

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, EBI/EMI, SCI, Serial I/O, UART/USART
Peripherals	POR, WDT
Number of I/O	81
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90f543gspf-gs-9009

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Starting by an external trigger input. Conversion time : 26.3 μ s

FULL-CAN interfaces
 MB90540G series : 2 channels
 MB90545G series : 1 channel
 Conforming to Version 2.0 Part A and Part B

Flexible message buffering (mailbox and FIFO buffering can be mixed)

- External bus interface : Maximum address space 16 Mbytes
- Package: QFP-100, LQFP-100

3. Pin Description

Pin No.		Din nome	0	Function		
LQFP*2	QFP ^{∗1}	Pin name	Circuit type	Function		
80 81	82 83	X0 X1	A (Oscillation)	High speed crystal oscillator input pins		
78	80	X0A	А	Low speed crystal oscillator input pins. For the one clock system parts, perfom external pull-down processing.		
77	79	X1A	(Oscillation)	Low speed crystal oscillator input pins. For the one clock system parts, leave it open.		
75	77	RST	В	External reset request input pin		
50	52	HST	С	Hardware standby input pin		
00.45.00	05 40 00	P00 to P07		General I/O port with programmable pullup. This function is enabled in the single-chip mode.		
83 to 90	85 to 92	AD00 to AD07		I/O pins for 8 lower bits of the external address/data bus. This function is enabled when the external bus is enabled.		
		P10 to P17		General I/O port with programmable pullup. This function is enabled in the single-chip mode.		
91 to 98	93 to 100	AD08 to AD15	-1	I/O pins for 8 higher bits of the external address/data bus. This function is enabled when the external bus is enabled.		
00.10.0	4 1 2	P20 to P27		General I/O port with programmable pullup. In external bus mode, this function is valid when the corresponding bits in the external address output control resister (HACR) are set to "1".		
99 to 6	1 to 8	A16 to A23		8-bit I/O pins for A16 to A23 at the external address/data bus. In external bus mode, this function is valid when the corresponding bits in the external address output control resister (HACR) are set to "0".		
7		P30		General I/O port with programmable pullup. This function is enabled in the single-chip mode.		
7	9	ALE		Address latch enable output pin. This function is enabled when the external bus is enabled.		
0	10	P31		General I/O port with programmable pullup. This function is enabled in the single-chip mode.		
8	10	RD		Read strobe output pin for the data bus. This function is enabled when the external bus is enabled.		
		P32		General I/O port with programmable pullup. This function is enabled in the single-chip mode or when the WR/WRL pin output is disabled.		
10	12	WRL WR	1	Write strobe output pin for the data bus. This function is enabled when both the external bus and the $\overline{WR/WRL}$ pin output are enabled. \overline{WRL} is write-strobe output pin for the lower 8 bits of the data bus in 16-bit access. \overline{WR} is write-strobe output pin for the 8 bits of the data bus in 8-bit access.		

