

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, EBI/EMI, SCI, Serial I/O, UART/USART
Peripherals	POR, WDT
Number of I/O	81
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	<u> </u>
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90f543gspf-g

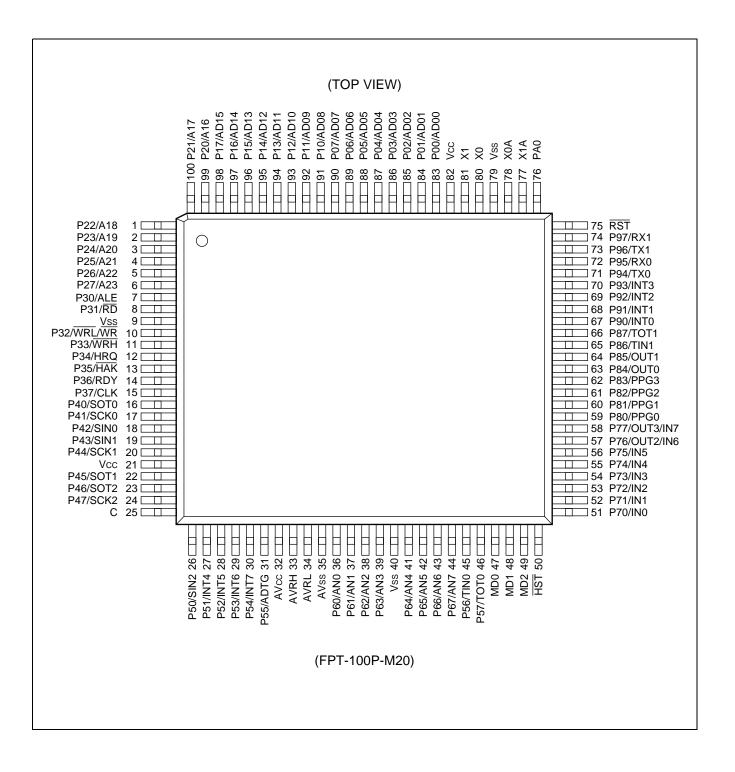
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Starting by an external trigger input. Conversion time : 26.3 μ s

FULL-CAN interfaces
 MB90540G series : 2 channels
 MB90545G series : 1 channel
 Conforming to Version 2.0 Part A and Part B

Flexible message buffering (mailbox and FIFO buffering can be mixed)


- External bus interface : Maximum address space 16 Mbytes
- Package: QFP-100, LQFP-100

- *2 : It is setting of DIP switch S2 when Emulation pod (MB2145-507) is used.Please refer to the MB2145-507 hardware manual (2.7 Emulator-specific Power Pin) about details.
- *3 : Operating Voltage Range

Products	Operation guarantee range
MB90F543G(S)/F546G(S)/F548G(S)/ MB90549G(S)/F549G(S)/V540/V540G	4.5 V to 5.5 V
MB90F548GL(S)/543G(S)/547G(S)/548G(S)	3.5 V to 5.5 V

3. Pin Description

Pin No.		Diaman	0:	Function				
LQFP*2	QFP ^{∗1}	Pin name	Circuit type	Function				
80 81	82 83	X0 X1	A (Oscillation)	High speed crystal oscillator input pins				
78	80	X0A	A	Low speed crystal oscillator input pins. For the one clock system parts, perfom external pull-down processing.				
77	79	X1A	(Oscillation)	Low speed crystal oscillator input pins. For the one clock system parts, leave it open.				
75	77	RST	В	External reset request input pin				
50	52	HST	С	Hardware standby input pin				
00.45.00	05 40 00	P00 to P07		General I/O port with programmable pullup. This function is enabled in the single-chip mode.				
83 to 90	85 to 92	AD00 to AD07		I/O pins for 8 lower bits of the external address/data bus. This function is enabled when the external bus is enabled.				
	P10 to P17		single-chip mode.					
91 to 98	93 to 100	AD08 to AD15	-1	I/O pins for 8 higher bits of the external address/data bus. This function is enabled when the external bus is enabled.				
00.10.0	4 1 2	P20 to P27		General I/O port with programmable pullup. In external bus mode, this function is valid when the corresponding bits in the external address output control resister (HACR) are set to "1".				
99 to 6	1 to 8	A16 to A23		8-bit I/O pins for A16 to A23 at the external address/data bus. In external b mode, this function is valid when the corresponding bits in the external address output control resister (HACR) are set to "0".				
7		P30		General I/O port with programmable pullup. This function is enabled in the single-chip mode.				
7	9	ALE		Address latch enable output pin. This function is enabled when the external bus is enabled.				
0	10	P31		General I/O port with programmable pullup. This function is enabled in the single-chip mode.				
8	10	RD		Read strobe output pin for the data bus. This function is enabled when the external bus is enabled.				
		P32		General I/O port with programmable pullup. This function is enabled in the single-chip mode or when the WR/WRL pin output is disabled.				
10	12	WRL WR	1	Write strobe output pin for the data bus. This function is enabled when but the external bus and the WR/WRL pin output are enabled. WRL is write-strobe output pin for the lower 8 bits of the data bus in 16-bit access. WR write-strobe output pin for the 8 bits of the data bus in 8-bit access.				

