

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	55
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/s9s08rna48w1mlh

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Input/Output
 - Up to 55 GPIOs including one output-only pin
 - Two 8-bit keyboard interrupt modules (KBI)
 - Two true open-drain output pins
 - Eight, ultra-high current sink pins supporting 20 mA source/sink current
- Package options
 - 64-pin LQFP
 - 48-pin LQFP
 - 32-pin LQFP

naungs

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	_	3	_	1

Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-6000	+6000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 125°C	-100	+100	mA	

Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM).

4.4 Voltage and current operating ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in below table may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this document.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pullup resistor associated with the pin is enabled.

Symbol	Description	Min.	Max.	Unit
V_{DD}	Supply voltage	-0.3	5.8	V
I _{DD}	Maximum current into V _{DD}	_	120	mA

^{2.} Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

monswitching electrical specifications

Table 2. DC characteristics (continued)

Symbol	С		Descriptions	·	Min	Typical ¹	Max	Unit
I _{OLT}	D	Output low	Max total I _{OL} for all	5 V	_	_	100	mA
		current	ports	3 V	_	_	50	1
V _{IH}	Р	Input high	All digital inputs	V _{DD} >4.5V	$0.70 \times V_{DD}$	_	_	V
	С	voltage		V _{DD} >2.7V	$0.75 \times V_{DD}$	_	_	1
V _{IL}	Р	Input low	All digital inputs	V _{DD} >4.5V	_	_	$0.30 \times V_{DD}$	V
	С	voltage		V _{DD} >2.7V	_	_	$0.35 \times V_{DD}$	1
V_{hys}	С	Input hysteresis	All digital inputs	_	$0.06 \times V_{DD}$		_	mV
II _{In} I	Р	Input leakage current	All input only pins (per pin)	$V_{IN} = V_{DD}$ or V_{SS}	_	0.1	1	μΑ
ll _{OZ} l	Р	Hi-Z (off- state) leakage current	All input/output (per pin)	$V_{IN} = V_{DD}$ or V_{SS}	_	0.1	1	μА
I _{OZTOT}	С	Total leakage combined for all inputs and Hi-Z pins	All input only and I/O	$V_{IN} = V_{DD}$ or V_{SS}	_	_	2	μА
R _{PU}	Р	Pullup resistors	All digital inputs, when enabled (all I/O pins other than PTA2 and PTA3)	_	30.0	_	50.0	kΩ
R _{PU} ³	Р	Pullup resistors	PTA2 and PTA3 pin	_	30.0		60.0	kΩ
I _{IC}	D	DC injection	Single pin limit	$V_{IN} < V_{SS}$	-0.2	_	2	mA
		current ^{4, 5, 6}	Total MCU limit, includes sum of all stressed pins	$V_{IN} > V_{DD}$	-5	_	25	
C _{In}	С	Input cap	acitance, all pins	_	_	_	7	pF
V _{RAM}	С	RAM re	tention voltage	_	2.0	_	_	V

- 1. Typical values are measured at 25 °C. Characterized, not tested.
- 2. Only PTB4, PTB5 support ultra high current output.
- 3. The specified resistor value is the actual value internal to the device. The pullup value may appear higher when measured externally on the pin.
- 4. All functional non-supply pins, except for PTA2 and PTA3, are internally clamped to V_{SS} and V_{DD} .
- 5. Input must be current-limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the large one.
- 6. Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If the positive injection current (V_{In} > V_{DD}) is higher than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure that external V_{DD} load will shunt current higher than maximum injection current when the MCU is not consuming power, such as no system clock is present, or clock rate is very low (which would reduce overall power consumption).

Table 3. LVD and POR Specification

Symbol	С	Description	Min	Тур	Max	Unit
V _{POR}	D	POR re-arm voltage ^{1, 2}	1.5	1.75	2.0	V

Table 3. LVD and POR Specification (continued)

