

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, EBI/EMI, SCI, Serial I/O, UART/USART
Peripherals	POR, WDT
Number of I/O	81
Program Memory Size	128KB (128K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90f543gspf-gs-9012

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Starting by an external trigger input. Conversion time : 26.3 μ s

FULL-CAN interfaces
 MB90540G series : 2 channels
 MB90545G series : 1 channel
 Conforming to Version 2.0 Part A and Part B

Flexible message buffering (mailbox and FIFO buffering can be mixed)

- External bus interface : Maximum address space 16 Mbytes
- Package: QFP-100, LQFP-100

Contents

Features	1
Product Lineup	4
Pin Assignment	7
Pin Description	9
I/O Circuit Type	14
Handling Devices	
Block Diagram	21
Memory Map	
I/O Map	23
CAN Controller	

Interrupt Map	35
Electrical Characteristics	37
Example Characteristics	61
Ordering Information	66
Package Dimensions	67
Major Changes	69
Document History	69
Sales, Solutions, and Legal Information	70

1. Product Lineup

Features	MB90F543G (S) /F548G (S) MB90F549G (S) /F546G (S) MB90F548GL(S)	MB90V540G		
CPU	F ² MC-16LX CPU			
System clock	On-chip PLL clock multiplier (\times 1, \times 2, \times 3 Minimum instruction exection time : 62.5	3, ×4, 1/2 when PLL stop) ₅ ns (machine clock 16MHz, 4MHz os	sc. four times multiplied by PLL)	
ROM	Flash memory MB90F543G(S)/F548G(S) / F548GL(S) : 128 Kbytes MB90F549G(S)/F546G(S) : 256 Kbytes	MASK ROM : MB90547G(S): 64 Kbytes MB90543G(S)/548G(S): 128 Kbytes MB90549G(S): 256 Kbytes	External	
RAM	MB90F548G(S)/F548GL(S): 4 Kbytes MB90F543G (S) /F549G(S) : 6 Kbytes MB90F546G(S) : 8 Kbytes	MB90547G(S): 2 Kbytes MB90548G(S): 4 Kbytes MB90543G(S)/549G(S): 6 Kbytes	8 Kbytes	
Clocks	MB90F543G/F548G/F549G/F546G/ F548GL : Two clocks system MB90F543GS/F548GS/F549GS/ F546GS/F548GLS : One clock system	MB90543G/547G/548G/549G : Two clocks system MB90543GS/547GS/548GS/ 549GS : One clock system	Two clocks system*1	
Operating voltage range	*3			
Temperature range	-40 °C to 105 °C			
Package	QFP100, LQFP100		PGA-256	
Emulator-specify power supply ^{*2}	-		None	
UARTO	Full duplex double buffer Support asynchronous/synchronous (wit Baud rate : 4808/5208/9615/10417/1923 500 K/1 M/2 Mbps (synchron	h start/stop bit) transfer 30/38460/62500/500000 bps (asynch ous) at System clock = 16 MHz	ironous)	
	Full duplex double buffer			
UART1	Asynchronous (start-stop synchronized)	and CLK-synchronous communicati	on	
(SCI)	Baud rate : 1202/2404/4808/9615/19230 62.5 K/125 K/250 K/500 K/1)/31250/38460/62500 bps (asynchro M/2 Mbps (synchronous) at 6, 8, 10,	nous) 12, 16 MHz	
Serial I/O	Transfer can be started from MSB or LSI Supports internal clock synchronized tra Supports positive-edge and nagative-edge Baud rate : 31.25 K/62.5 K/125 K/500 K/	B nsfer and external clock synchronize ge clock synchronization /1 Mbps at System clock = 16 MHz	d transfer	
A/D Converter	10-bit or 8-bit resolution 8 input channels Conversion time : 26.3 μs (per one chan	inel)		

(Continued)

