20 mA strength^{2, 2} 3 V, I_{load} = С V_{DD} - 0.8 ٧ -10 mA 5 V I_{OHT} D Output high Max total I_{OH} for all -100 mΑ current ports 3 V -50 V_{OL} С Output low All I/O pins, standard-5 V, $I_{load} = 5$ 8.0 ٧ voltage drive strength mΑ ٧ С 3 V, $I_{load} =$ 8.0 2.5 mA ٧ С High current drive 5 V, I_{load} 8.0 pins, high-drive =20 mA strength² 3 V, $I_{load} =$ ٧ С 8.0 10 mA

Table 2. DC characteristics

Table 3. LVD and POR Specification (continued)

Symbol	С	Descr	ription	Min	Тур	Max	Unit
V _{LVDH}	С		oltage detect h range (LVDV 1) ³	4.2	4.3	4.4	V
V _{LVW1H}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	4.3	4.4	4.5	V
V _{LVW2H}	С	warning threshold - high range	Level 2 falling (LVWV = 01)	4.5	4.5	4.6	V
V _{LVW3H}	С	High range	Level 3 falling (LVWV = 10)	4.6	4.6	4.7	V
V _{LVW4H}	С		Level 4 falling (LVWV = 11)	4.7	4.7	4.8	V
V _{HYSH}	С		low-voltage ng hysteresis	_	100	_	mV
V _{LVDL}	С		oltage detect range (LVDV =	2.56	2.61	2.66	V
V _{LVDW1L}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	2.62	2.7	2.78	V
V _{LVDW2L}	С	warning threshold - low range	Level 2 falling (LVWV = 01)	2.72	2.8	2.88	V
V _{LVDW3L}	С	low range	Level 3 falling (LVWV = 10)	2.82	2.9	2.98	V
V _{LVDW4L}	С		Level 4 falling (LVWV = 11)	2.92	3.0	3.08	V
V _{HYSDL}	С	Low range low hyste	-voltage detect eresis	_	40	_	mV
V _{HYSWL}	С	Low range warning h	low-voltage nysteresis	_	80	_	mV
V _{BG}	Р	Buffered band	dgap output 4	1.14	1.16	1.18	V

- 1. Maximum is highest voltage that POR is guaranteed.
- 2. POR ramp time must be longer than 20us/V to get a stable startup.
- 3. Rising thresholds are falling threshold + hysteresis.
- 4. Voltage factory trimmed at V_{DD} = 5.0 V, Temp = 125 °C

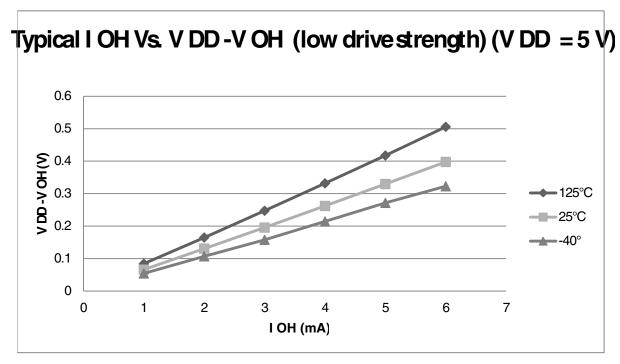


Figure 1. Typical I_{OH} Vs. V_{DD} - V_{OH} (standard drive strength) (V_{DD} = 5 V)

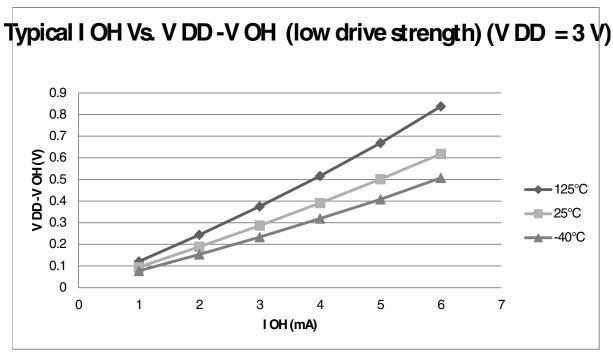


Figure 2. Typical I_{OH} Vs. V_{DD} - V_{OH} (standard drive strength) (V_{DD} = 3 V)