Pin No.		Pin name	Circuit type	Function			
LQFP*2	QFP ^{∗1}			i unction			
46	48	P57	D	General I/O port. This function is enabled when the 16-bit reload timers 0 disables the output.			
40	40	тото		Output pin for the 16-bit reload timers 0. This function is enabled when the 16-bit reload timers 0 enables the output.			
		P70 to P75		General I/O ports. This function is always enabled.			
51 to 56	53 to 58	IN0 to IN5	D	Trigger input pins for input captures ICU0 to ICU5. Set the corresponding Port Direction Register to input if this function is used.			
		P76 , P77		General I/O ports. This function is enabled when the OCU disables the waveform output.			
57 , 58	59 , 60	OUT2 , OUT3	D	Event output pins for output compares OCU2 and OCU3. This function is enabled when the OCU enables the waveform output.			
		IN6 , IN7		Trigger input pins for input captures ICU6 and ICU7. Set the corresponding Port Direction Register to input and disable the OCU waveform output if this function is used.			
59 to 62	61 to 64	P80 to P83	D	General I/O ports. This function is enabled when 8/16-bit PPG disables the waveform output.			
5910 62	61 10 64	PPG0 to PPG3		Output pins for 8/16-bit PPGs. This function is enabled when 8/16-bit PPG enables the waveform output.			
63,64	65,66	P84 , P85	D	General I/O ports. This function is enabled when the OCU disables the waveform output.			
03,04	05,00	OUT0 , OUT1		Waveform output pins for output compares OCU0 and OCU1. This function is enabled when the OCU enables the waveform output.			
		P86		General I/O port. This function is always enabled.			
65	67	TIN1	D	Input pin for the 16-bit reload timers 1. Set the corresponding Port Direction Register to input if this function is used.			
66	68	P87	D	General I/O port. This function is enabled when the 16-bit reload timers 1 disables the output.			
00	00	TOT1 D		Output pin for the 16-bit reload timers 1. This function is enabled when the 16- bit reload timers 1 enables the output.			
		P90 to P93		General I/O port. This function is always enabled.			
67 to 70	69 to 72	INT0 to INT3	D	External interrupt request input pins for INT0 to INT3. Set the corresponding Port Direction Register to input if this function is used.			
		P94		General I/O port. This function is enabled when CAN0 disables the output.			
71	73	ТХО	D	TX output pin for CAN0. This function is enabled when CAN0 enables the output.			

Pin	No.	Pin name	Circuit type	Function
LQFP*2	QFP ^{∗1}	Finname	Circuit type	Function
		P95		General I/O port. This function is always enabled.
72	74	RX0	D	RX input pin for CAN0 Interface. When the CAN function is used, output from the other functions must be stopped.
		P96		General I/O port. This function is enabled when CAN1 disables the output.
73	75	TX1	D	TX output pin for CAN1. This function is enabled when CAN1 enables the output (only MB90540G series) .
		P97		General I/O port. This function is always enabled.
74	76	RX1	D	RX input pin for CAN1 Interface. When the CAN function is used, output from the other functions must be stopped (only MB90540G series) .
76	78	PA0	D	General I/O port. This function is always enabled.
32	34	AVcc	Power supply	Power supply pin for the A/D Converter. This power supply must be turned on or off while a voltage higher than or equal to AV_{CC} is applied to V_{CC} .
35	37	AVss	Power supply	Power supply pin for the A/D Converter.
33	35	AVRH	Power supply	External reference voltage input pin for the A/D Converter. This power supply must be turned on or off while a voltage higher than or equal to AVRH is applied to AVcc.
34	36	AVRL	Power supply	External reference voltage input pin for the A/D Converter.
47, 48	49, 50	MD0, MD1	с	Input pins for specifying the operating mode. The pins must be directly connected to Vcc or Vss.
49	51	MD2	F	Input pin for specifying the operating mode. The pin must be directly connected to Vcc or Vss.
25	27	С	-	Power supply stabilization capacitor pin. It should be connected externally to an 0.1 μF ceramic capacitor.
21, 82	23, 84	Vcc	Power supply	Input pin for power supply (5.0 V) .
9, 40, 79	11, 42, 81	Vss	Power supply	Input pin for power supply (0.0 V) .

*1 : FPT-100P-M06

*2 : FPT-100P-M20

Circuit type	Diagram	Remarks		
		CMOS level output		
		 CMOS Hysteresis input 		
н	Vcc Vcc P-ch P-ch N-ch m CMOS Hysteresis input	 Programmable pull-up resistor : 50 kΩ approx. 		
		CMOS level output		
		 CMOS Hysteresis input 		
		 TTL level input (Flash devices in Flash writer mode only) 		
	P-ch	 Programmable pullup resistor : 50 kΩ approx. 		
1	N-ch			
	R R Hysteresis input			
	TTL level input			

(6) Pull-up/down resistors

The MB90540G/545G Series does not support internal pull-up/down resistors (except Port0 – Port3 : pull-up resistors) . Use external components where needed.

(7) Crystal Oscillator Circuit

Noises around X0 or X1 pins may be possible causes of abnormal operations. Make sure to provide bypass capacitors via the shortest distances from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure, to the utmost effort, that lines of oscillation circuits do not cross the lines of other circuits.

