

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	55
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/s9s08rna32w1mlh

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Input/Output
 - Up to 55 GPIOs including one output-only pin
 - Two 8-bit keyboard interrupt modules (KBI)
 - Two true open-drain output pins
 - Eight, ultra-high current sink pins supporting 20 mA source/sink current
- Package options
 - 64-pin LQFP
 - 48-pin LQFP
 - 32-pin LQFP

1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to www.freescale.com and perform a part number search for the following device numbers: RN60, RN48 and RN32.

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

S 9 S08 RN AA F1 B CC

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
s	Qualification status	S = fully qualified, general market flow
9	Memory	9 = flash based
S08	Core	• S08 = 8-bit CPU
RN	Device family	• RN
AA	Approximate flash size in KB	 60 = 60 KB 48 = 48 KB 32 = 32 KB
F1	Fab and mask set identifier	• W1
В	Temperature range (°C)	• M = -40 to 125

naungs

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	_	3	_	1

Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-6000	+6000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 125°C	-100	+100	mA	

Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM).

4.4 Voltage and current operating ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in below table may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this document.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pullup resistor associated with the pin is enabled.

Symbol	Description	Min.	Max.	Unit
V _{DD}	Supply voltage	-0.3	5.8	V
I _{DD}	Maximum current into V _{DD}	_	120	mA

^{2.} Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

Symbol	Description	Min.	Max.	Unit
V_{DIO}	Digital input voltage (except RESET, EXTAL, XTAL, or true open drain pin PTA2 and PTA3)	-0.3	V _{DD} + 0.3	V
	Digital input voltage (true open drain pin PTA2 and PTA3)	-0.3	6	V
V_{AIO}	Analog ¹ , RESET, EXTAL, and XTAL input voltage	-0.3	V _{DD} + 0.3	V
I _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V_{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V

^{1.} All digital I/O pins, except open-drain pin PTA2 and PTA3, are internally clamped to V_{SS} and V_{DD} . PTA2 and PTA3 is only clamped to V_{SS} .

5 General

5.1 Nonswitching electrical specifications

5.1.1 DC characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Symbol C **Descriptions** Min Typical¹ Max Unit Operating voltage 2.7 5.5 V V_{OH} С Output high All I/O pins, standard-5 V, $I_{load} =$ $V_{DD} - 0.8$ ٧ drive strength voltage -5 mA V С 3 V, $I_{load} =$ $V_{DD} - 0.8$ -2.5 mA 5 V, $I_{load} =$ С High current drive $V_{DD} - 0.8$ ٧ pins, high-drive -20 mA strength^{2, 2} 3 V, $I_{load} =$ С $V_{DD} - 0.8$ ٧ -10 mA 5 V I_{OHT} D Output high Max total I_{OH} for all -100 mΑ current ports 3 V -50 V_{OL} С Output low All I/O pins, standard-5 V, $I_{load} = 5$ 8.0 ٧ voltage drive strength mΑ ٧ С 3 V, $I_{load} =$ 8.0 2.5 mA ٧ С High current drive 5 V, I_{load} 8.0 pins, high-drive =20 mA strength² 3 V, $I_{load} =$ ٧ С 8.0 10 mA

Table 2. DC characteristics

monswitching electrical specifications

Table 2. DC characteristics (continued)