Symbol	С	Descr	ription	Min	Тур	Max	Unit
V _{LVDH}	С	threshold - high	Falling low-voltage detect threshold - high range (LVDV = 1) ³		4.3	4.4	V
V _{LVW1H}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	4.3	4.4	4.5	V
V _{LVW2H}	С	warning threshold - high range	Level 2 falling (LVWV = 01)	4.5	4.5	4.6	V
V _{LVW3H}	С	High range	Level 3 falling (LVWV = 10)	4.6	4.6	4.7	V
V _{LVW4H}	С		Level 4 falling (LVWV = 11)	4.7	4.7	4.8	V
V _{HYSH}	С		low-voltage ng hysteresis	_	100	_	mV
V _{LVDL}	С		oltage detect range (LVDV =	2.56	2.61	2.66	V
V _{LVDW1L}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	2.62	2.7	2.78	V
V _{LVDW2L}	С	warning threshold - low range	Level 2 falling (LVWV = 01)	2.72	2.8	2.88	V
V _{LVDW3L}	С	low range	Level 3 falling (LVWV = 10)	2.82	2.9	2.98	V
V _{LVDW4L}	С		Level 4 falling (LVWV = 11)	2.92	3.0	3.08	V
V _{HYSDL}	С	Low range low hyste	-voltage detect eresis	_	40	_	mV
V _{HYSWL}	С	Low range warning h	low-voltage nysteresis	_	80	_	mV
V _{BG}	Р	Buffered band	dgap output 4	1.14	1.16	1.18	V

- 1. Maximum is highest voltage that POR is guaranteed.
- 2. POR ramp time must be longer than 20us/V to get a stable startup.
- 3. Rising thresholds are falling threshold + hysteresis.
- 4. Voltage factory trimmed at V_{DD} = 5.0 V, Temp = 125 °C

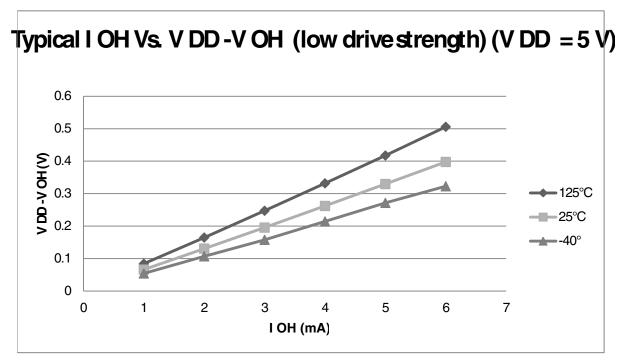


Figure 1. Typical I_{OH} Vs. V_{DD} - V_{OH} (standard drive strength) (V_{DD} = 5 V)

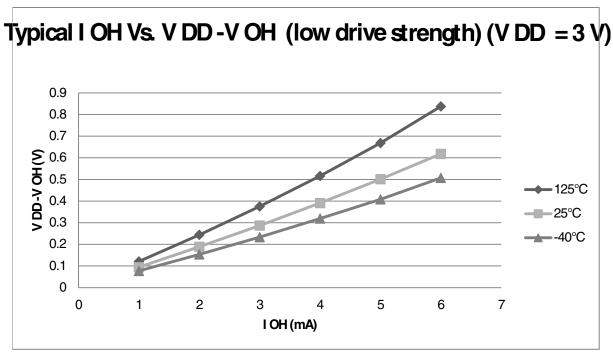


Figure 2. Typical I_{OH} Vs. V_{DD} - V_{OH} (standard drive strength) (V_{DD} = 3 V)

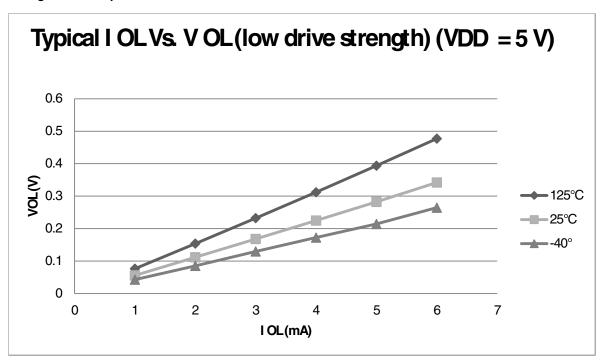


Figure 5. Typical I_{OL} Vs. V_{OL} (standard drive strength) ($V_{DD} = 5 \text{ V}$)

