

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, EBI/EMI, SCI, Serial I/O, UART/USART
Peripherals	POR, WDT
Number of I/O	81
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90f543gspf-gs-9002

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Starting by an external trigger input. Conversion time : 26.3 μ s

FULL-CAN interfaces
 MB90540G series : 2 channels
 MB90545G series : 1 channel
 Conforming to Version 2.0 Part A and Part B

Flexible message buffering (mailbox and FIFO buffering can be mixed)

- External bus interface : Maximum address space 16 Mbytes
- Package: QFP-100, LQFP-100

Contents

Features	1
Product Lineup	4
Pin Assignment	7
Pin Description	9
I/O Circuit Type	14
Handling Devices	
Block Diagram	21
Memory Map	
I/O Map	23
CAN Controller	

Interrupt Map	35
Electrical Characteristics	37
Example Characteristics	61
Ordering Information	66
Package Dimensions	67
Major Changes	69
Document History	69
Sales, Solutions, and Legal Information	70

Features	MB90F543G (S) /F548G (S) MB90F549G (S) /F546G (S) MB90F548GL(S)	MB90543G (S) MB90547G (S) MB90548G (S) MB90549G (S)	MB90V540G						
16-bit Reload Timer	Operation clock frequency : $fsys/2^1$, $fsys/2^3$, $fsys/2^5$ ($fsys = System$ clock frequency)								
(2 channels)	Supports External Event Count function								
	Signals an interrupt when overflow								
16 bit Eroo rup Timor	Supports Timer Clear when a match with Output Compare (Channel 0)								
	Operation clock freq. : fsys/2 ² , fsys/2 ⁴ , fsys/2 ⁶ , fsys/2 ⁸ (fsys = System clock freq.)								
40 hit Output Company	Signals an interrupt when a match w	vith 16-bit Free-run Timer							
(4 channels)	Four 16-bit compare registers								
(Tonamiolo)	A pair of compare registers can be u	used to generate an output signal							
16 hit Innut Conturn	Rising edge, falling edge or rising &	falling edge sensitive							
(8 channels)	Four 16-bit Capture registers								
	Signals an interrupt upon external e	vent							
	Supports 8-bit and 16-bit operation	modes							
	Eight 8-bit reload counters								
8/16-bit	Eight 8-bit reload registers for L puls	se width							
Programmable	Eight 8-bit reload registers for H pul	se width							
Pulse Generator	A pair of 8-bit reload counters can be configured as one 16-bit reload counter or as 8-bit prescaler plus 8-bit reload counter								
(4 channels)	4 output pins								
	Operation clock freq. : fsys, fsys/2 ¹ , fsys/2 ² , fsys/2 ³ , fsys/2 ⁴ or 128 μ s@fosc = 4 MHz								
	(fsys = System clock frequency, for	sc = Oscillation clock frequency)							
	Conforms to CAN Specification Vers	sion 2.0 Part A and B							
CAN Interface	Automatic re-transmission in case o	ferror							
MB90540G series	Automatic transmission responding	to Remote Frame							
: 2 channels	Prioritized 16 massage buffers for d	ata and ID's supports multipe massa	ges						
MB90545G series	Flexible configuration of acceptance	e filtering :							
: 1 channel	Full bit compare/Full bit mask/Two p	oartial bit masks							
	Supports up to 1 Mbps								
32 kHz Sub-clock	Sub-clock for low power operation								
External Interrupt (8 channels)	Can be programmed edge sensitive	or level sensitive							
External bus	External access using the selectable	e 8-bit or 16-bit bus is enabled							
interface	(external bus mode.)								
	Virtually all external pins can be use	ed as general purpose I/O							
I/O Ports	All push-pull outputs and schmitt trig	gger inputs							
1/01 013	Bit-wise programmable as input/output or peripheral signal								
	Sub-clock for 32 kHz Sub clock low power operation								
	Supports automatic programming, E	Embeded Algorithm							
	Write/Erase/Erase-Suspend/Erase-I	Resume commands							
	A flag indicating completion of the a	Igorithm							
Flash Memory	Number of erase cycles : 10,000 tim	nes							
	Data retention time : 10 years								
	Boot block configuration								
	Erase can be performed on each blo	ock							
	Block protection by externally programmed voltage								

*1 : If the one clock system is used, equip X0A and X1A with clocks from the tool side.