3. Pin Description

Pin	No.	Din mama		Eurotion				
LQFP*2	QFP*1	Pin name	Circuit type	Function				
80 81	82 83	X0 X1	A (Oscillation)	High speed crystal oscillator input pins				
78	80	X0A	A	Low speed crystal oscillator input pins. For the one clock system parts, perfom external pull-down processing.				
77	79	X1A	(Oscillation)	Low speed crystal oscillator input pins. For the one clock system parts, leave it open.				
75	77	RST	В	External reset request input pin				
50	52	HST	С	Hardware standby input pin				
82 to 00	95 to 02	P00 to P07		General I/O port with programmable pullup. This function is enabled in the single-chip mode.				
83 10 90	00 10 92	AD00 to AD07		I/O pins for 8 lower bits of the external address/data bus. This function is enabled when the external bus is enabled.				
01 to 09	02 to 100	P10 to P17		General I/O port with programmable pullup. This function is enabled in the single-chip mode.				
91 10 96	93 10 100	AD08 to AD15]	I/O pins for 8 higher bits of the external address/data bus. This function is enabled when the external bus is enabled.				
00 to 6	1 += 0	P20 to P27		General I/O port with programmable pullup. In external bus mode, this function is valid when the corresponding bits in the external address output control resister (HACR) are set to "1".				
99 to 6 1 to 8 A16		A16 to A23		8-bit I/O pins for A16 to A23 at the external address/data bus. In external bus mode, this function is valid when the corresponding bits in the external address output control resister (HACR) are set to "0".				
7	0	P30		General I/O port with programmable pullup. This function is enabled in the single-chip mode.				
7 9		ALE		Address latch enable output pin. This function is enabled when the external bus is enabled.				
	10	P31		General I/O port with programmable pullup. This function is enabled in the single-chip mode.				
8 10 RD			Read strobe output pin for the data bus. This function is enabled when the external bus is enabled.					
		P32		General I/O port with programmable pullup. This function is enabled in the single-chip mode or when the WR/WRL pin output is disabled.				
10 12		WRL WR		Write strobe output pin for the data bus. This function is enabled when both the external bus and the $\overline{WR}/\overline{WRL}$ pin output are enabled. \overline{WRL} is write-strobe output pin for the lower 8 bits of the data bus in 16-bit access. \overline{WR} is write-strobe output pin for the 8 bits of the data bus in 8-bit access.				

(Continued)

(6) Pull-up/down resistors

The MB90540G/545G Series does not support internal pull-up/down resistors (except Port0 – Port3 : pull-up resistors) . Use external components where needed.

(7) Crystal Oscillator Circuit

Noises around X0 or X1 pins may be possible causes of abnormal operations. Make sure to provide bypass capacitors via the shortest distances from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure, to the utmost effort, that lines of oscillation circuits do not cross the lines of other circuits.

It is highly recommended to provide a printed circuit board artwork surrounding X0 and X1 pins with a ground area for stabilizing the operation.

(8) Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply (AVcc, AVRH, AVRL) and analog inputs (AN0 to AN7) after turning-on the digital power supply (Vcc).

Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage does not exceed AVRH or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

(9) Connection of Unused Pins of A/D Converter

Connect unused pins of A/D converter to $AV_{CC} = V_{CC}$, $AV_{SS} = AVRH = V_{SS}$.

(10) N.C. Pin

The N.C. (internally connected) pin must be opened for use.

(11) Notes on Energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at 50 μ s or more (0.2 V to 2.7 V).