It is highly recommended to provide a printed circuit board artwork surrounding X0 and X1 pins with a ground area for stabilizing the operation.

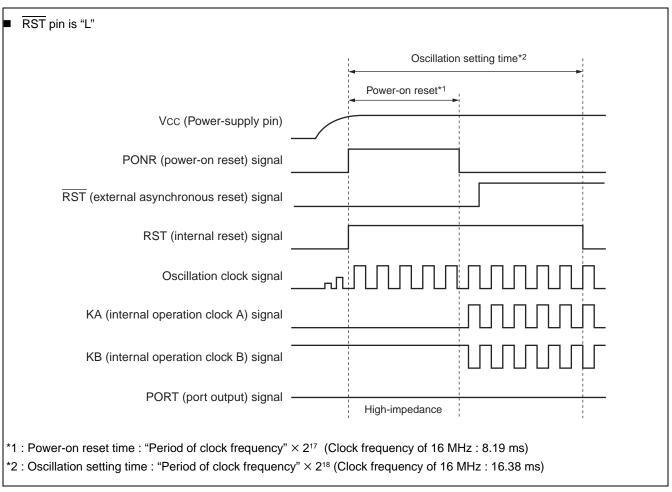
(8) Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply (AVcc, AVRH, AVRL) and analog inputs (AN0 to AN7) after turning-on the digital power supply (Vcc).

Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage does not exceed AVRH or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

(9) Connection of Unused Pins of A/D Converter

Connect unused pins of A/D converter to $AV_{CC} = V_{CC}$, $AV_{SS} = AVRH = V_{SS}$.


(10) N.C. Pin

The N.C. (internally connected) pin must be opened for use.

(11) Notes on Energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at 50 μ s or more (0.2 V to 2.7 V).

(13) Initialization

In the device, there are internal registers which are initialized only by a power-on reset. To initialize these registers, please turn on the power again.

(14) Directions of "DIV A, Ri" and "DIVW A, RWi" instructions

In the Signed multiplication and division instructions ("DIV A, Ri" and "DIVW A, RWi"), the value of the corresponding bank register (DTB, ADB, USB, SSB) is set in "00H".

If the values of the corresponding bank registers (DTB, ADB, USB, SSB) are set to other than "00H", the remainder by the execution result of the instruction is not stored in the register of the instruction operand.

(15) Using REALOS

The use of El²OS is not possible with the REALOS real time operating system.

(16) Caution on Operations during PLL Clock Mode

If the PLL clock mode is selected, the microcontroller attempt to be working with the self-oscillating circuit even when there is no external oscillator or external clock input is stopped. Performance of this operation, however, cannot be guaranteed.