(Continued)

Circuit type	Diagram	Remarks
		CMOS level output
		 CMOS Hysteresis input
н	Vcc Vcc P-ch P-ch N-ch m CMOS Hysteresis input	 Programmable pull-up resistor : 50 kΩ approx.
		CMOS level output
		 CMOS Hysteresis input
		 TTL level input (Flash devices in Flash writer mode only)
	P-ch	 Programmable pullup resistor : 50 kΩ approx.
1	N-ch	
	R R Hysteresis input	
	TTL level input	

(6) Pull-up/down resistors

The MB90540G/545G Series does not support internal pull-up/down resistors (except Port0 – Port3 : pull-up resistors) . Use external components where needed.

(7) Crystal Oscillator Circuit

Noises around X0 or X1 pins may be possible causes of abnormal operations. Make sure to provide bypass capacitors via the shortest distances from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure, to the utmost effort, that lines of oscillation circuits do not cross the lines of other circuits.

It is highly recommended to provide a printed circuit board artwork surrounding X0 and X1 pins with a ground area for stabilizing the operation.

(8) Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply (AVcc, AVRH, AVRL) and analog inputs (AN0 to AN7) after turning-on the digital power supply (Vcc).

Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage does not exceed AVRH or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

(9) Connection of Unused Pins of A/D Converter

Connect unused pins of A/D converter to $AV_{CC} = V_{CC}$, $AV_{SS} = AVRH = V_{SS}$.

(10) N.C. Pin

The N.C. (internally connected) pin must be opened for use.

(11) Notes on Energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at 50 μ s or more (0.2 V to 2.7 V).

MB90540G/545G Series

(Continued)

Address	Register	Abbreviation	Access	Resource name	Initial value
3928н	Output Compare Register 0	OCCP0	R/W		XXXXXXXXB
3929н	Output Compare Register 0	OCCP0	R/W	Output Compare 0/1	XXXXXXXXB
392Ан	Output Compare Register 1	OCCP1	R/W	Output Compare 0/1	XXXXXXXXB
392Вн	Output Compare Register 1	OCCP1	R/W		XXXXXXXXB
392Сн	Output Compare Register 2	OCCP2	R/W		XXXXXXXXB
392Dн	Output Compare Register 2	OCCP2	R/W	Output Compore 2/2	XXXXXXXXB
392Ен	Output Compare Register 3	OCCP3	R/W	Output Compare 2/3	XXXXXXXXB
392Fн	Output Compare Register 3	OCCP3	R/W		XXXXXXXXB
3930н to 39FFн	Reserved			·	
3A00H to 3AFFH	Reserved for CAN 0 Interface.				
3B00н to 3BFFн	Reserved for CAN 0 Interface.				
3C00н to 3CFFн	Reserved for CAN 1 Interface.				
3D00н to 3DFFн	Reserved for CAN 1 Interface.				
3E00н to 3FFFн	Reserved				

- Read/write notation
 - R/W : Reading and writing permitted
 - R : Read-only
 - W : Write-only

Initial value notation

- 0 : Initial value is "0".
- 1 : Initial value is "1".
- X : Initial value is undefined.
- _ : Initial value is unused.

Note: Any write access to reserved addresses in I/O map should not be performed. A read access to reserved addresses results in reading "X".

