

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, EBI/EMI, SCI, Serial I/O, UART/USART
Peripherals	POR, WDT
Number of I/O	81
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90f543gspf-gs-9011

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Starting by an external trigger input. Conversion time: 26.3 µs

■ FULL-CAN interfaces

MB90540G series : 2 channels MB90545G series : 1 channel

Conforming to Version 2.0 Part A and Part B

Flexible message buffering (mailbox and FIFO buffering can be mixed)

■ External bus interface : Maximum address space 16 Mbytes

■ Package: QFP-100, LQFP-100

Contents

Features	
Product Lineup	4
Pin Assignment	
Pin Description	
/O Circuit Type	14
Handling Devices	
Block Diagram	
Memory Map	
/O Map	
CAN Controller	

Interrupt Map	35
Electrical Characteristics	37
Example Characteristics	61
Ordering Information	66
Package Dimensions	67
Major Changes	69
Document History	
Sales, Solutions, and Legal Information	

5. Handling Devices

(1) Preventing latch-up

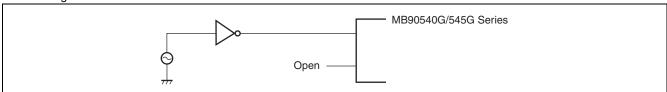
CMOS IC chips may suffer latch-up under the following conditions :

- A voltage higher than Vcc or lower than Vss is applied to an input or output pin.
- A voltage higher than the rated voltage is applied between Vcc and Vss.
- The AVcc power supply is applied before the Vcc voltage.

Latch-up may increase the power supply current drastically, causing thermal damage to the device.

For the same reason, care must also be taken in not allowing the analog power-supply voltage (AVcc, AVRH) to exceed the digital power-supply voltage.

(2) Handling unused pins


Leaving unused input pins open may result in misbehavior or latch up and possible permanent damage of the device. Therefor they must be pulled up or pulled down through resistors. In this case those resistors should be more than $2 \text{ k}\Omega$.

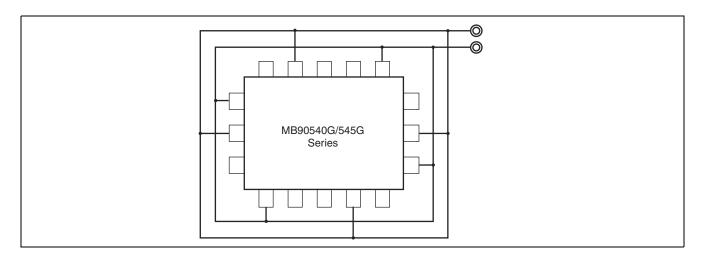
Unused bi-directional pins should be set to the output state and can be left open, or the input state with the above described connection.

(3) Using external clock

To use external clock, drive X0 pin only and leave X1 pin unconnected.

Below is a diagram of how to use external clock.

(4) Use of the sub-clock


Use one clock system parts when the sub-clock is not used. In that case, pull-down the pin X0A and leave the pin X1A open. When using two clock system parts, a 32 kHz oscillator has to be connected to the X0A and X1A pins.

(5) Power supply pins (Vcc/Vss)

In products with multiple V_{CC} or V_{SS} pins, the pins of a same potential are internally connected in the device to avoid abnormal operations including latch-up. However you must connect the pins to an external power and a ground line to lower the electromagnetic emission level to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating.

Make sure to connect Vcc and Vss pins via the lowest impedance to power lines.

It is recommended to provide a bypass capacitor of around 0.1 μF between Vcc and Vss pins near the device.

(6) Pull-up/down resistors

The MB90540G/545G Series does not support internal pull-up/down resistors (except Port0 - Port3 : pull-up resistors) . Use external components where needed.

(7) Crystal Oscillator Circuit

Noises around X0 or X1 pins may be possible causes of abnormal operations. Make sure to provide bypass capacitors via the shortest distances from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure, to the utmost effort, that lines of oscillation circuits do not cross the lines of other circuits.

It is highly recommended to provide a printed circuit board artwork surrounding X0 and X1 pins with a ground area for stabilizing the operation.

(8) Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply (AVcc, AVRH, AVRL) and analog inputs (AN0 to AN7) after turning-on the digital power supply (Vcc).

Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage does not exceed AVRH or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

(9) Connection of Unused Pins of A/D Converter

Connect unused pins of A/D converter to AVcc = Vcc, AVss = AVRH = Vss.