Address	Register	Abbreviation	Access	Resource name	Initial value
A2H to A4H	Prohibited				
А5н	Automatic ready function select register	ARSR	W		0011_00В
А6н	External address output control register	HACR	W	External Memory Access	00000000
А7н	Bus control signal selection register	ECSR	W		000000_в
А8н	Watchdog Timer control register	WDTC	R/W	Watchdog Timer	XXXXX 1 1 1 _B
А9н	Time Base Timer Control register	TBTC	R/W	Time Base Timer	1 0 0 1 0 0в
ААн	Watch timer control register	WTC	R/W	Watch Timer	1 Х 0 0 0 0 0 0в
ABH to ADH	Prohibited				
АЕн	Flash memory control status register (Flash only, otherwise reserved)	FMCS	R/W	Flash Memory	0 0 0 X 0 0 0 0 _B
AFH	Prohibited				
В0н	Interrupt control register 00	ICR00	R/W		00000111в
В1н	Interrupt control register 01	ICR01	R/W		00000111в
В2н	Interrupt control register 02	ICR02	R/W		00000111в
ВЗн	Interrupt control register 03	ICR03	R/W	-	00000111в
В4н	Interrupt control register 04	ICR04	R/W		00000111в
В5н	Interrupt control register 05	ICR05	R/W		00000111в
В6н	Interrupt control register 06	ICR06	R/W		00000111в
В7н	Interrupt control register 07	ICR07	R/W	Interrupt	00000111в
В8 н	Interrupt control register 08	ICR08	R/W	controller	00000111в
В9н	Interrupt control register 09	ICR09	R/W		00000111в
ВАн	Interrupt control register 10	ICR10	R/W		00000111в
ВВн	Interrupt control register 11	ICR11	R/W		00000111в
ВСн	Interrupt control register 12	ICR12	R/W		00000111в
BDн	Interrupt control register 13	ICR13	R/W		00000111в
ВЕн	Interrupt control register 14	ICR14	R/W		00000111в
BFн	Interrupt control register 15	ICR15	R/W		00000111в
COH to FFH	External				

Address	Register	Abbreviation	Access	Resource name	Initial value
1FF0⊦	Program address detection register 0	PADR0	R/W	S Resource name Address Match Detection Function	XXXXXXXXB
1FF1н	Program address detection register 0	PADR0	R/W		XXXXXXXXB
1FF2⊦	Program address detection register 0	PADR0	R/W	Address Match	XXXXXXXXB
1FF3⊦	Program address detection register 1	PADR1	R/W	Detection Function	XXXXXXXXB
1FF4 _H	Program address detection register 1	PADR1	R/W		XXXXXXXXB
1FF5⊦	Program address detection register 1	PADR1	R/W		XXXXXXXXB

(Continued)

(Continued)

Add	Address		Abbroviation	Access	Initial Value
CAN0	CAN1	- Register	Abbreviation	Access	
003A88н	003C88н				XXXXXXXXB
to	to	Data register 1 (8 bytes)	DTR1	R/W	to
003A8Fн	003C8Fн				XXXXXXXXB
003A90н	003С90н				XXXXXXXXB
to	to	Data register 2 (8 bytes)	DTR2	R/W	to
003А97н	003С97н				XXXXXXXXB
003А98н	003C98н		DTDA	D 444	XXXXXXXB
t0 00240E	t0	Data register 3 (8 bytes)	DIR3	R/W	
003A9FH	003C9FH				
003AA0H	003CA0H	Data register 4 (8 bytes)			
		Data legister 4 (o bytes)	DTR4	D/ W	
003448	003CA8				
to	to	Data register 5 (8 bytes)	DTR5	R/W	to
003AAFH	003CAFH		Dinto		XXXXXXXB
003AB0H	003CB0H				XXXXXXXAB
to	to	Data register 6 (8 bytes)	DTR6	R/W	to
003AB7н	003CB7н				XXXXXXXXB
003АВ8н	003CB8H				XXXXXXXXB
to	to	Data register 7 (8 bytes)	DTR7	R/W	to
003ABFн	003CBFн				XXXXXXXXB
003AC0н	003СС0н				XXXXXXXXB
to	to	Data register 8 (8 bytes)	DTR8	R/W	to
003АС7н	003CC7н				XXXXXXXB
003AC8H	003CC8н		DTDO	DAA	XXXXXXXB
		Data register 9 (8 bytes)	DIR9	R/W	
to	to	Data register 10 (8 bytes)	DTR10	R/W	to
003AD7H	003CD7H		BIRIO	10,00	XXXXXXXB
003AD8H	003CD8H				XXXXXXXAB
to	to	Data register 11 (8 bytes)	DTR11	R/W	to
003ADFH	003CDFн				XXXXXXXAB
003AE0н	003CE0H				XXXXXXXXB
to	to	Data register 12 (8 bytes)	DTR12	R/W	to
003AE7н	003CE7н				XXXXXXXXB
003AE8H	003CE8H				XXXXXXXB
to	to	Data register 13 (8 bytes)	DTR13	R/W	to
003AEFH	003CEFH				XXXXXXXXB
003AF0H	003CF0H	Data register 14 (9 hites)		D ///	
003AF7	003CF7	Data register 14 (6 bytes)		r./ VV	
002459	003059				
to	to	Data register 15 (8 bytes)	DTR15	R/W	to
003AFFH	003CFFH				XXXXXXXB
	1				