- *2 : It is setting of DIP switch S2 when Emulation pod (MB2145-507) is used.Please refer to the MB2145-507 hardware manual (2.7 Emulator-specific Power Pin) about details.
- *3 : Operating Voltage Range

Products	Operation guarantee range
MB90F543G(S)/F546G(S)/F548G(S)/ MB90549G(S)/F549G(S)/V540/V540G	4.5 V to 5.5 V
MB90F548GL(S)/543G(S)/547G(S)/548G(S)	3.5 V to 5.5 V

Pin No.		Pin name	Circuit type	Function				
LQFP*2	QFP ^{*1}	Finname	Circuit type	i unction				
		P33		General I/O port with programmable pullup. This f <u>unction is enabled in the single-chip mode, external bus 8-bit mode or when WRH pin output is disabled.</u>				
11	13	WRH		Write strobe output pin for the 8 higher bits of the data bus. This function is enabled when the external bus is enabled, when the external bus 16-bit mod is selected, and when the WRH output pin is enabled.				
12	14	P34		General I/O port with programmable pullup. This function is enabled in the single-chip mode or when the hold function is disabled.				
12	14	HRQ		Hold request input pin. This function is enabled when both the external bus and the hold functions are enabled.				
13	15	P35		General I/O port with programmable pullup. This function is enabled in the single-chip mode or when the hold function is disabled.				
15	15	HAK		Hold acknowledge output pin. This function is enabled when both the external bus and the hold functions are enabled.				
14	16	² 36		General I/O port with programmable pullup. This function is enabled in the single-chip mode or when the external ready function is disabled.				
14 10		RDY		Ready input pin. This function is enabled when both the external bus and the external ready functions are enabled.				
15	17	P37		General I/O port with programmable pullup. This function is enabled in the single-chip mode or when the CLK output is disabled.				
		CLK		CLK output pin. This function is enabled when both the external bus and CLK outputs are enabled.				
16	10	P40	C	General I/O port. This function is enabled when UART0 disables the serial data output.				
10	10	SOT0		Serial data output pin for UART0. This function is enabled when UART0 enables the serial data output.				
17	10	P41		General I/O port. This function is enabled when UART0 disables serial clock output.				
17 19		SCK0	G	Serial clock I/O pin for UART0. This function is enabled when UART0 enables the serial clock output.				
		P42		General I/O port. This function is always enabled.				
18	20	SINO	G	Serial data input pin for UART0. Set the corresponding Port Direction Register to input if this function is used.				
		P43		General I/O port. This function is always enabled.				
19 21		SIN1	G	Serial data input pin for UART1. Set the corresponding Port Direction Register to input if this function is used.				

(Continued)

Pin No.		Din namo	Circuit type	Function				
LQFP*2	QFP ^{*1}	Fill hame	Circuit type	Function				
20	22	P44	6	General I/O port. This function is enabled when UART1 disables the clock output.				
20	22	SCK1	G	Serial clock pulse I/O pin for UART1. This function is enabled when UART1 enables the serial clock output.				
22	24	P45	G	General I/O port. This function is enabled when UART1 disables the serial data output.				
22	24	SOT1	0	Serial data output pin for UART1. This function is enabled when UART1 enables the serial data output.				
22	25	P46	G	General I/O port. This function is enabled when the Extended I/O serial interface disables the serial data output.				
23	20	SOT2	6	Serial data output pin for the Extended I/O serial interface. This function is enabled when the Extended I/O serial interface enables the serial data output.				
		P47		General I/O port. This function is enabled when the Extended I/O serial interface disables the clock output.				
24	26	SCK2	G	Serial clock pulse I/O pin for the Extended I/O serial interface . This function is enabled when the Extended I/O serial interface enables the Serial clock output.				
		P50		General I/O port. This function is always enabled.				
26	28	SIN2	D	Serial data input pin for the Extended I/O serial interface . Set the corresponding Port Direction Register to input if this function is used.				
		P51 to P54		General I/O port. This function is always enabled.				
27 to 30	29 to 32	INT4 to INT7	D	External interrupt request input pins for INT4 to INT7. Set the corresponding Port Direction Register to input if this function is used.				
		P55		General I/O port. This function is always enabled.				
31	33	ADTG	D	Trigger input pin for the A/D converter. Set the corresponding Port Direction Register to input if this function is used.				
26 to 20	29 to 11	P60 to P63	E	General I/O port. This function is enabled when the analog input enable register specifies a port.				
36 to 39 38 to 41		AN0 to AN3		Analog input pins for the 8/10-bit A/D converter. This function is enabled when the analog input enable register specifies A/D.				
11 to 11	12 to 16	P64 to P67	F	General I/O port. The function is enabled when the analog input enable register specifies a port.				
41 10 44	43 10 40	AN4 to AN7	E	Analog input pins for the 8/10-bit A/D converter. This function is enabled when the analog input enable register specifies A/D.				
		P56		General I/O port. This function is always enabled.				
45	47	TINO	D	Event input pin for the 16-bit reload timers 0. Set the corresponding Port Direction Register to input if this function is used.				