(10) N.C. Pin

The N.C. (internally connected) pin must be opened for use.

(11) Notes on Energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at $50 \mu s$ or more (0.2 V to 2.7 V).

Document Number: 002- 07696 Rev. *A Page 18 of 70

Address	Register	Abbreviation	Access	Resource name	Initial value
А2н to А4н	Prohibited		•	•	
А5 н	Automatic ready function select register	ARSR	W		0 0 1 1 0 Ов
А6н	External address output control register	HACR	W	External Memory Access	0 0 0 0 0 0 0 0в
А7н	Bus control signal selection register	ECSR	W	1	0 0 0 0 0 0 0 _в
А8н	Watchdog Timer control register	WDTC	R/W	Watchdog Timer	XXXXX 1 1 1 _B
А9н	Time Base Timer Control register	TBTC	R/W	Time Base Timer	1 0 0 1 0 Ов
ААн	Watch timer control register	WTC	R/W	Watch Timer	1 Х О О О О О ОВ
ABн to ADн	Prohibited				
AЕн	Flash memory control status register (Flash only, otherwise reserved)	FMCS	R/W	Flash Memory	0 0 0 Х 0 0 0 0в
АГн	Prohibited		•	•	
В0н	Interrupt control register 00	ICR00	R/W		00000111в
В1н	Interrupt control register 01	ICR01	R/W		00000111в
В2н	Interrupt control register 02	ICR02	R/W		00000111в
ВЗн	Interrupt control register 03	ICR03	R/W		00000111в
В4н	Interrupt control register 04	ICR04	R/W		00000111в
В5н	Interrupt control register 05	ICR05	R/W		00000111в
В6н	Interrupt control register 06	ICR06	R/W		00000111в
В7н	Interrupt control register 07	ICR07	R/W	Interrupt	00000111в
В8н	Interrupt control register 08	ICR08	R/W	controller	00000111в
В9н	Interrupt control register 09	ICR09	R/W		00000111в
ВАн	Interrupt control register 10	ICR10	R/W		00000111в
ВВн	Interrupt control register 11	ICR11	R/W		00000111в
ВСн	Interrupt control register 12	ICR12	R/W	1	00000111В
ВОн	Interrupt control register 13	ICR13	R/W	1	00000111в
ВЕн	Interrupt control register 14	ICR14	R/W		00000111в
ВГн	Interrupt control register 15	ICR15	R/W		00000111в
C0н to FFн	External				

Address	Register	Abbreviation	Access	Resource name	Initial value
1FF0н	Program address detection register 0	PADR0	R/W		XXXXXXXXB
1FF1н	Program address detection register 0	PADR0	R/W]	XXXXXXXXB
1FF2 _H	Program address detection register 0	PADR0	R/W	Address Match	XXXXXXXXB
1FF3н	Program address detection register 1	PADR1	R/W	Detection Function	XXXXXXXXB
1FF4н	Program address detection register 1	PADR1	R/W		XXXXXXXXB
1FF5н	Program address detection register 1	PADR1	R/W		XXXXXXXXB

9. CAN Controller

The MB90540G series contains two CAN controllers (CAN0 and CAN1) , the MB90545G series contains only one (CAN0) . The Evaluation Chip MB90V540G also has two CAN controllers.

The CAN controller has the following features:

- Conforms to CAN Specification Version 2.0 Part A and B
 - Supports transmission/reception in standard frame and extended frame formats
- Supports transmission of data frames by receiving remote frames
- 16 transmitting/receiving message buffers
 - □ 29-bit ID and 8-byte data
 - □ Multi-level message buffer configuration
- Provides full-bit comparison, full-bit mask, acceptance register 0/acceptance register 1 for each message buffer as ID acceptance mask
 - Two acceptance mask registers in either standard frame format or extended frame formats
- Bit rate programmable from 10 Kbps to 1 Mbps (when input clock is at 16 MHz)