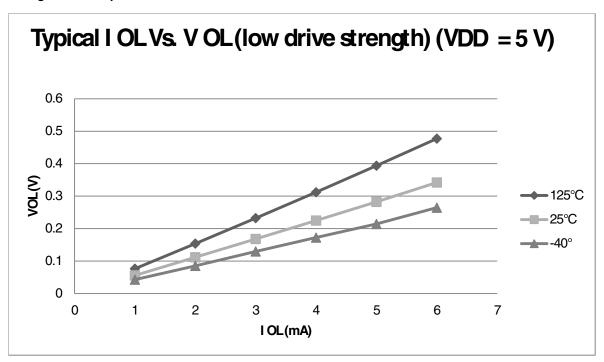


Figure 5. Typical I_{OL} Vs. V_{OL} (standard drive strength) ($V_{DD} = 5 \text{ V}$)

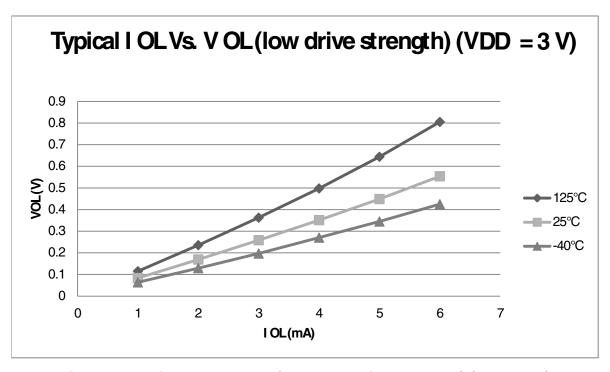


Figure 6. Typical I_{OL} Vs. V_{OL} (standard drive strength) ($V_{DD} = 3 \text{ V}$)

5.1.2 Supply current characteristics

This section includes information about power supply current in various operating modes.

Table 4. Supply current characteristics

Num	С	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp
1	С	Run supply current FEI	RI _{DD}	20 MHz	5	12.6	_	mA	-40 to 125 °C
	С	mode, all modules on; run from flash		10 MHz		7.2	_		
		Hom hash		1 MHz		2.4	_		
	С			20 MHz	3	9.6	_		
	С			10 MHz		6.1	_		
				1 MHz		2.1	_		
2	С	Run supply current FEI	RI _{DD}	20 MHz	5	10.5	_	mA	-40 to 125 °C
	С	mode, all modules off & gated; run from flash		10 MHz		6.2	_		
		gated, full from flash		1 MHz		2.3	_		
	С			20 MHz	3	7.4	_		
	С			10 MHz		5.0	_		
				1 MHz		2.0	_		
3	Р	Run supply current FBE	RI_{DD}	20 MHz	5	12.1	14.8	mA	-40 to 125 °C
	С	mode, all modules on; run from RAM		10 MHz		6.5	_		
		IIOIII I IAWI		1 MHz		1.8	_		
	Р			20 MHz	3	9.1	11.8		
	С			10 MHz		5.5	_		
				1 MHz		1.5	_		
4	Р	Run supply current FBE	RI _{DD}	20 MHz	5	9.8	12.3	mA	-40 to 125 °C
	С	mode, all modules off & gated; run from RAM		10 MHz		5.4	_		
		gated, full from that		1 MHz		1.6	_		
	Р			20 MHz	3	6.9	9.2		
	С			10 MHz		4.4	_		
				1 MHz		1.4	_		
5	С	Wait mode current FEI	WI _{DD}	20 MHz	5	7.8	_	mA	-40 to 125 °C
	С	mode, all modules on		10 MHz		4.5	_		
				1 MHz		1.3	_		
	С			20 MHz	3	5.1	_		
				10 MHz		3.5	_		
				1 MHz		1.2	_		
6	С	Stop3 mode supply	S3I _{DD}	_	5	3.8	_	μΑ	-40 to 125 °C
	С	current no clocks active (except 1 kHz LPO clock) ^{2, 3}		_	3	3	_		-40 to 125 °C