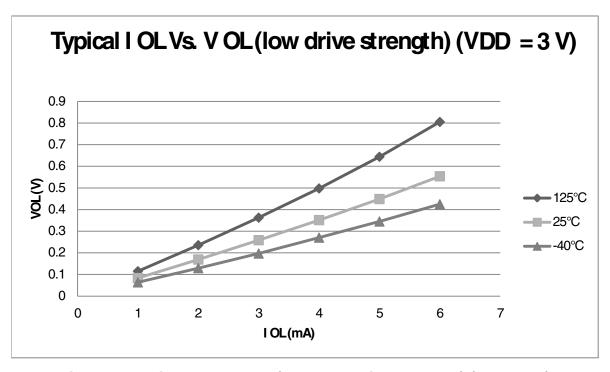


Figure 6. Typical I_{OL} Vs. V_{OL} (standard drive strength) ($V_{DD} = 3 \text{ V}$)

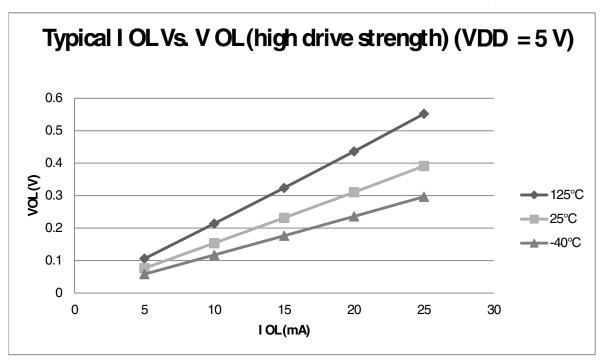


Figure 7. Typical I_{OL} Vs. V_{OL} (high drive strength) ($V_{DD} = 5 \text{ V}$)

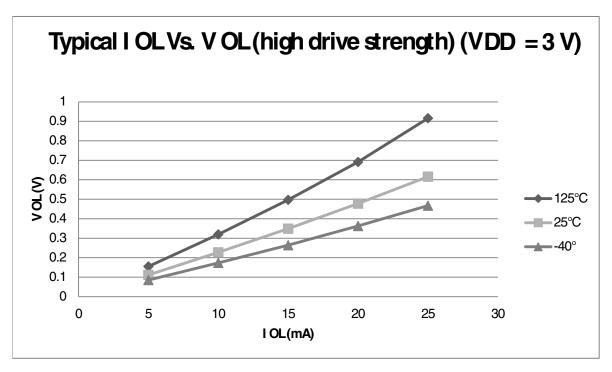


Figure 8. Typical I_{OL} Vs. V_{OL} (high drive strength) ($V_{DD} = 3 \text{ V}$)

Table 4.	Supply current	characteristics ((continued)
----------	----------------	-------------------	-------------

Num	С	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp
7	С	ADC adder to stop3	_	_	5	44	_	μΑ	-40 to 125 °C
	С	ADLPC = 1			3	40	_		
		ADLSMP = 1							
		ADCO = 1							
		MODE = 10B							
		ADICLK = 11B							
8	С	TSI adder to stop34	_	_	5	111	_	μΑ	-40 to 125 °C
	С	PS = 010B			3	110	_		
		NSCN =0x0F							
		EXTCHRG = 0							
		REFCHRG = 0							
		DVOLT = 01B							
9	С	LVD adder to stop3 ⁵	_	_	5	130		μΑ	-40 to 125 °C
	С				3	125			

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. RTC adder cause <1 μA I_{DD} increase typically, RTC clock source is 1 kHz LPO clock.
- 3. ACMP adder cause <1 μ A I_{DD} increase typically.
- 4. The current varies with TSI configuration and capacity of touch electrode. Please refer to TSI electrical specifications.
- 5. LVD is periodically woken up from stop3 by 5% duty cycle. The period is equal to or less than 2 ms.