List of Control Registers

Address		Dogistor	Abbreviation	Access	Initial Value	
CAN0	CAN1	Register	Appreviation	Access	initial value	
000070н	000080н	Managa buffar valid register	BVALR	R/W	0000000 00000000	
000071н	000081н	Message buffer valid register	DVALK	R/VV	0000000 0000000B	
000072н	000082н	Transmit required register	TREOR	R/W	00000000 00000000в	
000073н	000083н	Transmit request register	IREQR	R/VV	0000000 0000000В	
000074н	000084н	Transmit cancel register	TCANR	W	00000000 00000000в	
000075н	000085н	Transmit cancel register	TCANK	VV	00000000 00000000	
000076н	000086н	Transmit complete register	TCR	R/W	00000000 00000000в	
000077н	000087н	Transmit complete register	TCR	R/VV		
000078н	000088н	Descive complete register	RCR	R/W	0000000 0000000	
000079н	000089н	Receive complete register	RCR	R/VV	00000000 00000000В	
00007Ан	00008Ан	Remote request receiving register	RRTRR	R/W	0000000 0000000-	
00007Вн	00008Вн	Remote request receiving register	KKIKK	K/VV	00000000 00000000в	
00007Сн	00008Сн	Pagaiya ayarrun ragiatar	ROVRR	R/W	00000000 00000000	
00007Dн	00008Dн	Receive overrun register	KOVKK	IK/ VV	0000000 0000000B	
00007Ен	00008Ен	Pageive interrupt applie register	RIER	R/W	00000000 00000000	
00007Fн	00008Fн	Receive interrupt enable register	RIER	K/VV	00000000 00000000B	

(Continued)

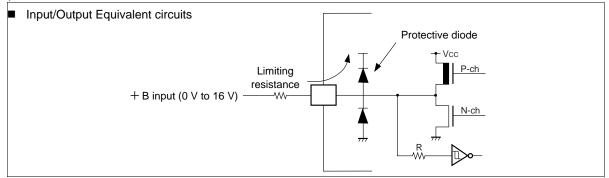
Document Number: 002- 07696 Rev. *A Page 29 of 70

11. Electrical Characteristics

11.1 Absolute Maximum Ratings

(Vss = AVss = 0.0 V)

Parameter	Cumbal	V	alue	Units	Remarks
Parameter	Symbol	Min	Max	Units	Remarks
	Vcc	Vss - 0.3	Vss + 6.0	V	
Power supply voltage	AVcc	Vss - 0.3	Vss + 6.0	V	Vcc = AVcc *1
Tower supply voltage	AVRH, AVRL	V _{SS} — 0.3	Vss + 6.0	V	AVcc≥ AVRH/AVRL, AVRH≥ AVRL *1
Input voltage	Vı	$V_{SS} - 0.3$	Vss + 6.0	V	*2
Output voltage	Vo	$V_{SS} - 0.3$	Vss + 6.0	V	*2
Maximum clamp current	ICLAMP	- 2.0	+ 2.0	mA	*6
Total maximum clamp current	Σ ICLAMP	_	20	mA	*6
"L" level max output current	Іоь	_	15	mA	*3
"L" level avg. output current	lolav	_	4	mA	*4
"L" level max overall output current	ΣΙοι	_	100	mA	
"L" level avg. overall output current	Σ lolav	_	50	mA	*5
"H" level max output current	Іон	_	-15	mA	*3
"H" level avg. output current	Іонач	_	- 4	mA	*4
"H" level max overall output current	ΣІон	_	-100	mA	
"H" level avg. overall output current	ΣΙομαν	_	-50	mA	*5
Dawar canaumation	Pp	_	500	mW	Flash device
Power consumption	PD	_	400	mW	MASK ROM
Operating temperature	TA	-40	+105	°C	
Storage temperature	Тѕтс	- 55	+150	°C	


- *1 : AVcc, AVRH, AVRL should not exceed Vcc. Also, AVRH, AVRL should not exceed AVcc, and AVRL does not exceed AVRH.
- *2 : V_I and V_O should not exceed V_{CC} + 0.3 V. However if the maximum current to/from an input is limited by some means with external components, the I_{CLAMP} rating supercedes the V_I rating.
- *3: The maximum output current is a peak value for a corresponding pin.
- *4 : Average output current is an average current value observed for a 100 ms period for a corresponding pin.
- *5 : Total average current is an average current value observed for a 100 ms period for all corresponding pins.

*6

- Applicable to pins: P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, PA0
- Use within recommended operating conditions.
- □ Use at DC voltage (current).
- □ The + B signal should always be applied with a limiting resistance placed between the + B signal and the microcontroller.
- □ The value of the limiting resistance should be set so that when the + B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- □ Note that when the microcontroller drive current is low, such as in the power saving modes, the + B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
- □ Note that if a + B signal is input when the microcontroller current is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- □ Note that if the + B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on result.
- □ Care must be taken not to leave the + B input pin open.