Table 4.	Supply current	characteristics ((continued)
----------	----------------	-------------------	-------------

Num	С	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp
7	С	ADC adder to stop3	_	_	5	44	_	μΑ	-40 to 125 °C
	С	ADLPC = 1			3	40	_		
		ADLSMP = 1							
		ADCO = 1							
		MODE = 10B							
		ADICLK = 11B							
8	С	TSI adder to stop34	_	_	5	111	_	μΑ	-40 to 125 °C
	С	PS = 010B			3	110	_		
		NSCN =0x0F							
		EXTCHRG = 0							
		REFCHRG = 0							
		DVOLT = 01B							
9	С	LVD adder to stop3 ⁵	_	_	5	130		μΑ	-40 to 125 °C
	С				3	125			

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. RTC adder cause <1 μA I_{DD} increase typically, RTC clock source is 1 kHz LPO clock.
- 3. ACMP adder cause <1 μ A I_{DD} increase typically.
- 4. The current varies with TSI configuration and capacity of touch electrode. Please refer to TSI electrical specifications.
- 5. LVD is periodically woken up from stop3 by 5% duty cycle. The period is equal to or less than 2 ms.

5.1.3 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

5.1.3.1 EMC radiated emissions operating behaviors

5.2 Switching specifications

5.2.1 Control timing

Table 5. Control timing

Num	С	Rating		Symbol	Min	Typical ¹	Max	Unit
1	Р	Bus frequency (t _{cyc} = 1/f _{Bus})	f _{Bus}	DC	_	20	MHz	
2	Р	Internal low power oscillator	frequency	f _{LPO}	0.67	1.0	1.25	KHz
3	D	External reset pulse width ^{2,}	2	t _{extrst}	1.5 ×	_	_	ns
					t _{Self_reset}			
4	D	Reset low drive		t _{rstdrv}	$34 \times t_{cyc}$	_	_	ns
5	D	BKGD/MS setup time after debug force reset to enter u	t _{MSSU}	500	_	_	ns	
6	D	BKGD/MS hold time after is debug force reset to enter u	t _{MSH}	100	_	_	ns	
7	D	Keyboard interrupt pulse width			100	_	_	ns
	D		Synchronous path	t _{IHIL}	$1.5 \times t_{cyc}$	_	_	ns
8	С	Port rise and fall time -	_	t _{Rise}	_	10.2	_	ns
	С	Normal drive strength (HDRVE_PTXx = 0) (load = 50 pF) ^{4, 4}		t _{Fall}	_	9.5	_	ns
	С	Port rise and fall time -	_	t _{Rise}	_	5.4	_	ns
	С	Extreme high drive strength (HDRVE_PTXx = 1) (load = 50 pF) ⁴		t _{Fall}	_	4.6	_	ns

- 1. Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.
- 2. This is the shortest pulse that is guaranteed to be recognized as a reset pin request.
- To enter BDM mode following a POR, BKGD/MS must be held low during the powerup and for a hold time of t_{MSH} after V_{DD} rises above V_{LVD}.
- 4. Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range -40 °C to 125 °C.

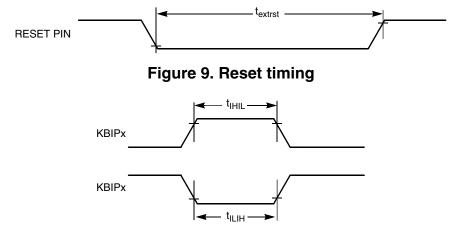


Figure 10. KBIPx timing

S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.

