

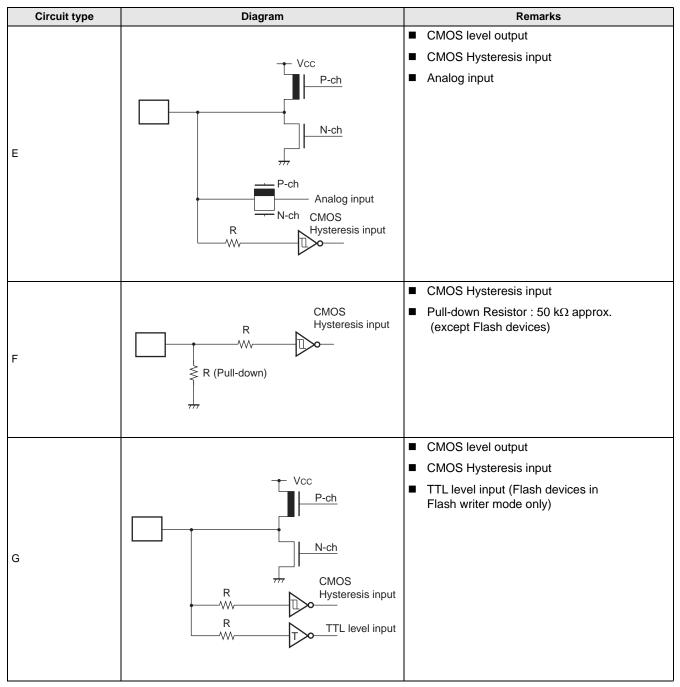
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Details	
Product Status	Active
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, EBI/EMI, SCI, Serial I/O, UART/USART
Peripherals	POR, WDT
Number of I/O	81
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90f543gspf-gs-9017

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Circuit type	Diagram	Remarks
		CMOS level output
		 CMOS Hysteresis input
н	Vcc Vcc P-ch P-ch N-ch m CMOS Hysteresis input	 Programmable pull-up resistor : 50 kΩ approx.
		CMOS level output
		 CMOS Hysteresis input
		 TTL level input (Flash devices in Flash writer mode only)
	P-ch	 Programmable pullup resistor : 50 kΩ approx.
1	N-ch	
	R R Hysteresis input	
	TTL level input	

5. Handling Devices

(1) Preventing latch-up

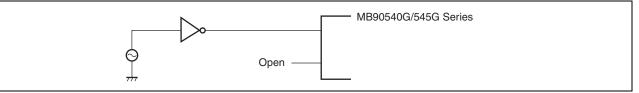
CMOS IC chips may suffer latch-up under the following conditions :

- A voltage higher than Vcc or lower than Vss is applied to an input or output pin.
- A voltage higher than the rated voltage is applied between Vcc and Vss.

■ The AVcc power supply is applied before the Vcc voltage.

Latch-up may increase the power supply current drastically, causing thermal damage to the device.

For the same reason, care must also be taken in not allowing the analog power-supply voltage (AVcc, AVRH) to exceed the digital power-supply voltage.


(2) Handling unused pins

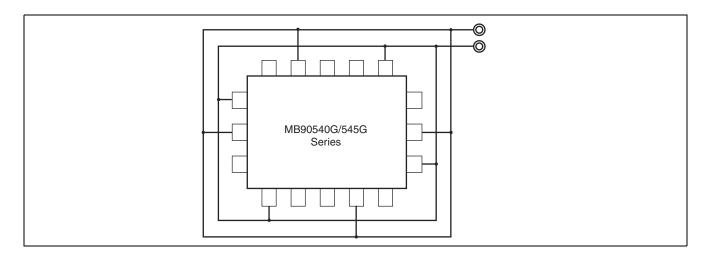
Leaving unused input pins open may result in misbehavior or latch up and possible permanent damage of the device. Therefor they must be pulled up or pulled down through resistors. In this case those resistors should be more than 2 k Ω .

Unused bi-directional pins should be set to the output state and can be left open, or the input state with the above described connection.

(3) Using external clock

To use external clock, drive X0 pin only and leave X1 pin unconnected. Below is a diagram of how to use external clock.