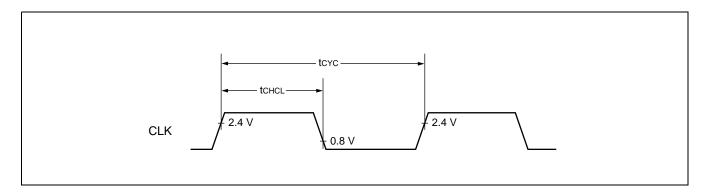
- □ Note that analog system input/output pins other than the A/D input pins (LCD drive pins, comparator input pins, etc.) cannot accept + B signal input.
- □ Sample recommended circuits :

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 \text{ V to } 5.5 \text{ V}, V_{SS} = AV_{SS} = 0.0 \text{ V}, T_A = -40 \text{ °C to } +105 \text{ °C}) \\ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = AV_{SS} = 0.0 \text{ V}, T_A = -40 \text{ °C to } +105 \text{ °C}) \\ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = AV_{SS} = 0.0 \text{ V}, T_A = -40 \text{ °C to } +105 \text{ °C}) \\ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = AV_{SS} = 0.0 \text{ V}, T_A = -40 \text{ °C to } +105 \text{ °C}) \\ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = AV_{SS} = 0.0 \text{ V}, T_A = -40 \text{ °C to } +105 \text{ °C}) \\ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = AV_{SS} = 0.0 \text{ V}, T_A = -40 \text{ °C to } +105 \text{ °C}) \\ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = AV_{SS} = 0.0 \text{ V}, T_A = -40 \text{ °C to } +105 \text{ °C}) \\ (Other than MB90543G(S)/F548G$

Parameter	Sym-	Pin name	Condition		Value		Units	Remarks	
Farameter	bol	Pili liaille	Condition		Тур	Тур Мах		Remarks	
	Icc		Internal frequency : 16 MHz, At normal operating	_	40	55	mA		
	icc		Internal frequency : 16 MHz, At Flash programming/erasing	-	50	70	mA	Flash device	
	Iccs		Internal frequency : 16 MHz, At sleep mode	-	12	20	mA		
]	$V_{CC} = 5.0 \text{ V} \pm 10\%$	_	300	600	μΑ		
	Істѕ			_	600	1100	μΑ	MB90F548GL (S) only	
Power	ICIS		Internal frequency : 2 MHz, At pseudo timer mode	_	200	400	μА	MB90543G(S)/547G(S)/ 548(S) only	
supply	,	Vcc	Internal frequency: 8 kHz,	_	400	750	μΑ	MB90F548GL only	
current*	Iccl		At sub operation, T _A = 25 °C	_	50	100	μΑ	MASK ROM	
			At sub operation, TA = 25 C	_	150	300	μΑ	Flash device	
	Iccls		Internal frequency: 8 kHz,	_	15	40	μА		
	ICCLS		At sub sleep, T _A = 25 °C		13	70	μΑ		
	Ісст		Internal frequency: 8 kHz,		7	25	25 μΑ		
	ICCI		At timer mode, T _A = 25 °C		'	20	μΑ		
	Іссн1		At stop, T _A = 25 °C	_	5	20	μΑ		
	Іссн2		At hardware standby mode, $T_A = 25 ^{\circ}\text{C}$	_	50	100	μА		
Input capacity	Cin	Other than AVcc, AVss, AVRH, AVRL, C, Vcc, Vss	_	_	5	15	pF		

^{*:} The power supply current testing conditions are when using the external clock.