Table 7. FTM input timing (continued)

No.	С	Function	Symbol	Min	Max	Unit
2	D	External clock period	t _{TCLK}	4	_	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	_	t _{cyc}
4	D	External clock low time	t _{clkl}	1.5	_	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

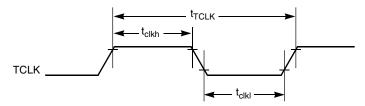


Figure 13. Timer external clock

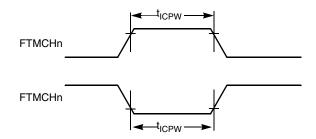


Figure 14. Timer input capture pulse

5.3 Thermal specifications

5.3.1 Thermal characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Table 8	Thermal	characteristics

Rating	Symbol	Value	Unit		
Operating temperature range (packaged)	T _A	T _L to T _H -40 to 125	°C		
Junction temperature range	T_J	-40 to 135	°C		
	Thermal resistance	e single-layer board			
64-pin LQFP	θ_{JA}	71	°C/W		
48-pin LQFP	θ_{JA}	81	°C/W		
32-pin LQFP	θ_{JA}	86	°C/W		
Thermal resistance four-layer board					
64-pin LQFP	θ_{JA}	53	°C/W		
48-pin LQFP θ_{JA}		57	°C/W		
32-pin LQFP	θ_{JA}	57	°C/W		

The average chip-junction temperature (T_I) in ${}^{\circ}C$ can be obtained from:

$$T_J = T_A + (P_D \times \theta_{JA})$$

Where:

 $T_A = Ambient temperature, °C$

 θ_{JA} = Package thermal resistance, junction-to-ambient, °C/W

$$P_D = P_{int} + P_{I/O}$$

 $P_{int} = I_{DD} \times V_{DD}$, Watts - chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins - user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_I (if $P_{I/O}$ is neglected) is:

$$P_D = K \div (T_J + 273 \, ^{\circ}C)$$

Solving the equations above for K gives:

$$K = P_D \times (T_A + 273 \text{ }^{\circ}\text{C}) + \theta_{JA} \times (P_D)^2$$

where K is a constant pertaining to the particular part. K can be determined by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and P_D and the obtained by solving the above equations iteratively for any value of P_D .

6 Peripheral operating requirements and behaviors

reripheral operating requirements and behaviors

6.2 NVM specifications

This section provides details about program/erase times and program/erase endurance for the flash and EEPROM memories.

Table 10. Flash characteristics

С	Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
D	Supply voltage for program/erase -40 °C to 125 °C	V _{prog/erase}	2.7	_	5.5	V
D	Supply voltage for read operation	V_{Read}	2.7	_	5.5	V
D	NVM Bus frequency	f _{NVMBUS}	1	_	25	MHz
D	NVM Operating frequency	f _{NVMOP}	0.8	1	1.05	MHz
D	Erase Verify All Blocks	t _{VFYALL}	_	_	17338	t _{cyc}
D	Erase Verify Flash Block	t _{RD1BLK}	_	_	16913	t _{cyc}
D	Erase Verify EEPROM Block	t _{RD1BLK}	_	_	810	t _{cyc}
D	Erase Verify Flash Section	t _{RD1SEC}	_	_	484	t _{cyc}
D	Erase Verify EEPROM Section	t _{DRD1SEC}	_	_	555	t _{cyc}
D	Read Once	t _{RDONCE}	_	_	450	t _{cyc}
D	Program Flash (2 word)	t _{PGM2}	0.12	0.12	0.29	ms
D	Program Flash (4 word)	t _{PGM4}	0.20	0.21	0.46	ms
D	Program Once	t _{PGMONCE}	0.20	0.21	0.21	ms
D	Program EEPROM (1 Byte)	t _{DPGM1}	0.10	0.10	0.27	ms
D	Program EEPROM (2 Byte)	t _{DPGM2}	0.17	0.18	0.43	ms
D	Program EEPROM (3 Byte)	t _{DPGM3}	0.25	0.26	0.60	ms
D	Program EEPROM (4 Byte)	t _{DPGM4}	0.32	0.33	0.77	ms
D	Erase All Blocks	t _{ERSALL}	96.01	100.78	101.49	ms
D	Erase Flash Block	t _{ERSBLK}	95.98	100.75	101.44	ms
D	Erase Flash Sector	t _{ERSPG}	19.10	20.05	20.08	ms
D	Erase EEPROM Sector	t _{DERSPG}	4.81	5.05	20.57	ms
D	Unsecure Flash	t _{UNSECU}	96.01	100.78	101.48	ms
D	Verify Backdoor Access Key	t _{VFYKEY}	_	_	464	t _{cyc}
D	Set User Margin Level	t _{MLOADU}	_	_	407	t _{cyc}
С	FLASH Program/erase endurance T_L to T_H = -40 °C to 125 °C	n _{FLPE}	10 k	100 k	_	Cycles
С	EEPROM Program/erase endurance TL to TH = -40 °C to 125 °C	n _{FLPE}	50 k	500 k	_	Cycles
С	Data retention at an average junction temperature of T _{Javg} = 85°C after up to 10,000 program/erase cycles	t _{D_ret}	15	100	_	years