Symbol	С		Descriptions	·	Min	Typical ¹	Max	Unit
I _{OLT}	D	Output low	Max total I _{OL} for all	5 V	_	_	100	mA
		current	ports	3 V	_	_	50	1
V _{IH}	Р	Input high	All digital inputs	V _{DD} >4.5V	$0.70 \times V_{DD}$	_	_	V
	С	voltage		V _{DD} >2.7V	$0.75 \times V_{DD}$	_	_	1
V _{IL}	Р	Input low	All digital inputs	V _{DD} >4.5V	_	_	$0.30 \times V_{DD}$	V
	С	voltage		V _{DD} >2.7V	_	_	$0.35 \times V_{DD}$	1
V_{hys}	С	Input hysteresis	All digital inputs	_	$0.06 \times V_{DD}$		_	mV
II _{In} I	Р	Input leakage current	All input only pins (per pin)	$V_{IN} = V_{DD}$ or V_{SS}	_	0.1	1	μΑ
ll _{OZ} l	Р	Hi-Z (off- state) leakage current	All input/output (per pin)	$V_{IN} = V_{DD}$ or V_{SS}	_	0.1	1	μА
I _{OZTOT}	С	Total leakage combined for all inputs and Hi-Z pins	All input only and I/O	$V_{IN} = V_{DD}$ or V_{SS}	_	_	2	μА
R _{PU}	Р	Pullup resistors	All digital inputs, when enabled (all I/O pins other than PTA2 and PTA3)	_	30.0	_	50.0	kΩ
R _{PU} ³	Р	Pullup resistors	PTA2 and PTA3 pin	_	30.0		60.0	kΩ
I _{IC}	D	DC injection	Single pin limit	$V_{IN} < V_{SS}$	-0.2	_	2	mA
		current ^{4, 5, 6}	Total MCU limit, includes sum of all stressed pins	$V_{IN} > V_{DD}$	-5	_	25	
C _{In}	С	Input cap	acitance, all pins	_	_	_	7	pF
V _{RAM}	С	RAM re	tention voltage	_	2.0	_	_	V

- 1. Typical values are measured at 25 °C. Characterized, not tested.
- 2. Only PTB4, PTB5 support ultra high current output.
- 3. The specified resistor value is the actual value internal to the device. The pullup value may appear higher when measured externally on the pin.
- 4. All functional non-supply pins, except for PTA2 and PTA3, are internally clamped to V_{SS} and V_{DD} .
- 5. Input must be current-limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the large one.
- 6. Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If the positive injection current (V_{In} > V_{DD}) is higher than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure that external V_{DD} load will shunt current higher than maximum injection current when the MCU is not consuming power, such as no system clock is present, or clock rate is very low (which would reduce overall power consumption).

Table 3. LVD and POR Specification

Symbol	С	Description	Min	Тур	Max	Unit
V _{POR}	D	POR re-arm voltage ^{1, 2}	1.5	1.75	2.0	V

Table 3. LVD and POR Specification (continued)

Symbol	С	Descr	ription	Min	Тур	Max	Unit
V _{LVDH}	С		oltage detect h range (LVDV 1) ³	4.2	4.3	4.4	V
V _{LVW1H}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	4.3	4.4	4.5	V
V _{LVW2H}	С	warning threshold - high range	Level 2 falling (LVWV = 01)	4.5	4.5	4.6	V
V _{LVW3H}	С	High range	Level 3 falling (LVWV = 10)	4.6	4.6	4.7	V
V _{LVW4H}	С		Level 4 falling (LVWV = 11)	4.7	4.7	4.8	V
V _{HYSH}	С		low-voltage ng hysteresis	_	100	_	mV
V _{LVDL}	С		oltage detect range (LVDV =	2.56	2.61	2.66	V
V _{LVDW1L}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	2.62	2.7	2.78	V
V _{LVDW2L}	С	warning threshold - low range	Level 2 falling (LVWV = 01)	2.72	2.8	2.88	V
V _{LVDW3L}	С	low range	Level 3 falling (LVWV = 10)	2.82	2.9	2.98	V
V _{LVDW4L}	С		Level 4 falling (LVWV = 11)	2.92	3.0	3.08	V
V _{HYSDL}	С	Low range low hyste	-voltage detect eresis	_	40	_	mV
V _{HYSWL}	С	Low range warning h	low-voltage nysteresis	_	80	_	mV
V _{BG}	Р	Buffered band	dgap output 4	1.14	1.16	1.18	V