5.1.3 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

5.1.3.1 EMC radiated emissions operating behaviors

5.2 Switching specifications

5.2.1 Control timing

Table 5. Control timing

Num	С	Rating		Symbol	Min	Typical ¹	Max	Unit
1	Р	Bus frequency (t _{cyc} = 1/f _{Bus})		f _{Bus}	DC	_	20	MHz
2	Р	Internal low power oscillator	frequency	f _{LPO}	0.67	1.0	1.25	KHz
3	D	External reset pulse width ^{2,}	2	t _{extrst}	1.5 ×	_	_	ns
					t _{Self_reset}			
4	D	Reset low drive		t _{rstdrv}	$34 \times t_{cyc}$	_	_	ns
5	D	BKGD/MS setup time after debug force reset to enter u		t _{MSSU}	500	_	_	ns
6	D	BKGD/MS hold time after is debug force reset to enter u	t _{MSH}	100	_	_	ns	
7	D	Keyboard interrupt pulse width	Asynchronous path ²	t _{ILIH}	100	_	_	ns
	D		Synchronous path	t _{IHIL}	$1.5 \times t_{cyc}$	_	_	ns
8	С	Port rise and fall time -	_	t _{Rise}	_	10.2	_	ns
	С	Normal drive strength (HDRVE_PTXx = 0) (load = 50 pF) ^{4, 4}		t _{Fall}	_	9.5	_	ns
	С	Port rise and fall time - —		t _{Rise}	_	5.4	_	ns
	С	Extreme high drive strength (HDRVE_PTXx = 1) (load = 50 pF) ⁴		t _{Fall}	_	4.6	_	ns

- 1. Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.
- 2. This is the shortest pulse that is guaranteed to be recognized as a reset pin request.
- To enter BDM mode following a POR, BKGD/MS must be held low during the powerup and for a hold time of t_{MSH} after V_{DD} rises above V_{LVD}.
- 4. Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range -40 °C to 125 °C.

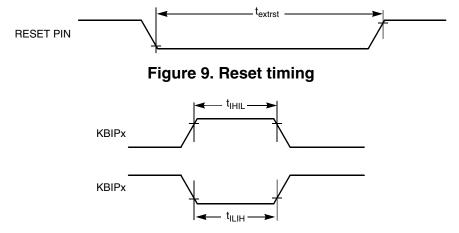


Figure 10. KBIPx timing

S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.

5.2.2 Debug trace timing specifications

Table 6. Debug trace operating behaviors

Symbol	Description	Min.	Max.	Unit
t _{cyc}	Clock period	Frequency	MHz	
t _{wl}	Low pulse width	2	_	ns
t _{wh}	High pulse width	2	_	ns
t _r	Clock and data rise time	_	3	ns
t _f	Clock and data fall time	_	3	ns
t _s	Data setup	3	_	ns
t _h	Data hold	2	_	ns

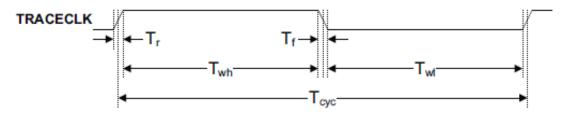


Figure 11. TRACE_CLKOUT specifications

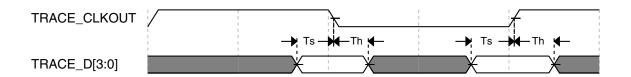


Figure 12. Trace data specifications

5.2.3 FTM module timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

Table 7. FTM input timing

No.	С	Function	Symbol	Min	Max	Unit
1	D	External clock frequency	f _{TCLK}	0	f _{Bus} /4	Hz

Table 7. FTM input timing (continued)

No.	С	Function	Symbol	Min	Max	Unit
2	D	External clock period	t _{TCLK}	4	_	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	_	t _{cyc}
4	D	External clock low time	t _{clkl}	1.5	_	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

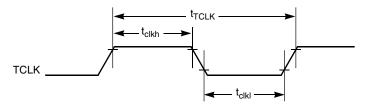


Figure 13. Timer external clock

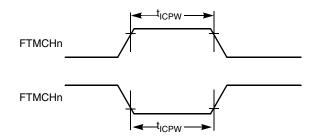


Figure 14. Timer input capture pulse

5.3 Thermal specifications

5.3.1 Thermal characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

6.1 External oscillator (XOSC) and ICS characteristics

Table 9. XOSC and ICS specifications (temperature range = -40 to 125 °C ambient)