^{1.} Minimum times are based on maximum $f_{\mbox{\scriptsize NVMOP}}$ and maximum $f_{\mbox{\scriptsize NVMBUS}}$

^{2.} Typical times are based on typical f_{NVMOP} and maximum f_{NVMBUS}

^{3.} Maximum times are based on typical f_{NVMOP} and typical f_{NVMBUS} plus aging

^{4.} $t_{cyc} = 1 / f_{NVMBUS}$

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Memory section.

6.3 Analog

6.3.1 ADC characteristics

Table 11. 5 V 12-bit ADC operating conditions

Characteri stic			Min	Typ ¹	Max	Unit	Comment
Supply	Absolute	V _{DDA}	2.7	_	5.5	V	_
voltage	Delta to V _{DD} (V _{DD} -V _{DDAD})	ΔV_{DDA}	-100	0	+100	mV	
Ground voltage	Delta to V _{SS} (V _{SS} -V _{SSA}) ²	ΔV_{SSA}	-100	0	+100	mV	
Input voltage		V _{ADIN}	V _{REFL}	_	V _{REFH}	V	
Input capacitance		C _{ADIN}	_	4.5	5.5	pF	
Input resistance		R _{ADIN}	_	3	5	kΩ	_
Analog source	12-bit mode • f _{ADCK} > 4 MHz	R _{AS}	_	_	2	kΩ	External to MCU
resistance	• f _{ADCK} < 4 MHz		_	_	5		
	10-bit modef_{ADCK} > 4 MHz		_	_	5		
	• f _{ADCK} < 4 MHz		_	_	10		
	8-bit mode		_	_	10	1	
	(all valid f _{ADCK})						
ADC	High speed (ADLPC=0)	f _{ADCK}	0.4	_	8.0	MHz	_
conversion clock frequency	Low power (ADLPC=1)		0.4	_	4.0		

^{1.} Typical values assume $V_{DDA} = 5.0 \text{ V}$, Temp = 25°C, $f_{ADCK} = 1.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

^{2.} DC potential difference.