- 1. Maximum is highest voltage that POR is guaranteed.
- 2. POR ramp time must be longer than 20us/V to get a stable startup.
- 3. Rising thresholds are falling threshold + hysteresis.
- 4. Voltage factory trimmed at V_{DD} = 5.0 V, Temp = 125 °C

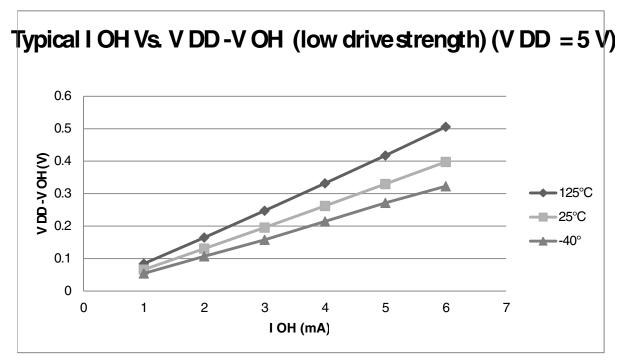


Figure 1. Typical I_{OH} Vs. V_{DD} - V_{OH} (standard drive strength) (V_{DD} = 5 V)

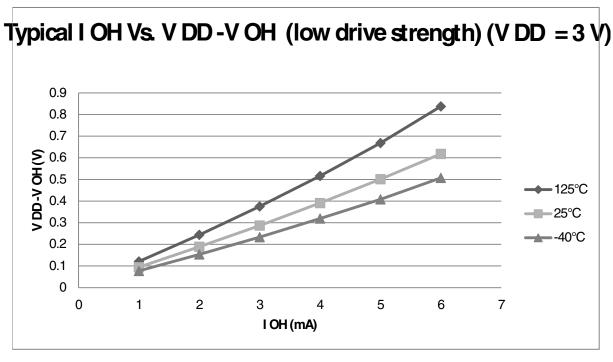


Figure 2. Typical I_{OH} Vs. V_{DD} - V_{OH} (standard drive strength) (V_{DD} = 3 V)

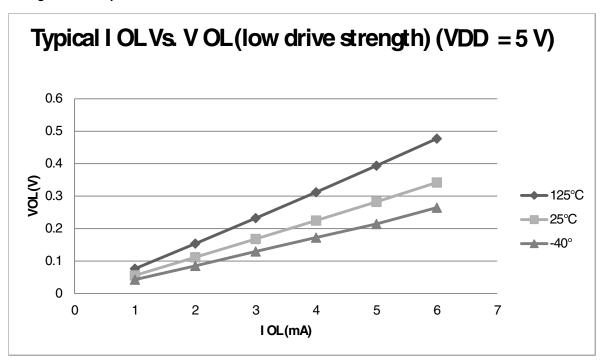


Figure 5. Typical I_{OL} Vs. V_{OL} (standard drive strength) ($V_{DD} = 5 \text{ V}$)

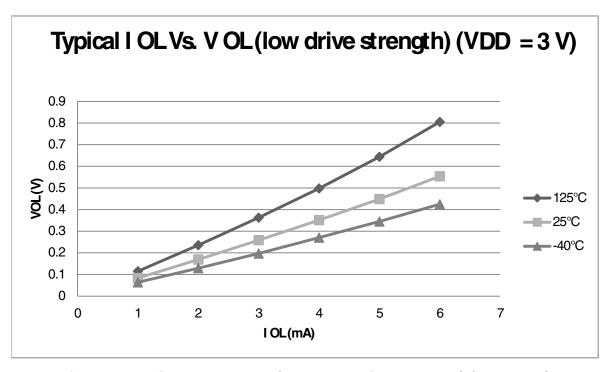


Figure 6. Typical I_{OL} Vs. V_{OL} (standard drive strength) ($V_{DD} = 3 \text{ V}$)