Document Number: 002-07696 Rev. *A

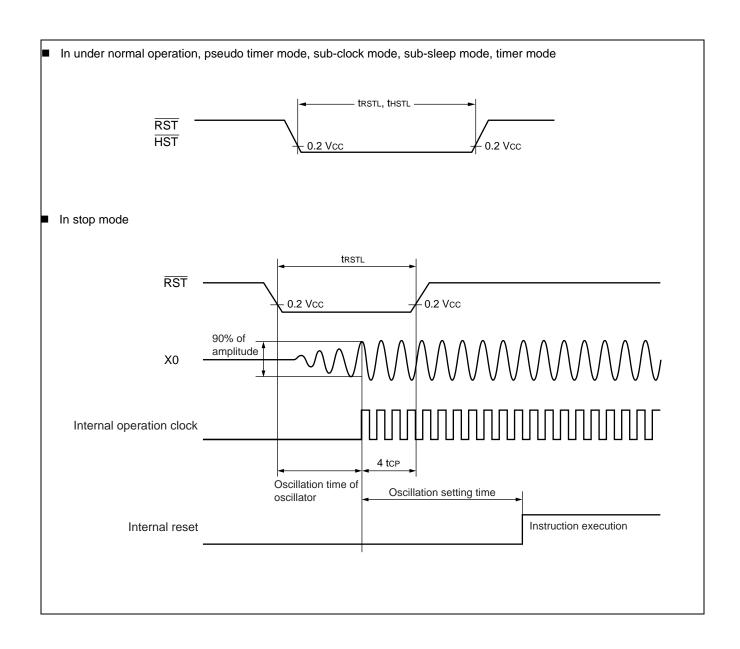
11.4.2 Clock Output Timing

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): \ V_{CC} = 3.5 \ V \ to \ 5.5 \ V, \ V_{SS} = AV_{SS} = 0.0 \ V, \ T_A = -40 \ ^{\circ}C \ to \ +105 \ ^{\circ}C) \ (Other \ than \ MB90543G(S)/547G(S)/548G(S)/F548GL(S): \ V_{CC} = 5.0 \ V \ \pm 10\%, \ V_{SS} = AV_{SS} = 0.0 \ V, \ T_A = -40 \ ^{\circ}C \ to \ +105 \ ^{\circ}C)$

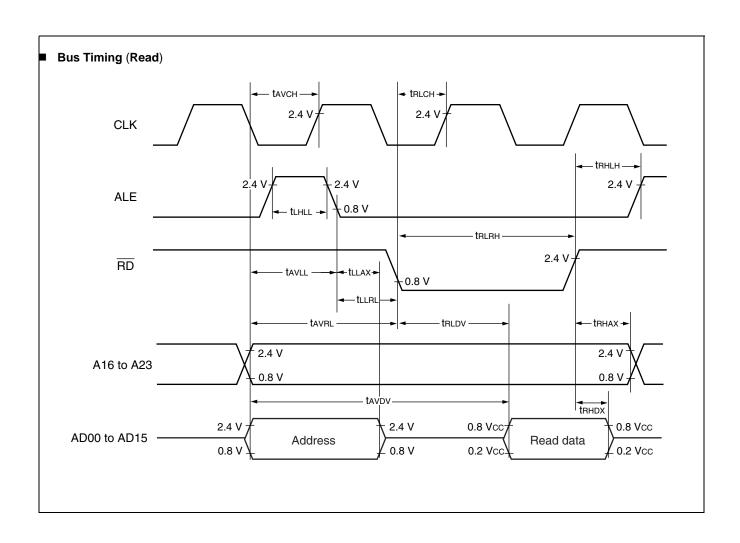
Parameter	Parameter Symbol Pin name Conditi		Condition	Value		Units	Remarks
Farameter	Symbol	Fill Hallie	Condition	Min	Max	Oilles	Remarks
Cycle time	t cyc	CLK	$V_{cc} = 5 \text{ V} \pm 10\%$	62.5	_	ns	
$CLK\uparrow \rightarrow CLK\downarrow$	t CHCL	CLK	VCC — 3 V ⊥ 10 / 0	20	_	ns	

11.4.3 Reset and Hardware Standby Input Timing

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): \ V_{CC} = 3.5 \ V \ to \ 5.5 \ V, \ V_{SS} = AV_{SS} = 0.0 \ V, \ T_A = -40 \ ^{\circ}C \ to \ +105 \ ^{\circ}C) \ (Other \ than \ MB90543G(S)/547G(S)/548G(S)/F548GL(S): \ V_{CC} = 5.0 \ V \pm 10\%, \ V_{SS} = AV_{SS} = 0.0 \ V, \ T_A = -40 \ ^{\circ}C \ to \ +105 \ ^{\circ}C)$


Doromotor	Parameter Symbol Pin Name Min Max		Value	Value		Remarks	
Parameter			Max	Units	Remarks		
			4 tcp	_	ns	Under normal operation	
Reset input time	trs⊤∟	RST	Oscillation time of oscillator + 4 tcp	_	ms	In stop mode	
				100	_	μS	In pseudo timer mode (MB90543G (S) /547G (S) /548G (S))
			4 tcp	_	ns	In pseudo timer mode (Other than MB90543G (S) /547G (S) /548G (S))	
			2 tlcp	_	μs	In sub-clock mode, sub-sleep mode, timer mode	
Hardware standby input time	t HSTL	HST	4 tcp	_	ns	Under normal operation	

Note: "tcp" represents one cycle time of the machine clock.