(4) Use of the sub-clock

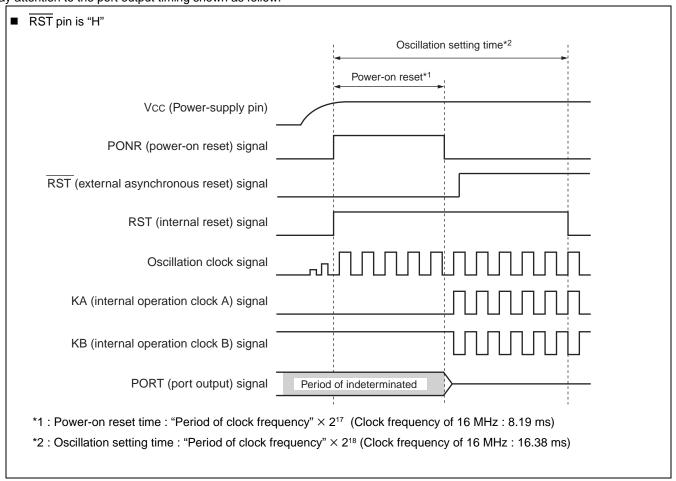

Use one clock system parts when the sub-clock is not used. In that case, pull-down the pin X0A and leave the pin X1A open. When using two clock system parts, a 32 kHz oscillator has to be connected to the X0A and X1A pins.

(5) Power supply pins (Vcc/Vss)

In products with multiple V_{cc} or V_{ss} pins, the pins of a same potential are internally connected in the device to avoid abnormal operations including latch-up. However you must connect the pins to an external power and a ground line to lower the electromagnetic emission level to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating.

Make sure to connect Vcc and Vss pins via the lowest impedance to power lines.

It is recommended to provide a bypass capacitor of around 0.1 µF between Vcc and Vss pins near the device.



(12) Indeterminate outputs from ports 0 and 1 (MB90V540G only)

During oscillation setting time of step-down circuit (during a power-on reset) after the power is turned on, the outputs from ports 0 and 1 become following state.

■ If RST pin is "H", the outputs become indeterminate.

■ If RST pin is "L", the outputs become high-impedance. Pay attention to the port output timing shown as follow.

MB90540G/545G Series

(Continued)

Address	Register	Abbreviation	Access	Resource name	Initial value			
3928н	Output Compare Register 0	OCCP0	R/W		XXXXXXXXB			
3929н	Output Compare Register 0	OCCP0	R/W	Output Compare 0/1	XXXXXXXXB			
392Ан	Output Compare Register 1	OCCP1	R/W	Output Compare 0/1	XXXXXXXXB			
392Вн	Output Compare Register 1	OCCP1	R/W		XXXXXXXXB			
392Сн	Output Compare Register 2	OCCP2	R/W		XXXXXXXXB			
392Dн	Output Compare Register 2	OCCP2	R/W	Output Compore 2/2	XXXXXXXXB			
392Ен	Output Compare Register 3	OCCP3	R/W	Output Compare 2/3	XXXXXXXXB			
392Fн	Output Compare Register 3	OCCP3	R/W		XXXXXXXXB			
3930н to 39FFн	Reserved			·				
3A00H to 3AFFH	Reserved for CAN 0 Interface.							
3B00н to 3BFFн	Reserved for CAN 0 Interface.							
3C00н to 3CFFн	Reserved for CAN 1 Interface.							
3D00н to 3DFFн	Reserved for CAN 1 Interface.							
3E00н to 3FFFн	Reserved							

- Read/write notation
 - R/W : Reading and writing permitted
 - R : Read-only
 - W : Write-only

Initial value notation

- 0 : Initial value is "0".
- 1 : Initial value is "1".
- X : Initial value is undefined.
- _ : Initial value is unused.

Note: Any write access to reserved addresses in I/O map should not be performed. A read access to reserved addresses results in reading "X".

9. CAN Controller

The MB90540G series contains two CAN controllers (CAN0 and CAN1), the MB90545G series contains only one (CAN0). The Evaluation Chip MB90V540G also has two CAN controllers.