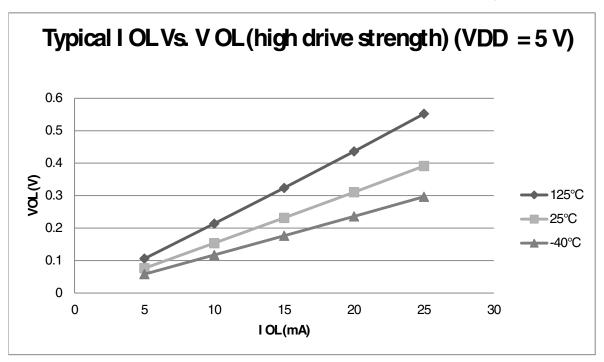


Figure 7. Typical I_{OL} Vs. V_{OL} (high drive strength) ($V_{DD} = 5 \text{ V}$)

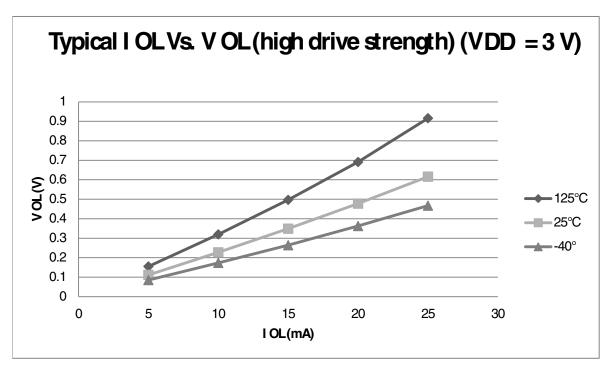


Figure 8. Typical I_{OL} Vs. V_{OL} (high drive strength) ($V_{DD} = 3 \text{ V}$)

5.1.2 Supply current characteristics

This section includes information about power supply current in various operating modes.

Table 4. Supply current characteristics

Num	С	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp
1	С	Run supply current FEI	RI _{DD}	20 MHz	5	12.6	_	mA	-40 to 125 °C
	С	mode, all modules on; run from flash		10 MHz		7.2	_		
		Hom hash		1 MHz		2.4	_		
	С			20 MHz	3	9.6	_		
	С			10 MHz		6.1	_		
				1 MHz		2.1	_		
2	С	Run supply current FEI	RI _{DD}	20 MHz	5	10.5	_	mA	-40 to 125 °C
	С	mode, all modules off & gated; run from flash		10 MHz		6.2	_		
		gated, full from flash		1 MHz		2.3	_		
	С			20 MHz	3	7.4	_		
	С			10 MHz		5.0	_		
				1 MHz		2.0	_		
3	Р	Run supply current FBE	RI_{DD}	20 MHz	5	12.1	14.8	mA	-40 to 125 °C
	С	mode, all modules on; run from RAM		10 MHz		6.5	_		
		IIOIII I IAWI		1 MHz		1.8	_		
	Р			20 MHz	3	9.1	11.8		
	С			10 MHz		5.5	_		
				1 MHz		1.5	_		
4	Р	Run supply current FBE	RI _{DD}	20 MHz	5	9.8	12.3	mA	-40 to 125 °C
	С	mode, all modules off & gated; run from RAM		10 MHz		5.4	_		
		gated, full from that		1 MHz		1.6	_		
	Р			20 MHz	3	6.9	9.2		
	С			10 MHz		4.4	_		
				1 MHz		1.4	_		
5	С	Wait mode current FEI	WI _{DD}	20 MHz	5	7.8	_	mA	-40 to 125 °C
	С	mode, all modules on		10 MHz		4.5	_		
				1 MHz		1.3	_		
	С			20 MHz	3	5.1	_		
				10 MHz		3.5	_		
				1 MHz		1.2	_		
6	С	Stop3 mode supply	S3I _{DD}	_	5	3.8	_	μΑ	-40 to 125 °C
	С	current no clocks active (except 1 kHz LPO clock) ^{2, 3}		_	3	3	_		-40 to 125 °C