Num	С	С	haracteristic	Symbol	Min	Typical ¹	Max	Unit
1	С	Oscillator	Low range (RANGE = 0)	f _{lo}	32	_	40	kHz
	С	crystal or resonator	High range (RANGE = 1) FEE or FBE mode ^{2, 2}	f _{hi}	4	_	20	MHz
	С		High range (RANGE = 1), high gain (HGO = 1), FBELP mode	f _{hi}	4	_	20	MHz
	С		High range (RANGE = 1), low power (HGO = 0), FBELP mode	f _{hi}	4	_	20	MHz
2	D	Lo	oad capacitors	C1, C2		See Note ³		
3	D	Feedback resistor	Low Frequency, Low-Power Mode ^{4, 4}	R _F	_	_	_	ΜΩ
			Low Frequency, High-Gain Mode		_	10	_	ΜΩ
			High Frequency, Low- Power Mode		_	1	_	ΜΩ
			High Frequency, High-Gain Mode		_	1	_	ΜΩ
4	D	Series resistor -	Low-Power Mode ⁴	R _S	_	_	_	kΩ
		Low Frequency	High-Gain Mode		_	200	_	kΩ
5	D	Series resistor - High Frequency	Low-Power Mode ⁴	R_S	_	_	_	kΩ
	D	Series resistor -	4 MHz		_	0	_	kΩ
	D	High Frequency,	8 MHz		_	0	_	kΩ
	D	High-Gain Mode	16 MHz		_	0	_	kΩ
6	С	Crystal start-up	Low range, low power	t _{CSTL}	_	1000	_	ms
	С	time Low range = 39.0625 kHz	Low range, high power		_	800	_	ms
	С	crystal; High	High range, low power	t _{CSTH}	_	3		ms
	С	range = 20 MHz crystal ^{5, 5} , ⁶	High range, high power			1.5	_	ms
7	Т	Internal re	eference start-up time	t _{IRST}	_	20	50	μs
8	D	Square wave	FEE or FBE mode ²	f _{extal}	0.03125	_	5	MHz
	D	input clock frequency	FBELP mode		0	_	20	MHz
9	Р	Average inter	nal reference frequency - trimmed	f _{int_t}	_	39.0625	_	kHz
10	Р	DCO output fi	equency range - trimmed	f _{dco_t}	16	_	20	MHz

reripheral operating requirements and behaviors

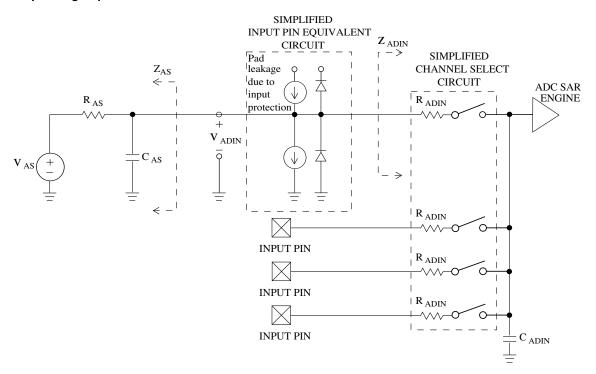


Figure 16. ADC input impedance equivalency diagram

Table 12. 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit
Supply current		Т	I _{DDA}	_	133	_	μA
ADLPC = 1							
ADLSMP = 1							
ADCO = 1							
Supply current		Т	I _{DDA}	_	218	_	μA
ADLPC = 1							
ADLSMP = 0							
ADCO = 1							
Supply current		Т	I _{DDA}	_	327	_	μΑ
ADLPC = 0							
ADLSMP = 1							
ADCO = 1							
Supply current		Т	I _{DDAD}	_	582	990	μA
ADLPC = 0							
ADLSMP = 0							
ADCO = 1							
Supply current	Stop, reset, module off	Т	I _{DDA}	_	0.011	1	μА