Address	Register	Abbreviation	Access	Resource name	Initial value
3900н	Reload L	PRLL0	R/W		XXXXXXXXB
3901н	Reload H	PRLH0	R/W	16-bit Programmable Pulse	XXXXXXXXB
3902н	Reload L	PRLL1	R/W	Generator 0/1	XXXXXXXXB
3903н	Reload H	PRLH1	R/W		XXXXXXXXB
3904н	Reload L	PRLL2	R/W		XXXXXXXXB
3905н	Reload H	PRLH2	R/W	16-bit Programmable Pulse	XXXXXXXXB
3906н	Reload L	PRLL3	R/W	Generator 2/3	XXXXXXXXB
3907н	Reload H	PRLH3	R/W		XXXXXXXXB
3908н	Reload L	PRLL4	R/W		XXXXXXXXB
3909н	Reload H	PRLH4	R/W	16-bit Programmable Pulse	XXXXXXXXB
390Ан	Reload L	PRLL5	R/W	Generator 4/5	XXXXXXXXB
390Вн	Reload H	PRLH5	R/W		XXXXXXXXB
390Сн	Reload L	PRLL6	R/W		XXXXXXXXB
390Dн	Reload H	PRLH6	R/W	16-bit Programmable Pulse	XXXXXXXXB
390Ен	Reload L	PRLL7	R/W	Generator 6/7	XXXXXXXXB
390Fн	Reload H	PRLH7	R/W		XXXXXXXXB
3910н to 3917н	Reserved				·
3918н	Input Capture Register 0	IPCP0	R		XXXXXXXXB
3919н	Input Capture Register 0	IPCP0	R	Input Conture 0/1	XXXXXXXXB
391Aн	Input Capture Register 1	IPCP1	R	Input Capture 0/1	XXXXXXXXB
391Bн	Input Capture Register 1	IPCP1	R	-	XXXXXXXXB
391Cн	Input Capture Register 2	IPCP2	R		XXXXXXXXB
391Dн	Input Capture Register 2	IPCP2	R	Innut Conture 2/2	XXXXXXXXB
391Eн	Input Capture Register 3	IPCP3	R	Input Capture 2/3	XXXXXXXXB
391Fн	Input Capture Register 3	IPCP3	R		XXXXXXXXB
3920н	Input Capture Register 4	IPCP4	R		XXXXXXXXB
3921н	Input Capture Register 4	IPCP4	R	Innut Conture 4/E	XXXXXXXXB
3922н	Input Capture Register 5	IPCP5	R	Input Capture 4/5	XXXXXXXXB
3923н	Input Capture Register 5	IPCP5	R]	XXXXXXXXB
3924н	Input Capture Register 6	IPCP6	R		XXXXXXXXB
3925н	Input Capture Register 6	IPCP6	R		XXXXXXXXB
3926н	Input Capture Register 7	IPCP7	R	Input Capture 6/7	XXXXXXXXB
3927н	Input Capture Register 7	IPCP7	R	7	XXXXXXXAB

MB90540G/545G Series

(Continued)

Address	Register	Abbreviation	Access	Resource name	Initial value	
3928н	Output Compare Register 0	OCCP0	R/W		XXXXXXXXB	
3929н	Output Compare Register 0	OCCP0	R/W	Output Compare 0/1	XXXXXXXXB	
392Ан	Output Compare Register 1	OCCP1	R/W	Output Compare 0/1		
392Вн	Output Compare Register 1	OCCP1	R/W		XXXXXXXXB	
392Сн	Output Compare Register 2	OCCP2	R/W		XXXXXXXXB	
392Dн	Output Compare Register 2	OCCP2	R/W	Output Compore 2/2	XXXXXXXXB	
392Ен	Output Compare Register 3	OCCP3	R/W	Output Compare 2/3	XXXXXXXXB	
392Fн	Output Compare Register 3	OCCP3	R/W		XXXXXXXXB	
3930н to 39FFн	Reserved			·		
3A00H to 3AFFH	Reserved for CAN 0 Interface.					
3B00H to 3BFFH	Reserved for CAN 0 Interface.					
3C00н to 3CFFн	Reserved for CAN 1 Interface.					
3D00н to 3DFFн	Reserved for CAN 1 Interface.					
3E00н to 3FFFн	Reserved					

- Read/write notation
 - R/W : Reading and writing permitted
 - R : Read-only
 - W : Write-only

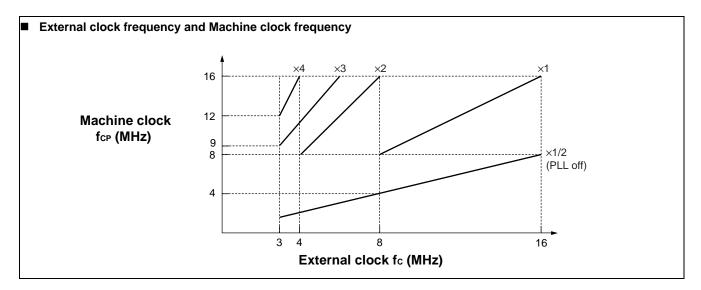
Initial value notation

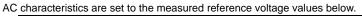
- 0 : Initial value is "0".
- 1 : Initial value is "1".
- X : Initial value is undefined.
- _ : Initial value is unused.