9. CAN Controller

The MB90540G series contains two CAN controllers (CAN0 and CAN1), the MB90545G series contains only one (CAN0). The Evaluation Chip MB90V540G also has two CAN controllers.

The CAN controller has the following features :

- Conforms to CAN Specification Version 2.0 Part A and B
 - Supports transmission/reception in standard frame and extended frame formats
- Supports transmission of data frames by receiving remote frames
- 16 transmitting/receiving message buffers
 - □ 29-bit ID and 8-byte data
 - Multi-level message buffer configuration
- Provides full-bit comparison, full-bit mask, acceptance register 0/acceptance register 1 for each message buffer as ID acceptance mask
 - Two acceptance mask registers in either standard frame format or extended frame formats
- Bit rate programmable from 10 Kbps to 1 Mbps (when input clock is at 16 MHz)

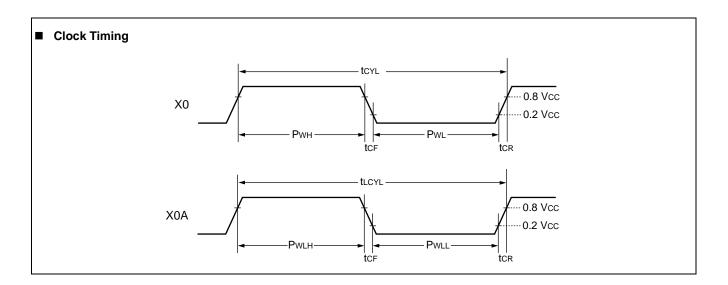
List of Control Registers

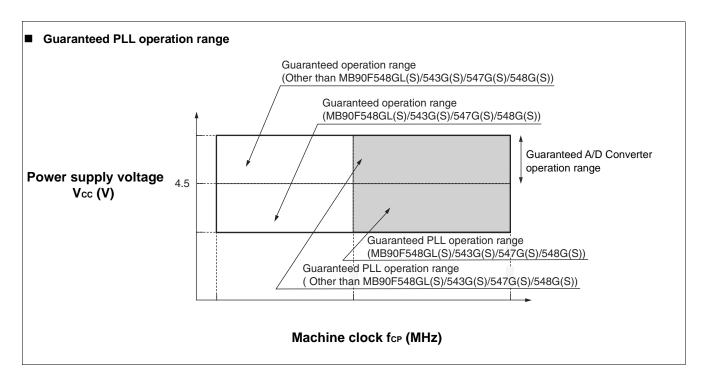
Address		Register	Abbreviation	Access	Initial Value		
CAN0	CAN1	Kegiatei	Abbieviation	ALLESS	initial value		
000070н	000080н	Message buffer valid register	BVALR	R/W	00000000 00000000в		
000071н	000081 н	Nessage builet valid register	DVALK	N/ W	0000000 000000B		
000072н	000082н	Transmit request register	TREOR	R/W	0000000 0000000		
000073н	000083н		IREQR	r//v			
000074н	000084н	Transmit cancel register	TCANR	w	00000000 00000000в		
000075н	000085н		ICANK	vv			
000076н	000086н	Transmit complete register	TCR	R/W	0000000 00000000		
000077н	000087н		TOR	10,00	0000000 000000B		
000078н	000088н	Receive complete register	RCR	R/W	00000000 00000000B		
000079н	000089н	Receive complete register	RCR	r/vv			
00007Ан	00008Ан	Remote request receiving register	RRTRR	R/W	0000000 0000000в		
00007Bн	00008Bн	Remote request receiving register		N/ W	0000000 000000B		
00007Cн	00008Сн		ROVRR	R/W	00000000 00000000B		
00007Dн	00008Dн	Receive overrun register	ROVER	r/vv			
00007Eн	00008Eн	Receive interrupt enable register	RIER	R/W	00000000 00000000B		
00007Fн	00008Fн	Receive interrupt enable register		IN/ VV			