Table 12. 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit
ADC asynchronous clock source	High speed (ADLPC = 0)	Р	f _{ADACK}	2	3.3	5	MHz
	Low power (ADLPC = 1)			1.25	2	3.3	
Conversion time (including sample	Short sample (ADLSMP = 0)	Т	t _{ADC}	_	20	_	ADCK cycles
time)	Long sample (ADLSMP = 1)			_	40	_	
Sample time	Short sample (ADLSMP = 0)	Т	t _{ADS}	_	3.5	_	ADCK cycles
	Long sample (ADLSMP = 1)			_	23.5	_	
Total unadjusted Error ^{2, 2}	12-bit mode	Т	E _{TUE}	_	±5.0	_	LSB ^{3, 3}
	10-bit mode	Р		_	±1.5	±2.0	
	8-bit mode	Р		_	±0.7	±1.0	
Differential Non-	12-bit mode	Т	DNL	_	±1.0	_	LSB ³
Linearity	10-bit mode ^{4, 4}	Р		_	±0.25	±0.5	
	8-bit mode ⁴	Р		_	±0.15	±0.25	
Integral Non-Linearity	12-bit mode	Т	INL	_	±1.0	_	LSB ³
	10-bit mode	Т		_	±0.3	±0.5	
	8-bit mode	Т		_	±0.15	±0.25	
Zero-scale error ^{5, 5}	12-bit mode	С	E _{ZS}	_	±2.0	_	LSB ³
	10-bit mode	Р		_	±0.25	±1.0	
	8-bit mode	Р		_	±0.65	±1.0	
Full-scale error ⁶	12-bit mode	Т	E _{FS}	_	±2.5	_	LSB ³
	10-bit mode	Т		_	±0.5	±1.0	
	8-bit mode	Т		_	±0.5	±1.0	
Quantization error	≤12 bit modes	D	EQ	_	_	±0.5	LSB ³
Input leakage error ⁷	all modes	D	E _{IL}		I _{In} * R _{AS}		mV
Temp sensor slope	-40°C– 25°C	D	m	_	3.266	_	mV/°C
	25°C- 125°C			_	3.638	_	
Temp sensor voltage	25°C	D	V _{TEMP25}	_	1.396	_	V

^{1.} Typical values assume $V_{DDA} = 5.0 \text{ V}$, Temp = 25°C, $f_{ADCK} = 1.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

^{2.} Includes quantization.

^{3.} $1 LSB = (V_{REFH} - V_{REFL})/2^N$

^{4.} Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes

^{5.} $V_{ADIN} = V_{SSA}$

^{6.} $V_{ADIN} = V_{DDA}$

^{7.} I_{In} = leakage current (refer to DC characteristics)

6.3.2 Analog comparator (ACMP) electricals

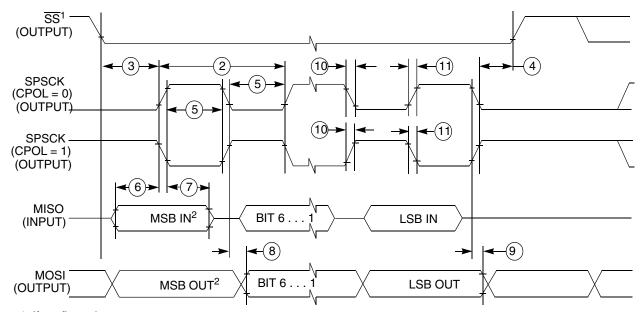
Table 13. Comparator electrical specifications

С	Characteristic	Symbol	Min	Typical	Max	Unit
D	Supply voltage	V_{DDA}	2.7	_	5.5	V
Т	Supply current (Operation mode)	I _{DDA}	_	10	20	μΑ
D	Analog input voltage	V _{AIN}	V _{SS} - 0.3	_	V_{DDA}	V
Р	Analog input offset voltage	V _{AIO}	_	_	40	mV
С	Analog comparator hysteresis (HYST=0)	V _H	_	15	20	mV
С	Analog comparator hysteresis (HYST=1)	V _H	_	20	30	mV
Т	Supply current (Off mode)	I _{DDAOFF}	_	60	_	nA
С	Propagation Delay	t _D	_	0.4	1	μs

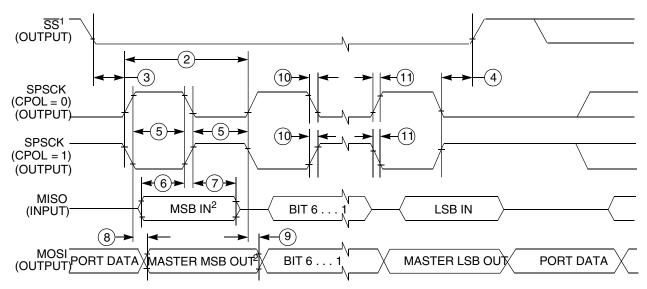
6.4 Communication interfaces

6.4.1 SPI switching specifications

The serial peripheral interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. Refer to the SPI chapter of the chip's reference manual for information about the modified transfer formats used for communicating with slower peripheral devices. All timing is shown with respect to 20% V_{DD} and 70% V_{DD} , unless noted, and 100 pF load on all SPI pins. All timing assumes slew rate control is disabled and high drive strength is enabled for SPI output pins.