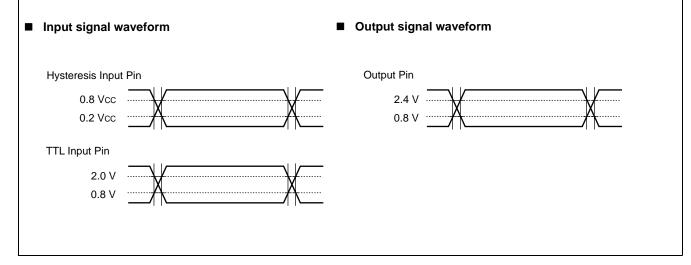
Note: Any write access to reserved addresses in I/O map should not be performed. A read access to reserved addresses results in reading "X".

10. Interrupt Map

	El ² OS	Interr	upt vector	Interrupt control register	
Interrupt cause	clear	Number Address		Number	Address
Reset	N/A	#08	FFFFDC _H	-	-
INT9 instruction	N/A	#09	FFFFD8H	-	—
Exception	N/A	#10	FFFFD4H	-	—
CAN 0 RX	N/A	#11	FFFFD0H	10000	000000
CAN 0 TX/NS	N/A	#12	FFFFCC _H	ICR00	0000В0н
CAN 1 RX	N/A	#13	FFFFC8H	ICR01	0000B1
CAN 1 TX/NS	N/A	#14	FFFFC4H		0000B1н
External Interrupt INT0/INT1	*1	#15	FFFFC0H	ICR02	0000000
Time Base Timer	N/A	#16	FFFFBC H		0000B2н
16-bit Reload Timer 0	*1	#17	FFFFB8H	10002	0000020
8/10-bit A/D Converter	*1	#18	FFFFB4H	ICR03	0000ВЗн
16-bit Free-run Timer	N/A	#19	FFFFB0H		
External Interrupt INT2/INT3	*1	#20	FFFFAC H	ICR04	0000B4н
Serial I/O	*1	#21	FFFFA8H	10005	0000B5н
8/16-bit PPG 0/1	N/A	#22	FFFFA4H	ICR05	
Input Capture 0	*1	#23	FFFFA0H	ICR06	0000В6н
External Interrupt INT4/INT5	*1	#24	FFFF9CH		
Input Capture 1	*1	#25	FFFF98н	ICR07	0000B7H
8/16-bit PPG 2/3	N/A	#26	FFFF94H		
External Interrupt INT6/INT7	*1	#27	FFFF90⊦	10000	0000B8н
Watch Timer	N/A	#28	FFFF8CH	ICR08	
8/16-bit PPG 4/5	N/A	#29	FFFF88 _H	ICR09	0000000
Input Capture 2/3	*1	#30	FFFF84 _H	ICRU9	0000B9н
8/16-bit PPG 6/7	N/A	#31	FFFF80H	ICR10	000084
Output Compare 0	*1	#32	FFFF7CH		0000ВАн
Output Compare 1	*1	#33	FFFF78н	ICR11	000000
Input Capture 4/5	*1	#34	FFFF74 _H		0000ВВн
Output Compare 2/3 - Input Capture 6/7	*1	#35	FFFF70⊦	ICR12	0000BCH
16-bit Reload Timer 1	*1	#36	FFFF6CH		UUUUDCH
UART 0 RX	*2	#37	FFFF68 _H	ICP12	000080
UART 0 TX	*1	#38	FFFF64 _H	- ICR13 0000BD⊦	
UART 1 RX	*2	#39	FFFF60⊦	10014	000005
UART 1 TX	*1	#40	FFFF5CH	- ICR14	0000BEн
Flash Memory	N/A	#41	FFFF58⊦	10045	000005
Delayed interrupt	N/A	#42	FFFF54H	ICR15	0000BFн