Table 12. 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit
ADC asynchronous clock source	High speed (ADLPC = 0)	Р	f _{ADACK}	2	3.3	5	MHz
	Low power (ADLPC = 1)			1.25	2	3.3	
Conversion time (including sample	Short sample (ADLSMP = 0)	Т	t _{ADC}	_	20	_	ADCK cycles
time)	Long sample (ADLSMP = 1)			_	40	_	
Sample time	Short sample (ADLSMP = 0)	Т	t _{ADS}	_	3.5	_	ADCK cycles
	Long sample (ADLSMP = 1)			_	23.5	_	
Total unadjusted	12-bit mode	Т	E _{TUE}	_	±5.0	_	LSB ^{3, 3}
Error ^{2, 2}	10-bit mode	Р		_	±1.5	±2.0	-
	8-bit mode	Р		_	±0.7	±1.0	
Differential Non-	12-bit mode	Т	DNL	_	±1.0	_	LSB ³
Linearity	10-bit mode ^{4, 4}	Р		_	±0.25	±0.5	
	8-bit mode ⁴	Р		_	±0.15	±0.25	_
Integral Non-Linearity	12-bit mode	Т	INL	_	±1.0	_	LSB ³
	10-bit mode	Т		_	±0.3	±0.5	
	8-bit mode	Т		_	±0.15	±0.25	
Zero-scale error ^{5, 5}	12-bit mode	С	E _{ZS}	_	±2.0	_	LSB ³
	10-bit mode	Р		_	±0.25	±1.0	
	8-bit mode	Р		_	±0.65	±1.0	
Full-scale error ⁶	12-bit mode	Т	E _{FS}	_	±2.5	_	LSB ³
	10-bit mode	Т		_	±0.5	±1.0	
	8-bit mode	Т		_	±0.5	±1.0	
Quantization error	≤12 bit modes	D	EQ	_	_	±0.5	LSB ³
Input leakage error ⁷	all modes	D	E _{IL}		I _{In} * R _{AS}		mV
Temp sensor slope	-40°C- 25°C	D	m	_	3.266	_	mV/°C
	25°C- 125°C			_	3.638	_	
Temp sensor voltage	25°C	D	V _{TEMP25}	_	1.396	_	V

^{1.} Typical values assume $V_{DDA} = 5.0 \text{ V}$, Temp = 25°C, $f_{ADCK} = 1.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

^{2.} Includes quantization.

^{3.} $1 LSB = (V_{REFH} - V_{REFL})/2^N$

^{4.} Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes

^{5.} $V_{ADIN} = V_{SSA}$

^{6.} $V_{ADIN} = V_{DDA}$

^{7.} I_{In} = leakage current (refer to DC characteristics)

6.3.2 Analog comparator (ACMP) electricals

Table 13. Comparator electrical specifications

С	Characteristic	Symbol	Min	Typical	Max	Unit
D	Supply voltage	V_{DDA}	2.7	_	5.5	V
Т	Supply current (Operation mode)	I _{DDA}	_	10	20	μΑ
D	Analog input voltage	V _{AIN}	V _{SS} - 0.3	_	V_{DDA}	V
Р	Analog input offset voltage	V _{AIO}	_	_	40	mV
С	Analog comparator hysteresis (HYST=0)	V _H	_	15	20	mV
С	Analog comparator hysteresis (HYST=1)	V _H	_	20	30	mV
Т	Supply current (Off mode)	I _{DDAOFF}	_	60	_	nA
С	Propagation Delay	t _D	_	0.4	1	μs

6.4 Communication interfaces

6.4.1 SPI switching specifications

The serial peripheral interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. Refer to the SPI chapter of the chip's reference manual for information about the modified transfer formats used for communicating with slower peripheral devices. All timing is shown with respect to 20% V_{DD} and 70% V_{DD} , unless noted, and 100 pF load on all SPI pins. All timing assumes slew rate control is disabled and high drive strength is enabled for SPI output pins.