Table 14. SPI master mode timing

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
1	f _{op}	Frequency of operation	f _{Bus} /2048	f _{Bus} /2	Hz	f _{Bus} is the bus clock
2	t _{SPSCK}	SPSCK period	2 x t _{Bus}	2048 x t _{Bus}	ns	$t_{Bus} = 1/f_{Bus}$
3	t _{Lead}	Enable lead time	1/2	_	t _{SPSCK}	_
4	t _{Lag}	Enable lag time	1/2	_	t _{SPSCK}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{Bus} - 30	1024 x t _{Bus}	ns	_
6	t _{SU}	Data setup time (inputs)	15	_	ns	_
7	t _{HI}	Data hold time (inputs)	0	_	ns	_
8	t _v	Data valid (after SPSCK edge)	_	25	ns	_
9	t _{HO}	Data hold time (outputs)	0	_	ns	_


Table 14.	SPI master	mode timing	(continued)
I UDIC IT.	OI I IIIGGIGI	mode uning	(OOIILIII aca)

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
10	t _{RI}	Rise time input	_	t _{Bus} - 25	ns	_
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	_	25	ns	_
	t _{FO}	Fall time output				

- 1. If configured as an output.
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 17. SPI master mode timing (CPHA=0)

- 1.If configured as output
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 18. SPI master mode timing (CPHA=1)

S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.

rmout

To find a package drawing, go to freescale.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number		
32-pin LQFP	98ASH70029A		
48-pin LQFP	98ASH00962A		
64-pin LQFP	98ASS23234W		

8 Pinout

8.1 Signal multiplexing and pin assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

Table 17. Pin availability by package pin-count

	Pin Number			Lowest I	Priority <> H	ighest	
64-LQFP	48-LQFP	32-LQFP	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4
1	1	1	PTD1 ^{1, 1}	KBI1P1	FTM2CH3	MOSI1	_
2	2	2	PTD0 ¹	KBI1P0	FTM2CH2	SPSCK1	_
3	_	_	PTH7	_	_	_	_
4	_	_	PTH6	_	_	_	_
5	3	_	PTE7	_	TCLK2	_	_
6	4	_	PTH2	_	BUSOUT	_	_
7	5	3	_	_	_	_	V _{DD}
8	6	4	_	_	_	V_{DDA}	V _{REFH}
9	7	5	_	_	_	V _{SSA}	V _{REFL}
10	8	6	_	_	_	_	V _{SS}
11	9	7	PTB7	_	SCL	_	EXTAL
12	10	8	PTB6	_	SDA	_	XTAL
13	11	_	_	_	_	_	V _{SS}
14	_	_	PTH1 ¹	_	FTM2CH1	_	_
15	_	_	PTH0 ¹	_	FTM2CH0	_	_
16	12	_	PTE6	_	_	_	_
17	13	_	PTE5	_	_	_	_
18	14	9	PTB5 ¹	FTM2CH5	SS0	_	_
19	15	10	PTB4 ¹	FTM2CH4	MISO0	_	_

Table 17. Pin availability by package pin-count (continued)