(Continued)

(Continued)

Circuit type	Diagram	Remarks
		 CMOS level output
		 CMOS Hysteresis input
н	Vcc CNTL Vcc P-ch P-ch N-ch Hysteresis input	 Programmable pull-up resistor : 50 kΩ approx.
		CMOS level output
		 CMOS Hysteresis input
		 TTL level input (Flash devices in Flash writer mode only)
	P-ch	 Programmable pullup resistor : 50 kΩ approx.
1	N-ch	
	R Hysteresis input	
	TTL level input	

(6) Pull-up/down resistors

The MB90540G/545G Series does not support internal pull-up/down resistors (except Port0 – Port3 : pull-up resistors) . Use external components where needed.

(7) Crystal Oscillator Circuit

Noises around X0 or X1 pins may be possible causes of abnormal operations. Make sure to provide bypass capacitors via the shortest distances from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure, to the utmost effort, that lines of oscillation circuits do not cross the lines of other circuits.

It is highly recommended to provide a printed circuit board artwork surrounding X0 and X1 pins with a ground area for stabilizing the operation.

(8) Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply (AVcc, AVRH, AVRL) and analog inputs (AN0 to AN7) after turning-on the digital power supply (Vcc).

Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage does not exceed AVRH or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

(9) Connection of Unused Pins of A/D Converter

Connect unused pins of A/D converter to $AV_{CC} = V_{CC}$, $AV_{SS} = AVRH = V_{SS}$.

(10) N.C. Pin

The N.C. (internally connected) pin must be opened for use.

(11) Notes on Energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at 50 μ s or more (0.2 V to 2.7 V).

(13) Initialization

In the device, there are internal registers which are initialized only by a power-on reset. To initialize these registers, please turn on the power again.

(14) Directions of "DIV A, Ri" and "DIVW A, RWi" instructions

In the Signed multiplication and division instructions ("DIV A, Ri" and "DIVW A, RWi"), the value of the corresponding bank register (DTB, ADB, USB, SSB) is set in "00H".

If the values of the corresponding bank registers (DTB, ADB, USB, SSB) are set to other than "00H", the remainder by the execution result of the instruction is not stored in the register of the instruction operand.

(15) Using REALOS

The use of El²OS is not possible with the REALOS real time operating system.

(16) Caution on Operations during PLL Clock Mode

If the PLL clock mode is selected, the microcontroller attempt to be working with the self-oscillating circuit even when there is no external oscillator or external clock input is stopped. Performance of this operation, however, cannot be guaranteed.

(Continued)

Address		Pagistar	Abbroviation	A		
CAN0	CAN1	- Register	Appreviation	Access	Initial value	
003А3Сн	003C3CH				·····	
003А3Dн	003C3DH	ID register 7	IDR7 R/W			
003А3Ен	003C3EH			R/W		
003A3Fн	003C3Fн				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
003A40н	003C40н					
003A41н	003C41н	ID register 8			~~~~~	
003А42н	003C42н		IDRO	17/10		
003A43н	003С43н					
003A44н	003C44н				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
003A45н	003C45н	ID register 0		D AA/		
003A46н	003C46н		IDK9	R/W		
003A47н	003C47н				^^^^^	
003A48н	003C48н					
003A49н	003C49н	ID register 10		R/W	~~~~~	
003А4Ан	003C4Ан		IDK10			
003A4Bн	003C4Bн					
003A4Cн	003C4CH					
003A4Dн	003C4DH	ID register 11		RM		
003A4Eн	003C4Eн		DICH	IN/ V V		
003A4Fн	003C4Fн				~~~~~	
003A50н	003С50н					
003A51н	003C51н	ID register 12		R/W		
003А52н	003C52н					
003А53н	003С53н					
003А54н	003C54н					
003А55н	003C55н	ID register 13		R/W	~~~~~	
003А56н	003С56н		IDICI3			
003А57 н	003C57н				~~~~~	
003A58н	003С58н					
003А59н	003С59н	ID register 14				
003А5Ан	003С5Ан		IDK14	K/W		
003А5Вн	003C5Bн					
003А5Сн	003C5CH					
003А5Dн	003C5DH	ID register 15		P/M		
003А5Eн	003C5EH					
003A5Fн	003C5Fн					