Table 14. SPI master mode timing

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
1	f _{op}	Frequency of operation	f _{Bus} /2048	f _{Bus} /2	Hz	f _{Bus} is the bus clock
2	t _{SPSCK}	SPSCK period	2 x t _{Bus}	2048 x t _{Bus}	ns	$t_{Bus} = 1/f_{Bus}$
3	t _{Lead}	Enable lead time	1/2	_	t _{SPSCK}	_
4	t _{Lag}	Enable lag time	1/2	_	t _{SPSCK}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{Bus} - 30	1024 x t _{Bus}	ns	_
6	t _{SU}	Data setup time (inputs)	15	_	ns	_
7	t _{HI}	Data hold time (inputs)	0	_	ns	_
8	t _v	Data valid (after SPSCK edge)	_	25	ns	_
9	t _{HO}	Data hold time (outputs)	0	_	ns	_

reripheral operating requirements and behaviors

Table 15. SPI slave mode timing

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
1	f _{op}	Frequency of operation	0	f _{Bus} /4	Hz	f _{Bus} is the bus clock as defined in .
2	t _{SPSCK}	SPSCK period	4 x t _{Bus}	_	ns	$t_{Bus} = 1/f_{Bus}$
3	t _{Lead}	Enable lead time	1	_	t _{Bus}	_
4	t _{Lag}	Enable lag time	1	_	t _{Bus}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{Bus} - 30	_	ns	_
6	t _{SU}	Data setup time (inputs)	15	_	ns	_
7	t _{HI}	Data hold time (inputs)	25	_	ns	_
8	t _a	Slave access time	_	t _{Bus}	ns	Time to data active from high-impedance state
9	t _{dis}	Slave MISO disable time	_	t _{Bus}	ns	Hold time to high- impedance state
10	t _v	Data valid (after SPSCK edge)	_	25	ns	_
11	t _{HO}	Data hold time (outputs)	0	_	ns	_
12	t _{RI}	Rise time input	_	t _{Bus} - 25	ns	_
	t _{Fl}	Fall time input				
13	t _{RO}	Rise time output	_	25	ns	_
	t _{FO}	Fall time output				

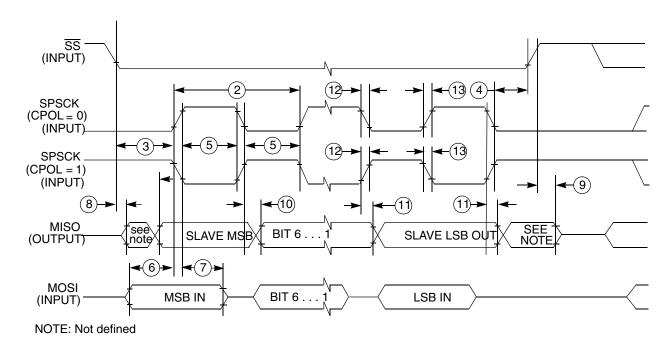


Figure 19. SPI slave mode timing (CPHA = 0)

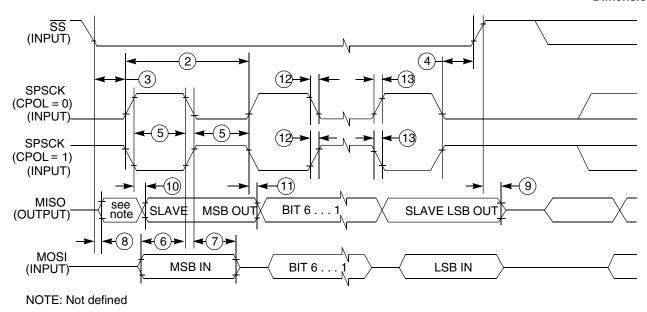


Figure 20. SPI slave mode timing (CPHA=1)

6.5 Human-machine interfaces (HMI)

6.5.1 TSI electrical specifications

Table 16. TSI electrical specifications

Symbol	Description	Min.	Туре	Max	Unit
TSI_RUNF	Fixed power consumption in run mode	_	100	_	μA
TSI_RUNV	Variable power consumption in run mode (depends on oscillator's current selection)	1.0	_	128	μА
TSI_EN	Power consumption in enable mode	_	100	_	μA
TSI_DIS	Power consumption in disable mode	_	1.2	_	μA
TSI_TEN	TSI analog enable time	_	66	_	μs
TSI_CREF	TSI reference capacitor	_	1.0	_	pF
TSI_DVOLT	Voltage variation of VP & VM around nominal values	-10	_	10	%

7 Dimensions

7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.