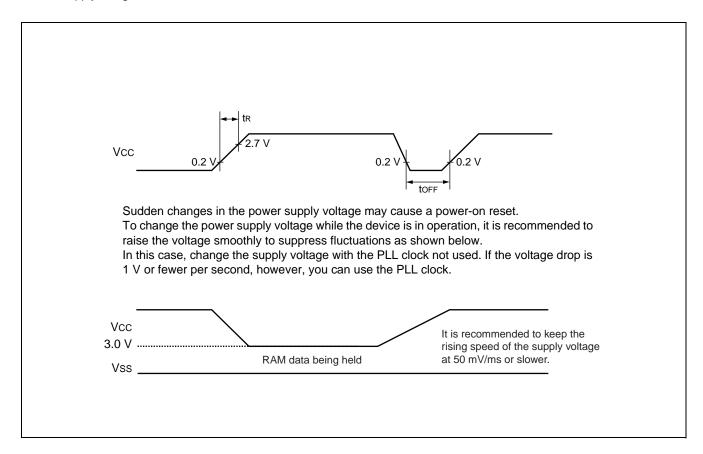

*1 : The interrupt request flag is cleared by the EI2OS interrupt clear signal.


*2 : The interrupt request flag is cleared by the El²OS interrupt clear signal. A stop request is available.

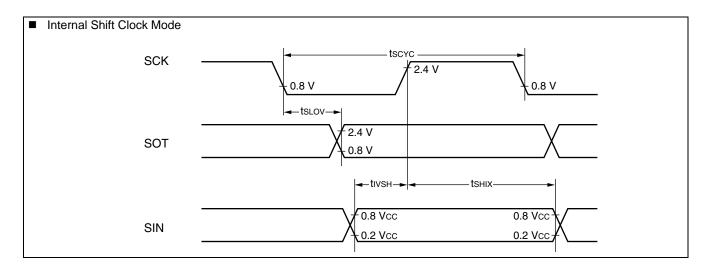

Notes :

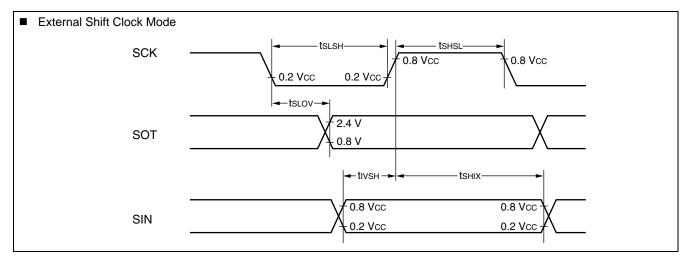
- N/A : The interrupt request flag is not cleared by the EI²OS interrupt clear signal.
- For a peripheral module with two interrupt causes for a single interrupt number, both interrupt request flags are cleared by the El²OS interrupt clear signal.
- At the end of El²OS, the El²OS clear signal will be asserted for all the interrupt flags assigned to the same interrupt number. If one interrupt flag starts the El²OS and in the meantime another interrupt flag is set by a hardware event, the later event is lost because the flag is cleared by the El²OS clear signal caused by the first event. So it is recommended not to use the El²OS for this interrupt number.
- If EI²OS is enabled, EI²OS is initiated when one of the two interrupt signals in the same interrupt control register (ICR) is asserted. This means that different interrupt sources share the same EI²OS Descriptor which should be unique for each interrupt source. For this reason, when one interrupt source uses the EI²OS, the other interrupt should be disabled.

11.4.4 Power On Reset

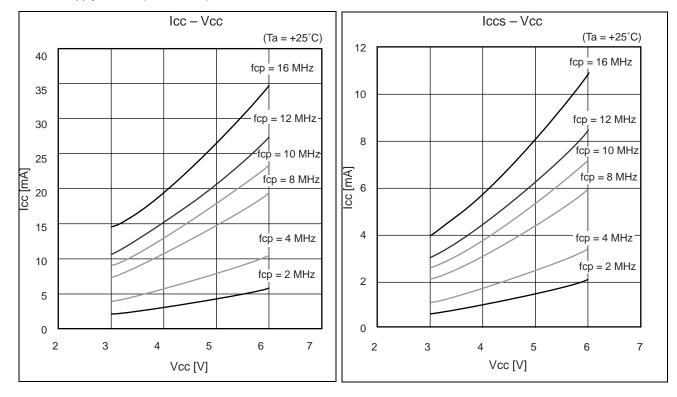

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 \text{ V to } 5.5 \text{ V}, V_{SS} = AV_{SS} = 0.0 \text{ V}, T_A = -40 \text{ }^{\circ}\text{C to } + 105 \text{ }^{\circ}\text{C})$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = AV_{SS} = 0.0 \text{ V}, T_A = -40 \text{ }^{\circ}\text{C to } + 105 \text{ }^{\circ}\text{C})