(Continued)

*1 : The interrupt request flag is cleared by the EI2OS interrupt clear signal.

*2 : The interrupt request flag is cleared by the El²OS interrupt clear signal. A stop request is available.

Notes :

- N/A : The interrupt request flag is not cleared by the EI²OS interrupt clear signal.
- For a peripheral module with two interrupt causes for a single interrupt number, both interrupt request flags are cleared by the El²OS interrupt clear signal.
- At the end of El²OS, the El²OS clear signal will be asserted for all the interrupt flags assigned to the same interrupt number. If one interrupt flag starts the El²OS and in the meantime another interrupt flag is set by a hardware event, the later event is lost because the flag is cleared by the El²OS clear signal caused by the first event. So it is recommended not to use the El²OS for this interrupt number.
- If EI²OS is enabled, EI²OS is initiated when one of the two interrupt signals in the same interrupt control register (ICR) is asserted. This means that different interrupt sources share the same EI²OS Descriptor which should be unique for each interrupt source. For this reason, when one interrupt source uses the EI²OS, the other interrupt should be disabled.

11.2 Recommended Conditions

 $(V_{SS} = AV_{SS} = 0.0 V)$

Paramotor	Symbol	Value			Unite	Pomarks	
Farameter	Min Typ Max		Units	inclinal NS			
Power supply voltage	Vcc, AVcc	4.5	5.0	5.5		Under normal operation : Other than MB90F548GL(S)/543G(S)/547G(S)/548G(S)	
					V	Under normal operation when A/D conveter is used : MB90F548GL(S)/543G(S)/547G(S)/548G(S)	
		3.5	5.0	5.5	v	Under normal operation when A/D conveter is not used : MB90F548GL(S)/543G(S)/547G(S)/548G(S)	
		3.0	-	5.5	V	Maintain RAM data in stop mode	
Smooth capacitor	Cs	0.022	0.1	1.0	μF	*	
Operating temperature	TA	-40	-	+105	°C		

*: Use a ceramic capacitor or a capacitor of better 4. AC characteristics. The bypass capacitor should be greater than this capacitor.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

11.4.4 Power On Reset

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 \text{ V to } 5.5 \text{ V}, V_{SS} = AV_{SS} = 0.0 \text{ V}, T_A = -40 \text{ }^\circ\text{C} \text{ to } + 105 \text{ }^\circ\text{C})$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = AV_{SS} = 0.0 \text{ V}, T_A = -40 \text{ }^\circ\text{C} \text{ to } + 105 \text{ }^\circ\text{C})

Paramotor	Symbol	Bin namo	Condition	Value		Unite	Remarks	
Farameter	Symbol	Finnanie	Condition	Min	Max	Units	Remarks	
Power on rise time	tr	Vcc	_	0.05	30	ms	*	
Power off time	toff	Vcc		50	—	ms	Waiting time until power-on	

*: Vcc must be kept lower than 0.2 V before power-on.

Notes : ■ The above values are used for creating a power-on reset.