Address		Register	Abbreviation	Access	Initial Value		
CAN0	CAN1	Keyistei	Abbreviation	ALLESS			
003А24н	003C24 _H				XXXXXXXX XXXXXXXX		
003A25н	003C25н	ID register 1	IDR1	R/W	^^^^^		
003A26н	003C26н			1.1/ 1.1	XXXXX XXXXXXXB		
003A27н	003C27н						
003A28н	003C28н				XXXXXXXX XXXXXXXB		
003A29н	003C29н	ID register 2	IDR2	R/W			
003А2Ан	003C2Ан			1.1/ 1.1	XXXXX XXXXXXXB		
003A2Bн	003C2Bн				~~~~~ ~~~~~		
003А2Сн	003С2Сн				XXXXXXXX XXXXXXX8		
003A2Dн	003C2Dн	ID register 3	IDR3 R/W	P/M			
003А2Ен	003C2Eн			1.1/ 1.1	XXXXX XXXXXXXB		
003A2Fн	003C2Fн						
003А30н	003C30н			R/W	XXXXXXXX XXXXXXXB		
003A31н	003C31н	ID register 4	IDR4				
003А32н	003С32н				1.7,	XXXXX XXXXXXXB	
003А33н	003С33н						
003А34н	003C34н				XXXXXXXX XXXXXXXxx		
003А35 н	003C35н	ID register 5	IDR5	R/W			
003А36н	003C36н			1.7, 4.4	XXXXX XXXXXXXXB		
003А37н	003C37н						
003А38н	003C38н				XXXXXXXX XXXXXXXXB		
003А39н	003С39н	ID register 6	IDR6	R/W			
003АЗАн	003С3Ан			11/11	XXXXX XXXXXXXXB		
003А3Вн	003C3Bн				^^^^^		

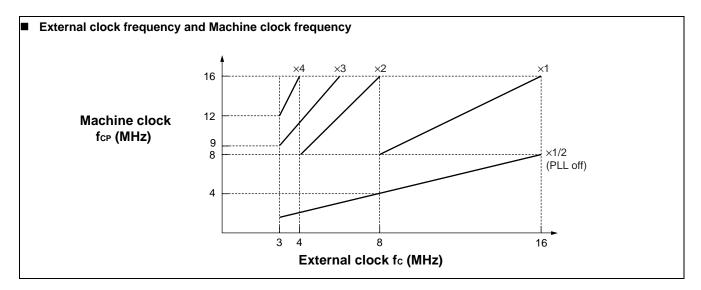
List of Message Buffers (DLC Registers and Data Registers)

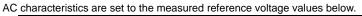
Address		B 14			la Malana			
CAN0	CAN1	Register	Abbreviation	Access	Initial Value			
003A60н	003C60н		DI CDO	DAA				
003A61н	003C61н	– DLC register 0	DLCR0	R/W	XXXXB			
003А62н	003C62н		DI CD4	DAA				
003A63н	003C63н	DLC register 1	DLCR1	R/W	XXXXB			
003A64н	003C64 _H		DI CD2	DAA				
003А65н	003C65н	DLC register 2	DLCR2	R/W	XXXX _B			
003А66н	003C66н			DAM	~~~~			
003А67 н	003C67н	– DLC register 3	DLCR3	R/W	XXXXB			
003A68н	003C68н			DAM	~~~~			
003A69н	003C69н	DLC register 4	DLCR4	R/W	XXXX _B			
003А6Ан	003С6Ан	DL C register 5		DAM	~~~~			
003А6Вн	003С6Вн	DLC register 5	DLCR5	R/W	XXXXB			
003А6Сн	003С6Сн		DI CD6	R/W	XXXXB			
003A6Dн	003C6DH	DLC register 6	DLCR6	R/VV	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
003А6Ен	003C6Eн	DI C register 7	DLCR7	R/W	XXXX _B			
003A6Fн	003C6Fн	DLC register 7	DLCR7	R/VV				
003А70н	003С70н	DI C register 9	DLCR8	R/W	XXXX			
003A71н	003C71н	DLC register 8	DLCRO	R/VV				
003А72н	003С72н	DI C register 0	DLCR9	R/W	XXXXB			
003А73н	003С73н	DLC register 9	DLCR9	r///				
003A74н	003C74н	DLC register 10	DLCR10	R/W	XXXXB			
003A75н	003C75н		DECKTO	N/ W				
003А76н	003C76н	DLC register 11	DLCR11	R/W	XXXXB			
003A77н	003C77н		DECKTI	N/ W				
003A78н	003C78н	DLC register 12	DLCR12	R/W	XXXX _B			
003A79н	003C79н	DLC register 12	DEGITIZ	1.7.00				
003А7Ан	003С7Ан	DLC register 13	DLCR13	R/W	XXXXB			
003A7Bн	003C7Bн		DECKIS	N/ W				
003A7Cн	003C7Cн	DI C register 14	DLCR14	R/W	XXXXB			
003A7DH	003C7Dн	DLC register 14	DLON 14					
003A7Eн	003C7Eн	– DLC register 15	DLCR15	R/W	XXXXB			
003A7Fн	003C7Fн		DLORIG	1.7.00	////			
003А80н	003С80н				XXXXXXXB			
to 003А87н	to 003C87н	Data register 0 (8 bytes)	DTR0	R/W	to XXXXXXXXB			