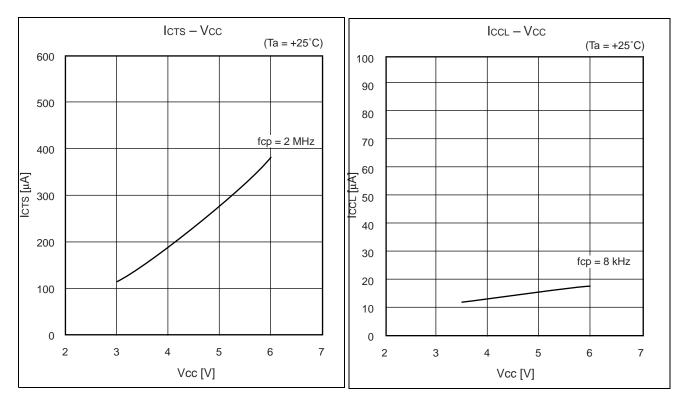
Parameter	Symbol	Pin name	Condition	Va	lue	Units	Remarks	
Faiametei	Symbol	Fininanie	Condition	Min	Max	Units	Remarks	
Power on rise time	tR	Vcc	_	0.05	30	ms	*	
Power off time	toff	Vcc		50	_	ms	Waiting time until power-on	


*: Vcc must be kept lower than 0.2 V before power-on.


Notes : ■ The above values are used for creating a power-on reset.

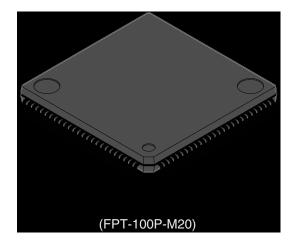
Some registers in the device are initialized only upon a power-on reset. To initialize these register, turn on the power supply using the above values.

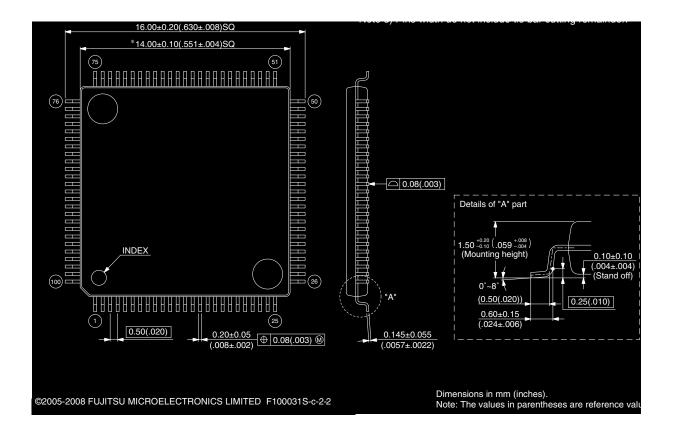



11.6 Flash Memory Program/Erase Characteristics

Parameter	Condition	Value			Units	Remarks	
Farameter	Condition	Min	Тур	Max	Units	Reliains	
Sector erase time		-	1	15	s	Excludes 00H programming p	rior erasure
Chip erase time	T _A = + 25 °C	_	5	_	s	MB90F543G (S) /F548G (S) /F548GL (S)	Excludes 00H programming
	Vcc = 5.0 V		7	-	s	MB90F549G (S) /F546G (S)	prior erasure
Word (16 bit width) programming time		_	16	3,600	μs	Excludes system-level overhe	ad
Erase/Program cycle	—	10,000	—	—	cycle		

■ Power supply current (MB90549G)