5.2 Switching specifications

5.2.1 Control timing

Table 5. Control timing

Num	С	Rating		Symbol	Min	Typical ¹	Max	Unit
1	Р	Bus frequency (t _{cyc} = 1/f _{Bus})		f _{Bus}	DC	_	20	MHz
2	Р	Internal low power oscillator	frequency	f _{LPO}	0.67	1.0	1.25	KHz
3	D	External reset pulse width ^{2,}	2	t _{extrst}	1.5 ×	_	_	ns
					t _{Self_reset}			
4	D	Reset low drive		t _{rstdrv}	$34 \times t_{cyc}$	_	_	ns
5	D	BKGD/MS setup time after debug force reset to enter u		t _{MSSU}	500	_	_	ns
6	D	BKGD/MS hold time after is debug force reset to enter u	t _{MSH}	100	_	_	ns	
7	D	Keyboard interrupt pulse width	Asynchronous path ²	t _{ILIH}	100	_	_	ns
	D		Synchronous path	t _{IHIL}	$1.5 \times t_{cyc}$	_	_	ns
8	С	Port rise and fall time -	_	t _{Rise}	_	10.2	_	ns
	С	Normal drive strength (HDRVE_PTXx = 0) (load = 50 pF) ^{4, 4}			_	9.5	_	ns
	С	Port rise and fall time -	_	t _{Rise}	_	5.4	_	ns
	С	Extreme high drive strength (HDRVE_PTXx = 1) (load = 50 pF) ⁴		t _{Fall}	_	4.6	_	ns

- 1. Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.
- 2. This is the shortest pulse that is guaranteed to be recognized as a reset pin request.
- To enter BDM mode following a POR, BKGD/MS must be held low during the powerup and for a hold time of t_{MSH} after V_{DD} rises above V_{LVD}.
- 4. Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range -40 °C to 125 °C.

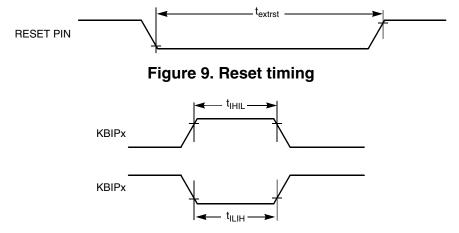


Figure 10. KBIPx timing

S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.

5.2.2 Debug trace timing specifications

Table 6. Debug trace operating behaviors

Symbol	Description	Min.	Max.	Unit
t _{cyc}	Clock period	Frequency	dependent	MHz
t _{wl}	Low pulse width	2	_	ns
t _{wh}	High pulse width	2	_	ns
t _r	Clock and data rise time	_	3	ns
t _f	Clock and data fall time	_	3	ns
t _s	Data setup	3	_	ns
t _h	Data hold	2	_	ns

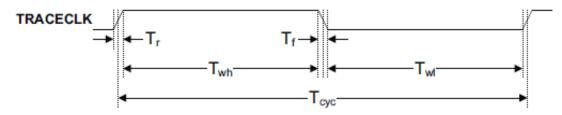


Figure 11. TRACE_CLKOUT specifications

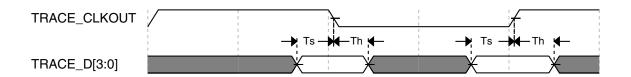


Figure 12. Trace data specifications

5.2.3 FTM module timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

Table 7. FTM input timing

No.	С	Function	Symbol	Min	Max	Unit
1	D	External clock frequency	f _{TCLK}	0	f _{Bus} /4	Hz

Table 7. FTM input timing (continued)

No.	С	Function	Symbol	Min	Max	Unit
2	D	External clock period	t _{TCLK}	4	_	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	_	t _{cyc}
4	D	External clock low time	t _{clkl}	1.5	_	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