11.2 Recommended Conditions

 $(V_{SS} = AV_{SS} = 0.0 V)$

Paramotor	Symbol	Value			Unite	Pomarks	
Farameter	Symbol	Min	Тур	Max	Units	inclinal NS	
	Vcc, AVcc	4.5	5.0			Under normal operation : Other than MB90F548GL(S)/543G(S)/547G(S)/548G(S)	
Power supply voltage				5.5	V	Under normal operation when A/D conveter is used : MB90F548GL(S)/543G(S)/547G(S)/548G(S)	
		3.5	5.0	5.5	v	Under normal operation when A/D conveter is not used : MB90F548GL(S)/543G(S)/547G(S)/548G(S)	
		3.0	-	5.5	V	Maintain RAM data in stop mode	
Smooth capacitor	Cs	0.022	0.1	1.0	μF	*	
Operating temperature	TA	-40	-	+105	°C		

*: Use a ceramic capacitor or a capacitor of better 4. AC characteristics. The bypass capacitor should be greater than this capacitor.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

11.3 DC Characteristics

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 V \text{ to } 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ }^{\circ}\text{C} \text{ to } +105 \text{ }^{\circ}\text{C})$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 5.0 V ± 10%, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ }^{\circ}\text{C} \text{ to } +105 \text{ }^{\circ}\text{C})

Baramatar	Symbol	Din nomo	Condition	Value			Unito	Bomorko
Farameter	Symbol	Fininame	Condition	Min	Тур	Max	Units	Remarks
Input H	Vihs	CMOS hysteresis input pin	_	0.8 Vcc	_	Vcc + 0.3	v	
voltage	Vih	TTL input pin	—	2.0	—	-	V	
	Vihm	MD input pin	-	Vcc - 0.3	—	$V_{CC} + 0.3$	V	
Input L	Vils	CMOS hysteresis input pin	_	Vcc - 0.3	-	0.2 Vcc	V	
voltage	VIL	TTL input pin	-	-	-	0.8	V	
	VILM	MD input pin	-	Vss - 0.3	—	Vss + 0.3	V	
Output H voltage	Vон	All output pins	$V_{CC} = 4.5 V,$ I _{OH} = -4.0 mA	Vcc - 0.5	_	_	V	
Output L voltage	Vol	All output pins	$V_{CC} = 4.5 V,$ $I_{OL} = 4.0 mA$	_	_	0.4	V	
Input leak current	lı.	_	Vcc = 5.5 V, Vss < Vi < Vcc	-5	_	5	μΑ	
Pull-up resistance	Rup	P00 to P07, P10 to P17, P20 to P27, P30 to P37, RST	-	25	50	100	kΩ	
Pull-down resistance	Rdown	MD2	_	25	50	100	kΩ	Except Flash devices

(Continued)

11.4.4 Power On Reset

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 \text{ V to } 5.5 \text{ V}, V_{SS} = AV_{SS} = 0.0 \text{ V}, T_A = -40 \text{ }^\circ\text{C} \text{ to } + 105 \text{ }^\circ\text{C})$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = AV_{SS} = 0.0 \text{ V}, T_A = -40 \text{ }^\circ\text{C} \text{ to } + 105 \text{ }^\circ\text{C})

Paramotor	Symbol	Bin namo	Condition	Value		Unite	Pomarke
Farameter	Symbol	Finnanie	Condition	Min	Max		Remarks
Power on rise time	tr	Vcc	_	0.05	30	ms	*
Power off time	toff	Vcc		50	—	ms	Waiting time until power-on

*: Vcc must be kept lower than 0.2 V before power-on.

Notes : ■ The above values are used for creating a power-on reset.

Some registers in the device are initialized only upon a power-on reset. To initialize these register, turn on the power supply using the above values.

11.4.6 Bus Timing (Write)

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ °C to} + 105 \text{ °C})$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 5.0 V ± 10%, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ °C to} + 105 \text{ °C})

Parameter	Symbol	Pin name	Condition	Value		Unite	Bomorko
				Min	Max	Units	Remains
Valid address $\rightarrow \overline{WR} \downarrow$ time	t avwl	A16 to A23 AD00 to AD15, WR		tcp — 15	_	ns	
WR pulse width	t wlwh	WR		3 tcp/2 — 20	—	ns	
Valid data output $\rightarrow \overline{WR}^{\uparrow}$ time	tovwн	AD00 to AD15, WR		3 tcp/2 — 20	_	ns	
$\overline{\mathrm{WR}}^{\uparrow} \rightarrow \mathrm{Data} \mathrm{hold} \mathrm{time}$	twhdx	AD00 to AD15, WR	_	20	_	ns	
\overline{WR} \uparrow \rightarrow Address valid time	t whax	A16 to A23, WR		tcp/2 — 10	—	ns	
\overline{WR} \uparrow \rightarrow ALE \uparrow time	twhlh	WR, ALE		tcp/2 — 15	—	ns	
$\overline{WR}^{\uparrow} \rightarrow CLK^{\uparrow}$ time	t wLCH	WR, CLK		tcp/2 — 20	_	ns	