13. Ordering Information

Part number	Package	Remarks
MB90F543GPF		
MB90F543GSPF		
MB90F546GPF		
MB90F546GSPF		
MB90F548GPF		
MB90F548GSPF		
MB90F548GLPF		
MB90F548GLSPF		
MB90F549GPF	100-pin Plastic QFP	
MB90F549GSPF	(FPT-100P-M06)	
MB90543GPF		
MB90543GSPF		
MB90547GPF		
MB90547GSPF		
MB90548GPF		
MB90548GSPF		
MB90549GPF		
MB90549GSPF		
MB90F543GPMC		
MB90F543GSPMC		
MB90F546GPMC		
MB90F546GSPMC		
MB90F548GPMC		
MB90F548GSPMC		
MB90F548GLPMC		
MB90F548GLSPMC		
MB90F549GPMC	100-pin Plastic LQFP	
MB90F549GSPMC	(FPT-100P-M20)	
MB90543GPMC		
MB90543GSPMC		
MB90547GPMC		
MB90547GSPMC		
MB90548GPMC		
MB90548GSPMC		
MB90549GPMC		
MB90549GSPMC		

15. Major Changes

Spansion Publication Number: DS07-13703-7E

Section	Change Results
■ PRODUCT LINEUP	Changed the name in peripheral resource.
	16-bit I/O Timer \rightarrow 16-bit Free-run Timer
■ I/O CIRCUIT TYPE	Changed the name of input typ.
	Hysteresis \rightarrow CMOS Hysteresis HYS \rightarrow CMOS Hysteresis
■ BLOCK DIAGRAM	Changed the arrow direction of SOT1 signal at UART1(SCI).
	" $\leftarrow \rightarrow$ " (input/output) \rightarrow " \leftarrow " (output)
■ I/O MAP	Changed the text of "Note".
■ INTERRUPT MAP	Changed the name of peripheral resource of the pin number: #19.
	I/O Timer \rightarrow 16-bit Free-run Timer
 ELECTRICAL CHARACTERISTICS Recommended Conditions 	Changed the remarks of "parameter: Power supply voltage".
3. DC Characteristics	Changed the maximum value of symbol : VILM of parameter: Input voltage. Vcc + 0.3 \rightarrow Vss + 0.3
	Added the following remarks for parameter : Pull-down resistance. Except Flash device
4. AC Characteristics (1) Clock Timing	Added the value when using an external clock in Oscillation frequency and Clock cycle time on (1) Clock Timing for parameter.
	Added the item of A/D converter operation range in figure of " Guaranteed PLL operation range"
(3) Reset and Hardware Standby Input Timing	Changed the following item.
	(3) Reset and Hardware Standby Input Timing Remarks:
	In sub-clock mode, sub-sleep mode, timer mode $2t_{CP} \rightarrow 2t_{LCP}$
(4) Power On Reset	Changed as follows;
	Due to repetitive operation \rightarrow Waiting time until power-on
5. A/D Converter	Changed the unit of Zero transition voltage and Full scale transition voltage. mV \rightarrow V
ORDERING INFORMATION	Added the MB90F548GLPMC in Part Numbers.

NOTE: Please see "Document History" about later revised information.

Document History

Document Title: MB90F543G(S)/546G(S)/548G(S)/549G(S)/549G(S)/V540G/MB90543G(S)/547G(S)/548G(S)/F548GL(S) CMOS F2MC-16LX MB90540G/545G Series 16-bit Proprietary Microcontroller Document Number: 002-07696 Orig. of Change Submission Revision ECN **Description of Change** Date ** Migrated to Cypress and assigned document number 002-07696. No change to document contents or format. AKIH 11/13/2008 _ *A 5537115 AKIH 11/30/2016 Updated to Cypress template

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers cypress.	ooni, ann
Automotive cypress.com/au	Itomotive
Clocks & Buffers cypress.co	m/clocks
Interface cypress.com/	/interface
Internet of Things cypres	s.com/iot
Lighting & Power Control cypress.com/pc	owerpsoc
Memory cypress.com	/memory
PSoC cypress.c	com/psoc
Touch Sensing cypress.co	om/touch
USB Controllers cypress.	.com/usb
Wireless/RF cypress.com	/wireless

PSoC[®]Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Forums | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuctitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

[©] Cypress Semiconductor Corporation, 2002-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.