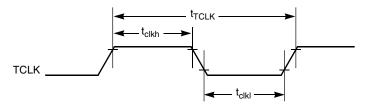


Figure 13. Timer external clock

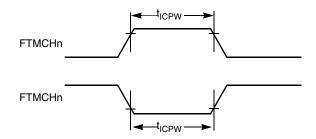


Figure 14. Timer input capture pulse

5.3 Thermal specifications

5.3.1 Thermal characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

reripheral operating requirements and behaviors

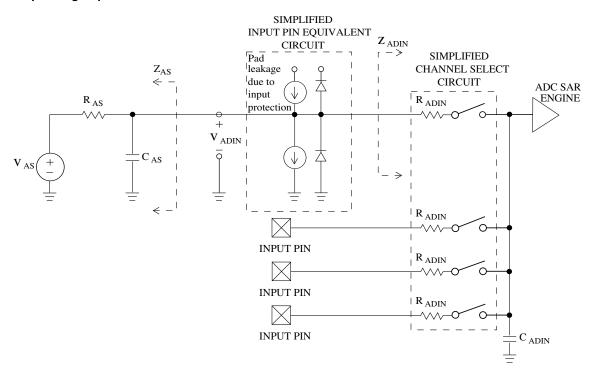


Figure 16. ADC input impedance equivalency diagram

Table 12. 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit
Supply current		Т	I _{DDA}	_	133	_	μA
ADLPC = 1							
ADLSMP = 1							
ADCO = 1							
Supply current		Т	I _{DDA}	_	218	_	μA
ADLPC = 1							
ADLSMP = 0							
ADCO = 1							
Supply current		Т	I _{DDA}	_	327	_	μA
ADLPC = 0							
ADLSMP = 1							
ADCO = 1							
Supply current		Т	I _{DDAD}	_	582	990	μA
ADLPC = 0							
ADLSMP = 0							
ADCO = 1							
Supply current	Stop, reset, module off	Т	I _{DDA}	_	0.011	1	μА

Table 12. 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit
ADC asynchronous clock source	High speed (ADLPC = 0)	Р	f _{ADACK}	2	3.3	5	MHz
	Low power (ADLPC = 1)			1.25	2	3.3	
Conversion time (including sample	Short sample (ADLSMP = 0)	Т	t _{ADC}	_	20	_	ADCK cycles
time)	Long sample (ADLSMP = 1)			_	40	_	
Sample time	Short sample (ADLSMP = 0)	Т	t _{ADS}	_	3.5	_	ADCK cycles
	Long sample (ADLSMP = 1)			_	23.5	_	
Total unadjusted	12-bit mode	Т	E _{TUE}	_	±5.0	_	LSB ^{3, 3}
Error ^{2, 2}	10-bit mode	Р		_	±1.5	±2.0	-
	8-bit mode	Р		_	±0.7	±1.0	
Differential Non-	12-bit mode	Т	DNL	_	±1.0	_	LSB ³
Linearity	10-bit mode ^{4, 4}	Р		_	±0.25	±0.5	
	8-bit mode ⁴	Р		_	±0.15	±0.25	
Integral Non-Linearity	12-bit mode	Т	INL	_	±1.0	_	LSB ³
	10-bit mode	Т		_	±0.3	±0.5	
	8-bit mode	Т		_	±0.15	±0.25	
Zero-scale error ^{5, 5}	12-bit mode	С	E _{ZS}	_	±2.0	_	LSB ³
	10-bit mode	Р		_	±0.25	±1.0	1
	8-bit mode	Р		_	±0.65	±1.0	
Full-scale error ⁶	12-bit mode	Т	E _{FS}	_	±2.5	_	LSB ³
	10-bit mode	Т		_	±0.5	±1.0	
	8-bit mode	Т		_	±0.5	±1.0	
Quantization error	≤12 bit modes	D	EQ	_	_	±0.5	LSB ³
Input leakage error ⁷	all modes	D	E _{IL}		I _{In} * R _{AS}		mV
Temp sensor slope	-40°C- 25°C	D	m	_	3.266	_	mV/°C
	25°C- 125°C			_	3.638	_	
Temp sensor voltage	25°C	D	V _{TEMP25}	_	1.396	_	V

^{1.} Typical values assume $V_{DDA} = 5.0 \text{ V}$, Temp = 25°C, $f_{ADCK} = 1.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

^{2.} Includes quantization.