Oscillation time of oscillator is time that amplitude reached the 90%. In the crystal oscillator, the oscillation time is between several ms to tens of ms. In ceramic oscillator, the oscillation time is between handreds of μ s to several ms. In the external clock, the oscillation time is 0 ns.

Any reset can not fully initialize the Flash Memory if it is performing the automatic algorithm.

11.5 A/D Converter

11.5.1 Electrical Characteristics

 $(V_{CC} = AV_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = AV_{SS} = 0.0 \text{ V}, 3.0 \text{ V} \le AVRH - AVRL, T_A = -40 ^{\circ}C \text{ to} + 105 ^{\circ}C)$

Dorometer	Symbol Pin name Value				Units	Remarks	
Parameter	Symbol	Pin name	Min	Тур	Max	Units	Remarks
Resolution	_	_	_	_	10	bit	
Conversion error	_	_	_	_	± 5.0	LSB	
Nonlinearity error	_	_	_	_	± 2.5	LSB	
Differential nonlinearity error	_	_	_	_	± 1.9	LSB	
Zero transition voltage	Vот	AN0 to AN7	AVRL — 3.5 LSB	AVRL + 0.5 LSB	AVRL + 4.5 LSB	V	
Full scale transition voltage	V _{FST}	AN0 to AN7	AVRH — 6.5 LSB	AVRH — 1.5 LSB	AVRH + 1.5 LSB	V	
Compare time	_	_	352 tcp	_	_	ns	Internal frequency: 16 MHz
Sampling time	_	_	64 tcp	_	_	ns	Internal frequency: 16 MHz
Analog port input current	lain	AN0 to AN7	-1	_	1	μΑ	$V_{CC} = AV_{CC} = 5.0 \text{ V} \pm 1\%$
Analog input voltage range	Vain	AN0 to AN7	AVRL	_	AVRH	V	
Reference voltage range	_	AVRH	AVRL + 2.7	_	AVcc	V	
Kelerence voltage range	_	AVRL	0	_	AVRH — 2.7	V	
Power supply current	IA	AVcc	_	5	_	mA	
Tower supply culterit	I _{АН}	AVcc	_	_	5	μΑ	*
	IR	AVRH	_	400	600	μΑ	Flash device
Reference voltage supply current	IK	AVNII	_	140	260	μΑ	MASK ROM
	I _{RH}	AVRH	_	_	5	μΑ	*
Offset between input channels	_	AN0 to AN7	-	_	4	LSB	

^{*:} When not using an A/D converter, this is the current (Vcc = AVcc = AVRH = 5.0 V) when the CPU is stopped.

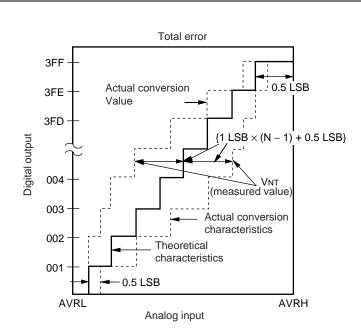
Note: The functionality of the A/D converter is only guaranteed for VCC = $5.0 \text{ V} \pm 10 \%$ (also for MB90543G(S)/547G(S)/548G(S)/F548G(S)).

Document Number: 002- 07696 Rev. *A Page 57 of 70

11.5.2 A/D Converter Glossary

Resolution: Analog changes that are identifiable with the A/D converter

Linearity error: The deviation of the straight line connecting the zero transition point ("00 0000 0000" ←→ "00 0000


0001") with the full-scale transition point ("11 1111 1110" \longleftrightarrow "11 1111 1111") from actual conversion

characteristics

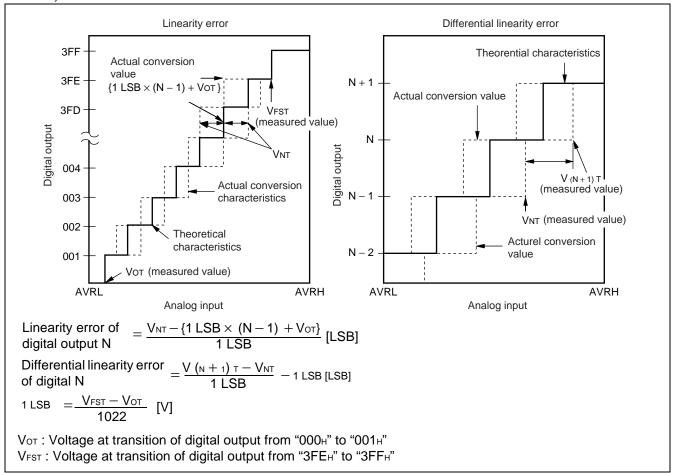
Differential linearity error: The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

Total error: The total error is defined as a difference between the actual value and the theoretical value, which

includes zero-transition error/full-scale transition error and linearity error.