Some registers in the device are initialized only upon a power-on reset. To initialize these register, turn on the power supply using the above values.

11.4.5 Bus Timing (Read)

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 V \text{ to } 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ °C to } + 105 \text{ °C})$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 5.0 V ± 10%, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ °C to } + 105 \text{ °C})

Parameter	Symbol	Din namo	Condition	Va	lue	Unite	Bomarka
Falameter	Symbol	Fininanie	Condition	Min	Max	Units	Rellians
ALE pulse width	t lhll	ALE		tcp/2 — 20	-	ns	
Valid address $\rightarrow ALE\downarrow$ time	tavll	ALE, A16 to A23, AD00 to AD15		tcp/2 — 20	_	ns	
$ALE \downarrow \rightarrow Address valid time$	tllax	ALE, AD00 to AD15		tср/2 — 15	-	ns	
Valid address $\rightarrow \overline{RD} \downarrow$ time	tavrl	A16 toA23, <u>AD</u> 00 to AD15, RD		tcp — 15	_	ns	
Valid address → Valid data input	tavdv	A16 to A23, AD00 to AD15		_	5 tcp/2 — 60	ns	
RD pulse width	t rlrh	RD	_	3 tcp/2 — 20	—	ns	
$\overline{RD} \downarrow \rightarrow Valid data input$	trldv	RD, AD00 to AD15		_	3 tср/2 — 60	ns	
$\overline{RD}^{\uparrow} \rightarrow Data$ hold time	t RHDX	RD, AD00 to AD15		0	_	ns	
$\overline{RD}^{\uparrow} \rightarrow ALE^{\uparrow}$ time	trhlh	RD, ALE		tcp/2 — 15	-	ns	
\overline{RD} \uparrow \rightarrow Address valid time	t RHAX	RD, A16 to A23		tcp/2 — 10	-	ns	
Valid address $\rightarrow \text{ CLK}^{\uparrow}$ time	tavcн	A16 to A23, AD00 to AD15, CLK		tcp/2 — 20	_	ns	
$\overline{RD} \downarrow \rightarrow CLK^{\uparrow}$ time	t RLCH	RD, CLK		t _{CP} /2 — 20	-	ns	
$ALE \downarrow \rightarrow \overline{RD} \downarrow time$	tllrl	ALE, RD		t _{CP} /2 — 15	_	ns	

11.4.10 Timer Input Timing

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 V \text{ to } 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ }^{\circ}\text{C} \text{ to } +105 \text{ }^{\circ}\text{C})$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 5.0 V ± 10\%, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ }^{\circ}\text{C} \text{ to } +105 \text{ }^{\circ}\text{C})

Parameter	Symbol	Din namo	Condition	Va	ue	Unite	Remarks
	Symbol	Finitianie	Condition	Min	Max	Units	
Input pulse width	tтіwн	TIN0, TIN1		4 tcp	_	ns	
	t⊤ıw∟	IN0 to IN7	_				

11.4.11 Timer Output Timing

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 V \text{ to } 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ °C to } + 105 \text{ °C})$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 5.0 V ± 10%, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ °C to } + 105 \text{ °C})

Parameter	Symbol	Pin name	Condition	Value		Unite	Bomarks
				Min	Max	Units	Nemarks
$CLK\uparrow \rightarrow T_{OUT}$ change time	tто	TOT0 , TOT1, PPG0 to PPG3	_	30	_	ns	

11.4.12 Trigger Input Timing

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 V \text{ to } 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ °C to } + 105 \text{ °C})$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 5.0 V ± 10%, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ °C to } + 105 \text{ °C})

Parameter	Symbol	Pin namo	Condition	Val	lue	Unite	Pomarke	
Falalletei	Symbol	r in name	condition	Min	Max	Onits	iteriidi K5	
Input pulse width trrgL	tтrgн	INT0 to INT7,	_	5 tcp	_	ns	Under nomal operation	
	t trgl	ADTG		1	_	μs	In stop mode	