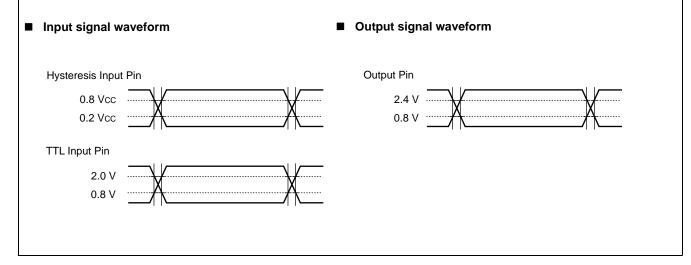

11.4 AC Characteristics


11.4.1 Clock Timing

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 V \text{ to } 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ }^{\circ}\text{C to } +105 \text{ }^{\circ}\text{C})$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 5.0 V ± 10\%, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ }^{\circ}\text{C to } +105 \text{ }^{\circ}\text{C})

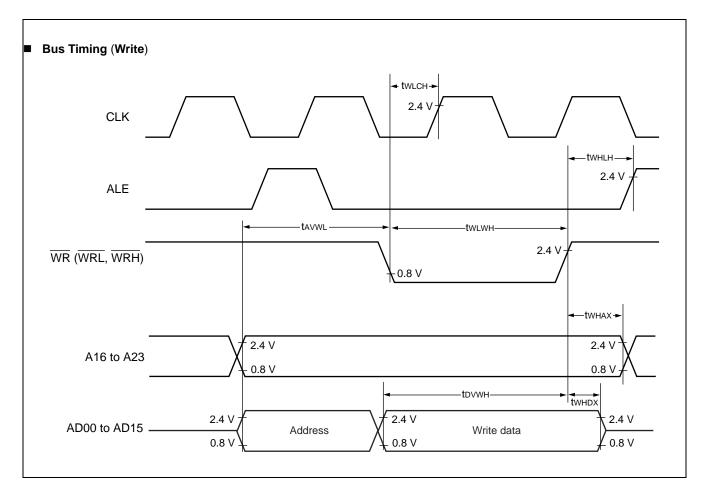

Parameter	Symbol	Pin name	Value			Units	Remarks		
Farameter	Symbol	Fin name	Min	Тур	Max	Units	Remarks		
			3	_	16	MHz	No multiplier When using an oscillator circuit $V_{cc} = 5.0 \text{ V} \pm 10\%$		
			8	_	16	MHz	PLL multiplied by 1 When using an oscillator circuit $V_{cc} = 5.0 V \pm 10\%$		
			4	_	8	MHz	PLL multiplied by 2 When using an oscillator circuit $V_{cc} = 5.0 V \pm 10\%$		
	fc				3	_	5.33	MHz	PLL multiplied by 3 When using an oscillator circuit $V_{cc} = 5.0 V \pm 10\%$
			X0, X1	3	_	4	MHz	PLL multiplied by 4 When using an oscillator circuit $V_{cc} = 5.0 V \pm 10\%$	
Oscillation frequency			3	_	5	MHz	When using an oscillator circuit Vcc < 4.5 V(MB90F548GL(S)/543G(S)/ 547G(S)/548G(S))		
			3	_	16	MHz	No multiplier When using an external clock		
			8	_	16	MHz	PLL multiplied by 1 When using an external clock		
			4	_	8	MHz	PLL multiplied by 2 When using an external clock		
			3	_	5.33	MHz	PLL multiplied by 3 When using an external clock		
			3	_	4	MHz	PLL multiplied by 4 When using an external clock		
	fc∟	X0A, X1A	—	32.768	-	kHz			