1 LSB = (Theoretical value)
$$\frac{AVRH - AVRL}{1024}$$
 [V]

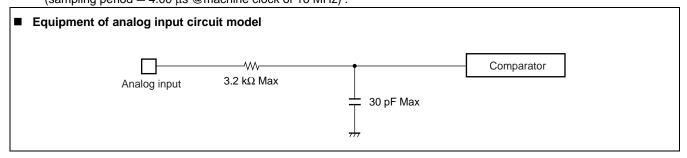
Vot (Theoretical value) = AVRL + 0.5 LSB [V]


 V_{FST} (Theoretical value) = AVRH - 1.5 LSB [V]

Total error for digital output N =
$$\frac{V_{NT} - \{1 \text{ LSB} \times (N-1) + 0.5 \text{ LSB}\}}{1 \text{ LSB}}$$
 [LSB]

 V_{NT} : Voltage at a transition of digital output from (N-1) to N

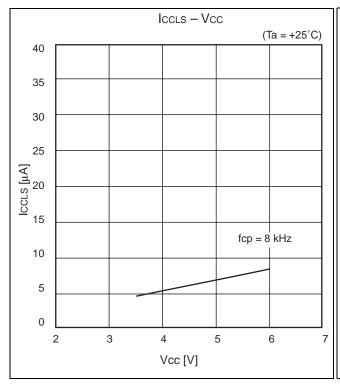
(Continued)

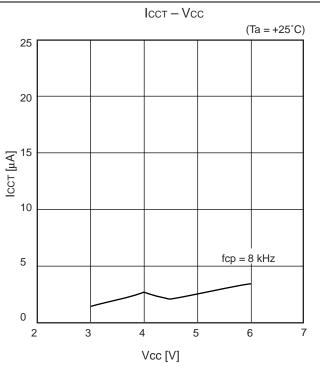


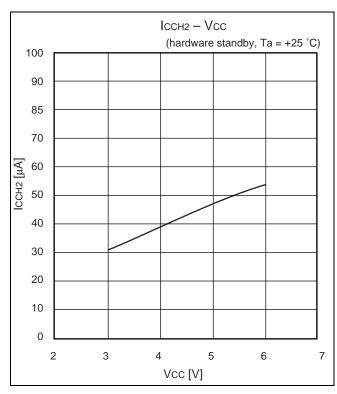
11.5.3 Notes on Using A/D Converter

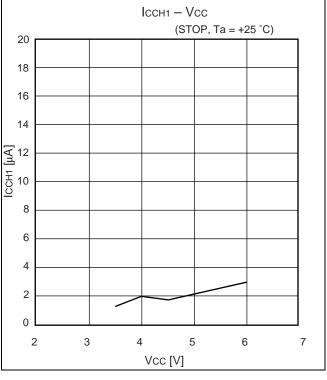
Select the output impedance value for the external circuit of analog input according to the following conditions, :

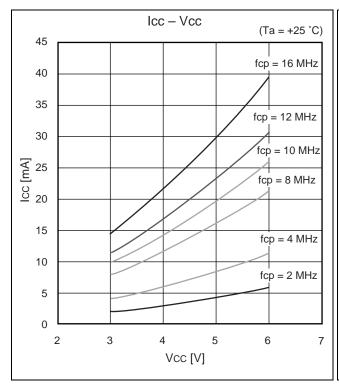
- Output impedance values of the external circuit of 15 k Ω or lower are recommended.
- When capacitors are connected to external pins, the capacitance of several thousand times the internal capacitor value is recommended to minimized the effect of voltage distribution between the external capacitor and internal capacitor.


Note: When the output impedance of the external circuit is too high, the sampling period for analog voltages may not be sufficient (sampling period = $4.00 \, \mu s$ @machine clock of $16 \, MHz$).

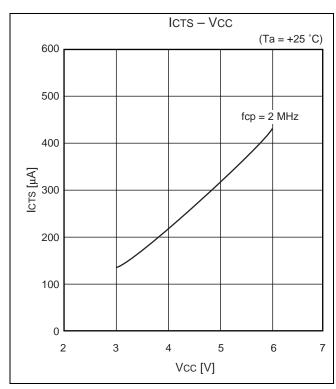



11.5.4 Error


The smaller the | AVRH - AVRL |, the greater the error would become relatively.