Table 17. Pin availability by package pin-count (continued)

Pin Number Lowest Priority <> Highest				ighest			
64-LQFP	48-LQFP	32-LQFP	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4
20	16	11	PTC3	FTM2CH3	_	ADP11	_
21	17	12	PTC2	FTM2CH2	_	ADP10	_
22	18	_	PTD7	KBI1P7	TXD2	_	_
23	19	_	PTD6	KBI1P6	RXD2	_	_
24	20	_	PTD5	KBI1P5	_	_	_
25	21	13	PTC1	_	FTM2CH1	ADP9	TSI7
26	22	14	PTC0	_	FTM2CH0	ADP8	TSI6
27	_	_	PTF7	_	_	ADP15	_
28	_	_	PTF6	_	_	ADP14	_
29	_	_	PTF5	_	_	ADP13	_
30	_	_	PTF4	_	_	ADP12	_
31	23	15	PTB3	KBI0P7	MOSI0	ADP7	TSI5
32	24	16	PTB2	KBI0P6	SPSCK0	ADP6	TSI4
33	25	17	PTB1	KBI0P5	TXD0	ADP5	TSI3
34	26	18	PTB0	KBI0P4	RXD0	ADP4	TSI2
35	_	_	PTF3	_	_	_	TSI15
36	_	_	PTF2	_	_	_	TSI14
37	27	19	PTA7	FTM2FAULT2	_	ADP3	TSI1
38	28	20	PTA6	FTM2FAULT1	_	ADP2	TSI0
39	29	_	PTE4	_	_	_	_
40	30	_	_	_	_	_	V _{SS}
41	31	_		_	_	_	V_{DD}
42	_	_	PTF1	_	_	_	TSI13
43	_	_	PTF0	_	_	_	TSI12
44	32	_	PTD4	KBI1P4	_	_	_
45	33	21	PTD3	KBI1P3	SS1	_	TSI11
46	34	22	PTD2	KBI1P2	MISO1	_	TSI10
47	35	23	PTA3 ^{2, 2}	KBI0P3	TXD0	SCL	_
48	36	24	PTA2 ²	KBI0P2	RXD0	SDA	_
49	37	25	PTA1	KBI0P1	FTM0CH1	ACMP1	ADP1
50	38	26	PTA0	KBI0P0	FTM0CH0	ACMP0	ADP0
51	39	27	PTC7	_	TxD1	_	TSI9
52	40	28	PTC6		RxD1	_	TSI8
53	41	_	PTE3	_	SS0	_	_
54	42	_	PTE2	_	MISO0	_	_
55	_	_	PTG3	_	_	_	_
56	_	_	PTG2	_	_	_	_
57	_	_	PTG1		_	_	_

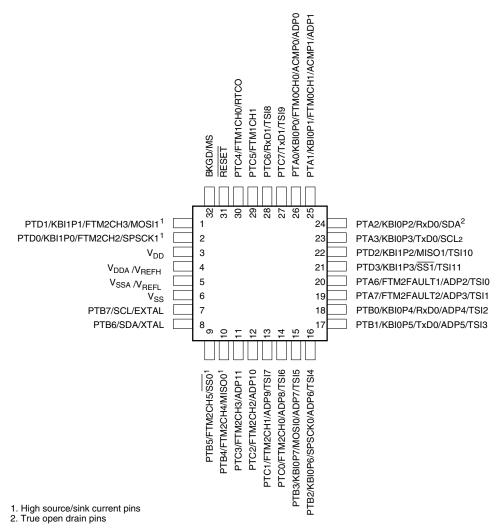


Figure 23. S9S08RN60 32-pin LQFP package

9 Revision history

The following table provides a revision history for this document.

Table 18. Revision history

Rev. No.	Date	Substantial Changes
1	01/2014	Initial Release