11.4.5 Bus Timing (Read)

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 V \text{ to } 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ °C to } + 105 \text{ °C})$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 5.0 V ± 10%, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ °C to } + 105 \text{ °C})


Parameter	Symbol	Pin name	Condition	Va	alue	Units	Remarks
Farameter	Symbol Pin name Condition		Condition	Min	Max	Units	Reillarks
ALE pulse width	t lhll	ALE		tcp/2 — 20	-	ns	
Valid address $\rightarrow ALE \downarrow$ time	tavll	ALE, A16 to A23, AD00 to AD15		tcp/2 — 20	_	ns	
$ALE\downarrow \rightarrow Address valid time$	tllax	ALE, AD00 to AD15		tср/2 — 15	-	ns	
Valid address $\rightarrow \overline{RD}\downarrow$ time	t avrl	A16 toA23, AD00 to AD15, RD		tcp — 15	_	ns	
Valid address → Valid data input	tavdv	A16 to A23, AD00 to AD15		-	5 tcp/2 - 60	ns	
RD pulse width	trlrh	RD	_	3 t _{CP} /2 — 20	-	ns	
$\overline{RD} \downarrow \rightarrow Valid data input$	t RLDV	RD, AD00 to AD15		_	3 tcp/2 — 60	ns	
$\overline{RD} \uparrow \to Data$ hold time	t RHDX	RD, AD00 to AD15		0	-	ns	
$\overline{RD}^{\uparrow} \rightarrow ALE^{\uparrow}$ time	trhlh	RD, ALE		tcp/2 — 15	-	ns	
\overline{RD} $\uparrow \rightarrow Address$ valid time	t RHAX	RD, A16 to A23		tcp/2 — 10	_	ns	
Valid address $\rightarrow \text{CLK}^{\uparrow}$ time	tavch	A16 to A23, AD00 to AD15, CLK		tcp/2 — 20	_	ns	
$\overline{RD} \downarrow \rightarrow CLK\uparrow$ time	t RLCH	RD, CLK		tcp/2 — 20	-	ns	
$ALE \downarrow \rightarrow \overline{RD} \downarrow time$	tllrl	ALE, RD		tcp/2 — 15	_	ns	

11.4.6 Bus Timing (Write)

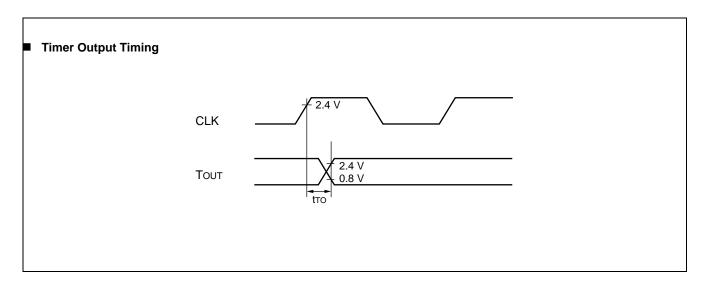
 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ °C to} + 105 \text{ °C})$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 5.0 V ± 10%, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ °C to} + 105 \text{ °C})

Parameter	Symbol Pin name		Condition	Value		Units	Remarks
Farameter	Symbol	Fill lidine	Condition	Min	Max	Units	Remarks
Valid address $\rightarrow \overline{\mathrm{WR}} \downarrow$ time	tavwl	A16 to A23 AD00 to AD15, WR		tcp — 15	_	ns	
WR pulse width	twlwh	WR		3 tcp/2 — 20	—	ns	
Valid data output $\rightarrow \overline{WR}^{\uparrow}$ time	tovwн	AD00 to AD15, WR		3 tcp/2 — 20	_	ns	
$\overline{WR} \uparrow \to Data$ hold time	twhdx	AD00 to AD15, WR	_	20	_	ns	
$\overline{WR}^{\uparrow} \rightarrow Address$ valid time	t WHAX	A16 to A23, WR		tcp/2 — 10	—	ns	
$\overline{WR}^{\uparrow} \rightarrow ALE^{\uparrow}$ time	twhlh	WR, ALE		tcp/2 — 15	—	ns	
$\overline{WR}^{\uparrow} \rightarrow CLK^{\uparrow}$ time	twlch	WR, CLK		t _{CP} /2 — 20	—	ns	