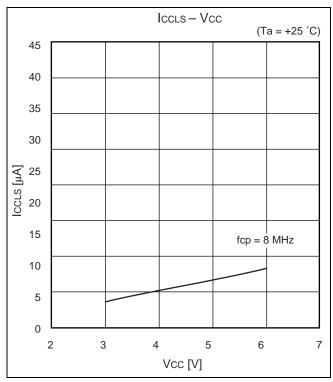


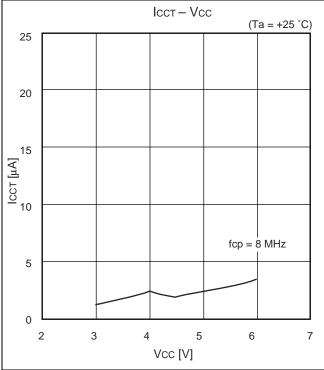


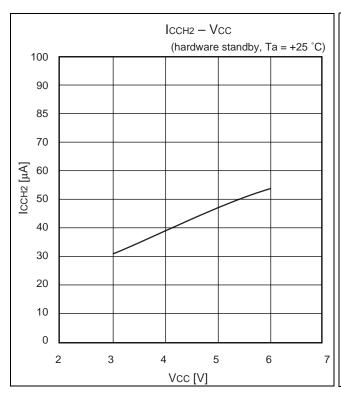


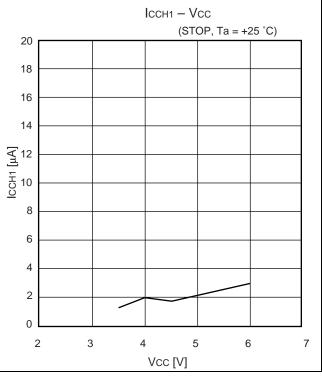


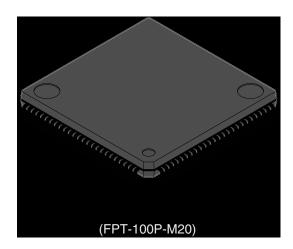
■ Power supply current (MB90F549G)

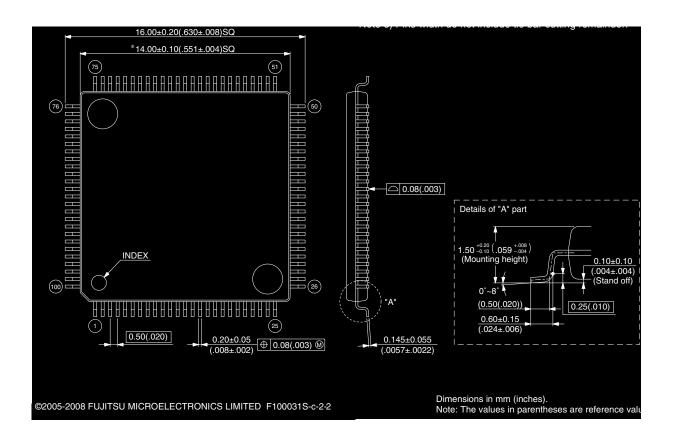












13. Ordering Information

Part number	Package	Remarks
MB90F543GPF		
MB90F543GSPF		
MB90F546GPF		
MB90F546GSPF		
MB90F548GPF		
MB90F548GSPF		
MB90F548GLPF		
MB90F548GLSPF		
MB90F549GPF	100-pin Plastic QFP	
MB90F549GSPF	(FPT-100P-M06)	
MB90543GPF		
MB90543GSPF		
MB90547GPF		
MB90547GSPF		
MB90548GPF		
MB90548GSPF		
MB90549GPF		
MB90549GSPF		
MB90F543GPMC		
MB90F543GSPMC		
MB90F546GPMC		
MB90F546GSPMC		
MB90F548GPMC		
MB90F548GSPMC		
MB90F548GLPMC		
MB90F548GLSPMC		
MB90F549GPMC	100-pin Plastic LQFP	
MB90F549GSPMC	(FPT-100P-M20)	
MB90543GPMC		
MB90543GSPMC		
MB90547GPMC		
MB90547GSPMC		
MB90548GPMC		
MB90548GSPMC		
MB90549GPMC		
MB90549GSPMC		