^{3.} $1 LSB = (V_{REFH} - V_{REFL})/2^N$

^{4.} Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes

^{5.} $V_{ADIN} = V_{SSA}$

^{6.} $V_{ADIN} = V_{DDA}$

^{7.} I_{In} = leakage current (refer to DC characteristics)

reripheral operating requirements and behaviors

Table 15. SPI slave mode timing

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
1	f _{op}	Frequency of operation	0	f _{Bus} /4	Hz	f _{Bus} is the bus clock as defined in .
2	t _{SPSCK}	SPSCK period	4 x t _{Bus}	_	ns	$t_{Bus} = 1/f_{Bus}$
3	t _{Lead}	Enable lead time	1	_	t _{Bus}	_
4	t _{Lag}	Enable lag time	1	_	t _{Bus}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{Bus} - 30	_	ns	_
6	t _{SU}	Data setup time (inputs)	15	_	ns	_
7	t _{HI}	Data hold time (inputs)	25	_	ns	_
8	t _a	Slave access time	_	t _{Bus}	ns	Time to data active from high-impedance state
9	t _{dis}	Slave MISO disable time	_	t _{Bus}	ns	Hold time to high- impedance state
10	t _v	Data valid (after SPSCK edge)	_	25	ns	_
11	t _{HO}	Data hold time (outputs)	0	_	ns	_
12	t _{RI}	Rise time input	_	t _{Bus} - 25	ns	_
	t _{Fl}	Fall time input				
13	t _{RO}	Rise time output	_	25	ns	_
	t _{FO}	Fall time output				

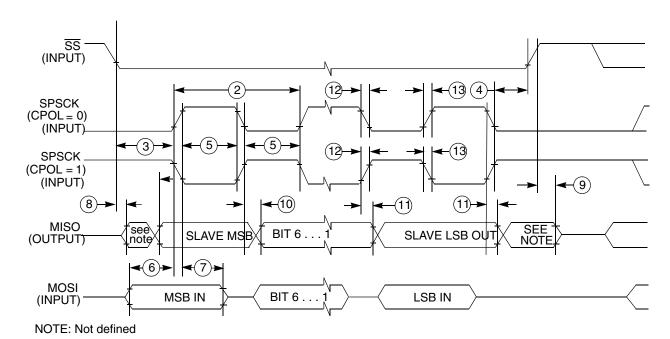


Figure 19. SPI slave mode timing (CPHA = 0)

rmout

To find a package drawing, go to freescale.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
32-pin LQFP	98ASH70029A
48-pin LQFP	98ASH00962A
64-pin LQFP	98ASS23234W