11.4.10 Timer Input Timing

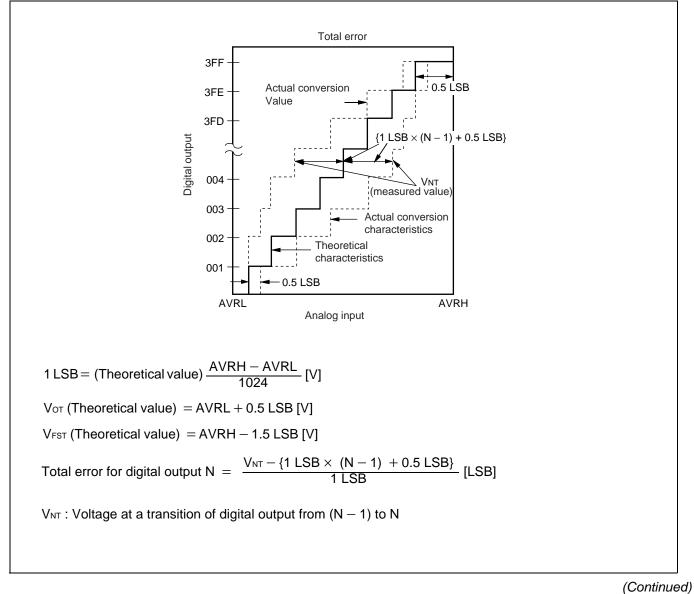
 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 V \text{ to } 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ }^{\circ}\text{C} \text{ to } +105 \text{ }^{\circ}\text{C})$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 5.0 V ± 10\%, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ }^{\circ}\text{C} \text{ to } +105 \text{ }^{\circ}\text{C})


Parameter	Symbol	Pin name	Condition	Va	ue	Units	Remarks
Falanetei	Symbol			Min	Max		Remarks
Input pulso width	tтіwн	TIN0, TIN1	_	4 +==	_	20	
Input pulse width	t⊤ıw∟	IN0 to IN7		4 tcp		ns	

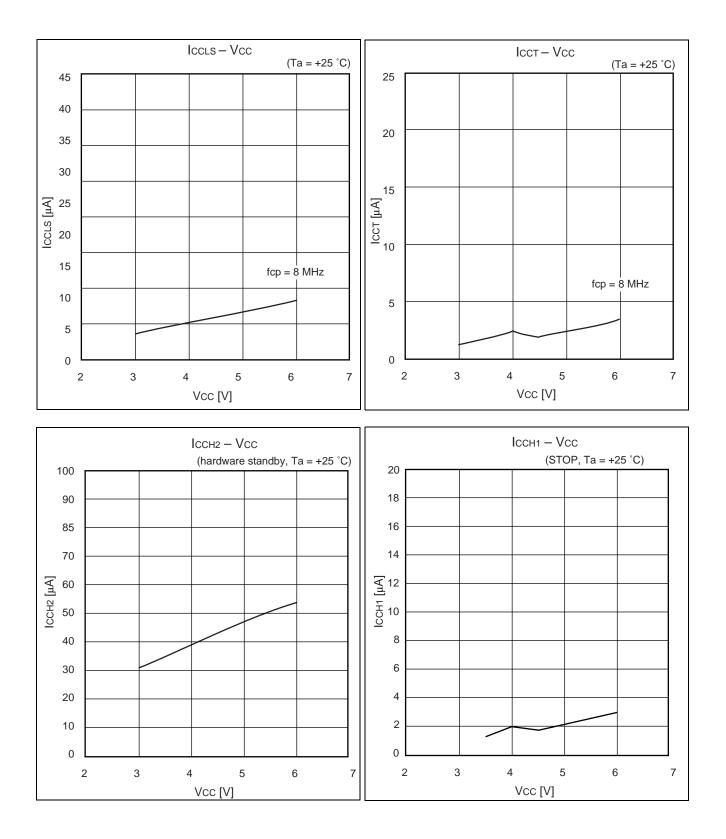
11.4.11 Timer Output Timing

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 V \text{ to } 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ °C to } + 105 \text{ °C})$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 5.0 V ± 10%, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ °C to } + 105 \text{ °C})