11.5.2 A/D Converter Glossary

Resolution : Analog changes that are identifiable with the A/D converter

Linearity error : The deviation of the straight line connecting the zero transition point ("00 0000 0000" $\leftrightarrow \rightarrow$ "00 0000 0001") with the full-scale transition point ("11 1111 1110" $\leftrightarrow \rightarrow$ "11 1111 1111") from actual conversion characteristics

Differential linearity error : The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

Total error : The total error is defined as a difference between the actual value and the theoretical value, which includes zero-transition error/full-scale transition error and linearity error.

11.6 Flash Memory Program/Erase Characteristics

Paramotor	Condition	Value			Unite	Pomarks		
Farameter		Min	Тур	Max	Units	Remarks		
Sector erase time	T _A = + 25 °C Vcc = 5.0 V	_	1	15	s	Excludes 00H programming prior erasure		
Chip erase time		_	5	_	s	MB90F543G (S) /F548G (S) /F548GL (S)	Excludes 00H programming prior erasure	
			7	-	s	MB90F549G (S) /F546G (S)		
Word (16 bit width) programming time		_	16	3,600	μs	Excludes system-level overhead		
Erase/Program cycle	—	10,000	-	-	cycle			

■ Power supply current (MB90549G)

15. Major Changes

Spansion Publication Number: DS07-13703-7E

Section	Change Results					
■ PRODUCT LINEUP	Changed the name in peripheral resource.					
	16-bit I/O Timer \rightarrow 16-bit Free-run Timer					
■ I/O CIRCUIT TYPE	Changed the name of input typ.					
	Hysteresis \rightarrow CMOS Hysteresis					
	$HYS \rightarrow CMOS Hysteresis$					
■ BLOCK DIAGRAM	Changed the arrow direction of SOT1 signal at UART1(SCI). " $\leftarrow \rightarrow$ " (input/output) \rightarrow " \leftarrow " (output)					
■ I/O MAP	Changed the text of "Note".					
■ INTERRUPT MAP	Changed the name of peripheral resource of the pin number: #19.					
	I/O Timer \rightarrow 16-bit Free-run Timer					
ELECTRICAL CHARACTERISTICS 2. Recommended Conditions	Changed the remarks of "parameter: Power supply voltage".					
3. DC Characteristics	Changed the maximum value of symbol : VILM of parameter: Input voltage. Vcc + 0.3 \rightarrow Vss + 0.3					
	Added the following remarks for parameter : Pull-down resistance. Except Flash device					
4. AC Characteristics (1) Clock Timing	Added the value when using an external clock in Oscillation frequency and Clock cycle time on (1) Clock Timing for parameter.					
	Added the item of A/D converter operation range in figure of " Guaranteed PLL operation range"					
(3) Reset and Hardware Standby Input Timing	Changed the following item.					
	(3) Reset and Hardware Standby Input Timing Remarks:					
	$2t_{CP} \rightarrow 2t_{LCP}$					
(4) Power On Reset	Changed as follows;					
	Due to repetitive operation \rightarrow Waiting time until power-on					
5. A/D Converter	Changed the unit of Zero transition voltage and Full scale transition voltage. mV \rightarrow V					
ORDERING INFORMATION	Added the MB90F548GLPMC in Part Numbers.					

NOTE: Please see "Document History" about later revised information.

Document History

Document Title: MB90F543G(S)/546G(S)/548G(S)/549G(S)/549G(S)/V540G/MB90543G(S)/547G(S)/548G(S)/F548GL(S) CMOS F2MC-16LX MB90540G/545G Series 16-bit Proprietary Microcontroller Document Number: 002-07696 Orig. of Change Submission Revision ECN **Description of Change** Date ** Migrated to Cypress and assigned document number 002-07696. No change to document contents or format. AKIH 11/13/2008 _ *A 5537115 AKIH 11/30/2016 Updated to Cypress template