	Pin Number	•	Lowest Priority <> Highest							
64-LQFP	48-LQFP	32-LQFP	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4			
20	16	11	PTC3	FTM2CH3	_	ADP11	_			
21	17	12	PTC2	FTM2CH2	_	ADP10	_			
22	18	_	PTD7	KBI1P7	TXD2	_	_			
23	19	_	PTD6	KBI1P6	RXD2	_	_			
24	20	_	PTD5	KBI1P5	_	_	_			
25	21	13	PTC1	_	FTM2CH1	ADP9	TSI7			
26	22	14	PTC0	_	FTM2CH0	ADP8	TSI6			
27	_	_	PTF7	_	_	ADP15	_			
28	_	_	PTF6	_	_	ADP14	_			
29	_	_	PTF5	_	_	ADP13	_			
30	_	_	PTF4	_	_	ADP12	_			
31	23	15	PTB3	KBI0P7	MOSI0	ADP7	TSI5			
32	24	16	PTB2	KBI0P6	SPSCK0	ADP6	TSI4			
33	25	17	PTB1	KBI0P5	TXD0	ADP5	TSI3			
34	26	18	PTB0	KBI0P4	RXD0	ADP4	TSI2			
35	_	_	PTF3	_	_	_	TSI15			
36	_	_	PTF2	_	_	_	TSI14			
37	27	19	PTA7	FTM2FAULT2	_	ADP3	TSI1			
38	28	20	PTA6	FTM2FAULT1	_	ADP2	TSI0			
39	29	_	PTE4	_	_	_	_			
40	30	_	_	_	_	_	V _{SS}			
41	31	_		_	_	_	V_{DD}			
42	_	_	PTF1	_	_	_	TSI13			
43	_	_	PTF0	_	_	_	TSI12			
44	32	_	PTD4	KBI1P4	_	_	_			
45	33	21	PTD3	KBI1P3	SS1	_	TSI11			
46	34	22	PTD2	KBI1P2	MISO1	_	TSI10			
47	35	23	PTA3 ^{2, 2}	KBI0P3	TXD0	SCL	_			
48	36	24	PTA2 ²	KBI0P2	RXD0	SDA	_			
49	37	25	PTA1	KBI0P1	FTM0CH1	ACMP1	ADP1			
50	38	26	PTA0	KBI0P0	FTM0CH0	ACMP0	ADP0			
51	39	27	PTC7	_	TxD1	_	TSI9			
52	40	28	PTC6		RxD1	_	TSI8			
53	41	_	PTE3	_	SS0	_	_			
54	42	_	PTE2	_	MISO0	_	_			
55	_	_	PTG3	_	_	_	_			
56	_	_	PTG2	_	_	_	_			
57	_	_	PTG1		_	_	_			

rmoul

Table 17. Pin availability by package pin-count (continued)

	Pin Number			Lowest F	Priority <> H	ighest	
64-LQFP	48-LQFP	32-LQFP	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4
58	_	_	PTG0	_	_	_	_
59	43	_	PTE1 ¹	_	MOSI0	_	_
60	44	_	PTE0 ¹	_	SPSCK0	TCLK1	_
61	45	29	PTC5	_	FTM1CH1	_	_
62	46	30	PTC4	_	FTM1CH0	RTCO	_
63	47	31	_	_	_	_	RESET
64	48	32	_	_	_	BKGD	MS

- 1. This is a high current drive pin when operated as output.
- 2. This is a true open-drain pin when operated as output.

Note

When an alternative function is first enabled, it is possible to get a spurious edge to the module. User software must clear any associated flags before interrupts are enabled. The table above illustrates the priority if multiple modules are enabled. The highest priority module will have control over the pin. Selecting a higher priority pin function with a lower priority function already enabled can cause spurious edges to the lower priority module. Disable all modules that share a pin before enabling another module.

8.2 Device pin assignment

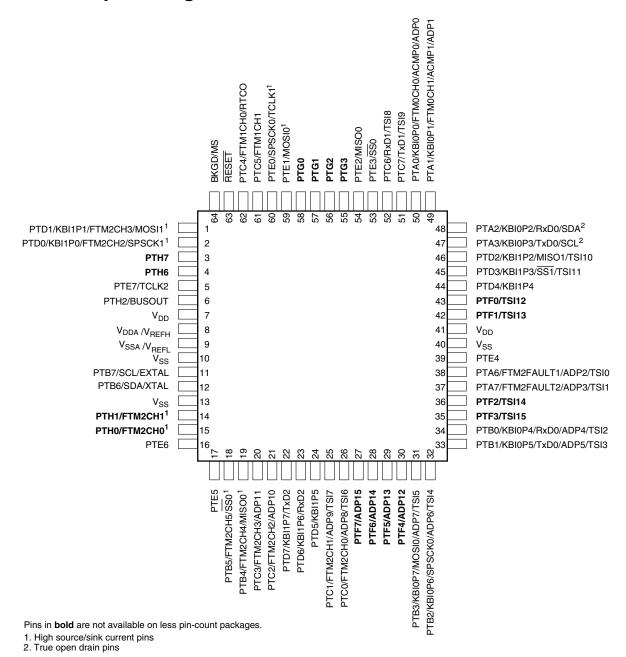


Figure 21. S9S08RN60 64-pin LQFP package