Parameter	Symbol	Pin name	Condition	Value		Units	Remarks
i arameter				Min	Max	Units	Remarks
$CLK^{\uparrow} \to T_{OUT}$ change time	tто	TOT0 , TOT1, PPG0 to PPG3	_	30	_	ns	


11.5.2 A/D Converter Glossary

Resolution : Analog changes that are identifiable with the A/D converter


Linearity error : The deviation of the straight line connecting the zero transition point ("00 0000 0000" $\leftrightarrow \rightarrow$ "00 0000 0001") with the full-scale transition point ("11 1111 1110" $\leftrightarrow \rightarrow$ "11 1111 1111") from actual conversion characteristics

Differential linearity error : The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

Total error : The total error is defined as a difference between the actual value and the theoretical value, which includes zero-transition error/full-scale transition error and linearity error.

15. Major Changes

Spansion Publication Number: DS07-13703-7E

Section	Change Results			
■ PRODUCT LINEUP	Changed the name in peripheral resource.			
	16-bit I/O Timer \rightarrow 16-bit Free-run Timer			
■ I/O CIRCUIT TYPE	Changed the name of input typ.			
	Hysteresis \rightarrow CMOS Hysteresis HYS \rightarrow CMOS Hysteresis			
■ BLOCK DIAGRAM	Changed the arrow direction of SOT1 signal at UART1(SCI).			
	" $\leftarrow \rightarrow$ " (input/output) \rightarrow " \leftarrow " (output)			
■ I/O MAP	Changed the text of "Note".			
■ INTERRUPT MAP	Changed the name of peripheral resource of the pin number: #19.			
	I/O Timer \rightarrow 16-bit Free-run Timer			
 ELECTRICAL CHARACTERISTICS Recommended Conditions 	Changed the remarks of "parameter: Power supply voltage".			
3. DC Characteristics	Changed the maximum value of symbol : VILM of parameter: Input voltage. Vcc + 0.3 \rightarrow Vss + 0.3			
	Added the following remarks for parameter : Pull-down resistance. Except Flash device			
4. AC Characteristics (1) Clock Timing	Added the value when using an external clock in Oscillation frequency and Clock cycle time on (1) Clock Timing for parameter.			
	Added the item of A/D converter operation range in figure of " Guaranteed PLL operation range"			
(3) Reset and Hardware Standby Input Timing	Changed the following item.			
	(3) Reset and Hardware Standby Input Timing Remarks:			
	In sub-clock mode, sub-sleep mode, timer mode $2t_{CP} \rightarrow 2t_{LCP}$			
(4) Power On Reset	Changed as follows;			
	Due to repetitive operation \rightarrow Waiting time until power-on			
5. A/D Converter	Changed the unit of Zero transition voltage and Full scale transition voltage. mV \rightarrow V			
ORDERING INFORMATION	Added the MB90F548GLPMC in Part Numbers.			

NOTE: Please see "Document History" about later revised information.

Document History

Document Title: MB90F543G(S)/546G(S)/548G(S)/549G(S)/549G(S)/V540G/MB90543G(S)/547G(S)/548G(S)/F548GL(S) CMOS F2MC-16LX MB90540G/545G Series 16-bit Proprietary Microcontroller Document Number: 002-07696 Orig. of Change Submission Revision ECN **Description of Change** Date ** Migrated to Cypress and assigned document number 002-07696. No change to document contents or format. AKIH 11/13/2008 _ *A 5537115 AKIH 11/30/2016 Updated to Cypress template

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers cypress.	oonii/anni
Automotive cypress.com/au	Itomotive
Clocks & Buffers cypress.co	m/clocks
Interface cypress.com/	/interface
Internet of Things cypres	s.com/iot
Lighting & Power Control cypress.com/pc	owerpsoc
Memory cypress.com	/memory
PSoC cypress.c	com/psoc
Touch Sensing cypress.co	om/touch
USB Controllers cypress.	.com/usb
Wireless/RF cypress.com	/wireless

PSoC[®]Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Forums | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuctitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

[©] Cypress Semiconductor Corporation, 2002-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.