11.4.7 Ready Input Timing

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 \text{ V to } 5.5 \text{ V}, V_{SS} = AV_{SS} = 0.0 \text{ V}, T_A = -40 \text{ }^{\circ}\text{C to } + 105 \text{ }^{\circ}\text{C})$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = AV_{SS} = 0.0 \text{ V}, T_A = -40 \text{ }^{\circ}\text{C to } + 105 \text{ }^{\circ}\text{C})

Parameter	Symbol	Pin name	Condition	Value		Unite	Pomorko
				Min	Max	Units	Nemarks
RDY setup time	tryhs	RDY		45	-	ns	
RDY hold time	tryнн	RDY	_	0	—	ns	

Note : If the RDY setup time is insufficient, use the auto-ready function.

11.4.8 Hold Timing

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 V \text{ to } 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ }^{\circ}\text{C} \text{ to } + 105 \text{ }^{\circ}\text{C})$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 5.0 V ± 10\%, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ }^{\circ}\text{C} \text{ to } + 105 \text{ }^{\circ}\text{C})

Parameter	Symbol	Pin name	Condition	Value		Unite	Pomorko
				Min	Max	Units	Remarks
Pin floating $\rightarrow \overline{\text{HAK}}\downarrow$ time	t xhal	HAK	-	30	tcp	ns	
$\overline{\text{HAK}}$ time \rightarrow Pin valid time	t HAHV	HAK		t _{CP}	2 tcp	ns	

Note : There is more than 1 cycle from the time HRQ is read to the time the \overline{HAK} is changed.

11.4.9 UART0/1, Serial I/O Timing

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 V \text{ to } 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ °C to } + 105 \text{ °C})$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 5.0 V ± 10%, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ °C to } + 105 \text{ °C})

Parameter	Symbol	Din namo	Condition	Value		Unite	Pomarke
Farameter	Symbol	Fin hame	Condition	Min	Max	Units	Rellians
Serial clock cycle time	tscyc	SCK0 to SCK2		8 tcp	-	ns	
$SCK \downarrow \to SOT$ delay time	tslov	SCK0 to SCK2, SOT0 to SOT2	Internal clock operation	- 80	80	ns	
Valid SIN \rightarrow SCK [↑]	tıvsн	SCK0 to SCK2, SIN0 to SIN2	output pins are $C_{L} = 80$ pF + 1 TTL.	100	_	ns	
$SCK^{\uparrow} \to Valid SIN hold time$	tsнix	SCK0 to SCK2, SIN0 to SIN2		60	_	ns	
Serial clock "H" pulse width	tshsL	SCK0 to SCK2		4 t _{CP}	-	ns	
Serial clock "L" pulse width	tslsh	SCK0 to SCK2	External clock operation	4 tcp	-	ns	
$SCK \downarrow \to SOT$ delay time	tslov	SCK0 to SCK2, SOT0 to SOT2		_	150	ns	
Valid SIN \rightarrow SCK [↑]	tıvsн	SCK0 to SCK2, SIN0 to SIN2	pF + 1 TTL.	60	_	ns	
$SCK^{\uparrow} \rightarrow Valid SIN hold time$	tsніх	SCK0 to SCK2, SIN0 to SIN2		60	_	ns	

Notes :

- AC characteristic in CLK synchronized mode.
- C_L is load capacity value of pins when testing.
- For tcp (Machine clock cycle time), refer to "(1) Clock Timing".

(Continued)

11.5.3 Notes on Using A/D Converter

Select the output impedance value for the external circuit of analog input according to the following conditions, :

Output impedance values of the external circuit of 15 kΩ or lower are recommended.

When capacitors are connected to external pins, the capacitance of several thousand times the internal capacitor value is recommended to minimized the effect of voltage distribution between the external capacitor and internal capacitor.
Note: When the output impedance of the external circuit is too high the sampling period for analog voltages may not be sufficient.

Note : When the output impedance of the external circuit is too high, the sampling period for analog voltages may not be sufficient (sampling period = $4.00 \ \mu s$ @machine clock of 16 MHz).

11.5.4 Error

The smaller the |AVRH - AVRL|, the greater the error would become relatively.

12. Example Characteristics

"H" level output voltage

■ "H" level input voltage/ "L" level input voltage (Hysterisis inpiut)

Power supply current (MB90F549G)