8 Pinout

8.1 Signal multiplexing and pin assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

Table 17. Pin availability by package pin-count

	Pin Number		Lowest Priority <> Highest				
64-LQFP	48-LQFP	32-LQFP	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4
1	1	1	PTD1 ^{1, 1}	KBI1P1	FTM2CH3	MOSI1	_
2	2	2	PTD0 ¹	KBI1P0	FTM2CH2	SPSCK1	_
3	_	_	PTH7	_	_	_	_
4	_	_	PTH6	_	_	_	_
5	3	_	PTE7	_	TCLK2	_	_
6	4	_	PTH2	_	BUSOUT	_	_
7	5	3	_	_	_	_	V _{DD}
8	6	4	_	_	_	V_{DDA}	V _{REFH}
9	7	5	_	_	_	V _{SSA}	V _{REFL}
10	8	6	_	_	_	_	V _{SS}
11	9	7	PTB7	_	SCL	_	EXTAL
12	10	8	PTB6	_	SDA	_	XTAL
13	11	_	_	_	_	_	V _{SS}
14	_	_	PTH1 ¹	_	FTM2CH1	_	_
15	_	_	PTH0 ¹	_	FTM2CH0	_	_
16	12	_	PTE6	_	_	_	_
17	13	_	PTE5	_	_	_	_
18	14	9	PTB5 ¹	FTM2CH5	SS0	_	_
19	15	10	PTB4 ¹	FTM2CH4	MISO0	_	_

Table 17. Pin availability by package pin-count (continued)

Pin Number			Lowest Priority <> Highest					
64-LQFP	48-LQFP	32-LQFP	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4	
20	16	11	PTC3	FTM2CH3	_	ADP11	_	
21	17	12	PTC2	FTM2CH2	_	ADP10	_	
22	18	_	PTD7	KBI1P7	TXD2	_	_	
23	19	_	PTD6	KBI1P6	RXD2	_	_	
24	20	_	PTD5	KBI1P5	_	_	_	
25	21	13	PTC1	_	FTM2CH1	ADP9	TSI7	
26	22	14	PTC0	_	FTM2CH0	ADP8	TSI6	
27	_	_	PTF7	_	_	ADP15	_	
28	_	_	PTF6	_	_	ADP14	_	
29	_	_	PTF5	_	_	ADP13	_	
30	_	_	PTF4	_	_	ADP12	_	
31	23	15	PTB3	KBI0P7	MOSI0	ADP7	TSI5	
32	24	16	PTB2	KBI0P6	SPSCK0	ADP6	TSI4	
33	25	17	PTB1	KBI0P5	TXD0	ADP5	TSI3	
34	26	18	PTB0	KBI0P4	RXD0	ADP4	TSI2	
35	_	_	PTF3	_	_	_	TSI15	
36	_	_	PTF2	_	_	_	TSI14	
37	27	19	PTA7	FTM2FAULT2	_	ADP3	TSI1	
38	28	20	PTA6	FTM2FAULT1	_	ADP2	TSI0	
39	29	_	PTE4	_	_	_	_	
40	30	_	_	_	_	_	V _{SS}	
41	31	_		_	_	_	V_{DD}	
42	_	_	PTF1	_	_	_	TSI13	
43	_	_	PTF0	_	_	_	TSI12	
44	32	_	PTD4	KBI1P4	_	_	_	
45	33	21	PTD3	KBI1P3	SS1	_	TSI11	
46	34	22	PTD2	KBI1P2	MISO1	_	TSI10	
47	35	23	PTA3 ^{2, 2}	KBI0P3	TXD0	SCL	_	
48	36	24	PTA2 ²	KBI0P2	RXD0	SDA	_	
49	37	25	PTA1	KBI0P1	FTM0CH1	ACMP1	ADP1	
50	38	26	PTA0	KBI0P0	FTM0CH0	ACMP0	ADP0	
51	39	27	PTC7	_	TxD1	_	TSI9	
52	40	28	PTC6		RxD1	_	TSI8	
53	41	_	PTE3	_	SS0	_	_	
54	42	_	PTE2	_	MISO0	_	_	
55	_	_	PTG3	_	_	_	_	
56	_	_	PTG2	_	_	_	_	
57	_	_	PTG1		_	_	_	

8.2 Device pin assignment

Figure 21. S9S08RN60 64-pin LQFP package

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductors products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claims alleges that Freescale Semiconductor was negligent regarding the design or manufacture of

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

FreescaleTM and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© 2014 Freescale Semiconductor, Inc.

Document Number: S9S08RN60

Rev. 1, 01/2014