The CAN controller has the following features :

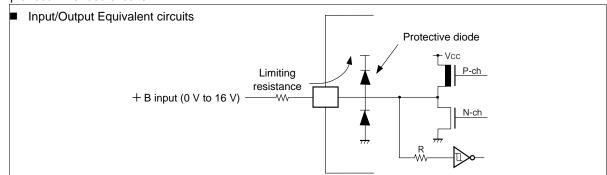
- Conforms to CAN Specification Version 2.0 Part A and B
 - Supports transmission/reception in standard frame and extended frame formats
- Supports transmission of data frames by receiving remote frames
- 16 transmitting/receiving message buffers
 - □ 29-bit ID and 8-byte data
 - Multi-level message buffer configuration
- Provides full-bit comparison, full-bit mask, acceptance register 0/acceptance register 1 for each message buffer as ID acceptance mask
 - Two acceptance mask registers in either standard frame format or extended frame formats
- Bit rate programmable from 10 Kbps to 1 Mbps (when input clock is at 16 MHz)

List of Control Registers

Add	lress	Register	Abbreviation	Access	Initial Value	
CAN0	CAN1	Kegiatei	Abbieviation	ALLESS	initial value	
000070н	000080н	Message buffer valid register	BVALR	R/W	00000000 00000000в	
000071н	000081 н	Nessage builet valid register	DVALK	N/ W	0000000 000000B	
000072н	000082н	Transmit request register	TREOR	R/W	0000000 0000000	
000073н	000083н		IREQR	r//v		
000074н	000084н	Transmit cancel register	TCANR	w	0000000 0000000 _в	
000075н	000085н		ICANK	vv		
000076н	000086н	Transmit complete register	TCR	R/W	0000000 0000000	
000077н	000087н		ICK	r/vv		
000078н	000088н	Receive complete register	RCR	R/W	00000000 00000000в	
000079н	000089н	Receive complete register	RCR	r/vv		
00007Ан	00008Ан	Remote request receiving register	RRTRR	R/W	0000000 0000000в	
00007Bн	00008Bн	Remote request receiving register		N/ W	0000000 000000B	
00007Cн	00008Сн		ROVRR	R/W	00000000 00000000в	
00007Dн	00008Dн	Receive overrun register	ROVER	r/vv		
00007Eн	00008Eн	Receive interrupt enable register	RIER	R/W	0000000 0000000-	
00007Fн	00008Fн	Receive interrupt enable register		IN/ VV	00000000 0000000B	

(Continued)

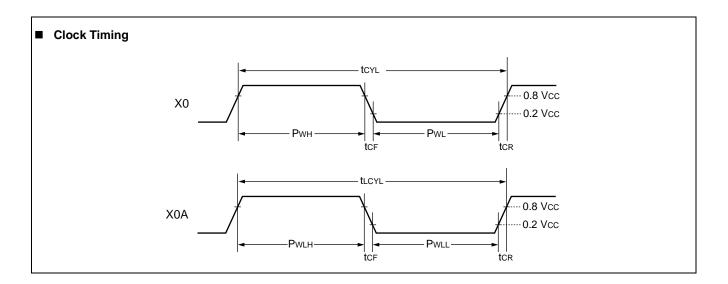
Ado	dress	Register	Abbreviation	Access	Initial Value		
CAN0	CAN1	Keyistei	Abbreviation	ALLESS			
003А24н	003C24 _H				XXXXXXXX XXXXXXXX		
003A25н	003C25н	ID register 1	IDR1	R/W	~~~~~~~~~~		
003A26н	003C26н			1.1/ 1.1	XXXXX XXXXXXXB		
003A27н	003C27н						
003A28н	003C28н				XXXXXXXX XXXXXXX8		
003A29н	003C29н	ID register 2	IDR2	R/W			
003А2Ан	003C2Ан			1.1/ 1.1	XXXXX XXXXXXXB		
003A2Bн	003C2Bн				~~~~~ ~~~~~		
003А2Сн	003С2Сн		IDR3				XXXXXXXX XXXXXXXB
003A2Dн	003C2Dн	ID register 3		R/W			
003А2Ен	003C2Eн			1.1/ 1.1	XXXXX XXXXXXXB		
003A2Fн	003C2Fн						
003А30н	003C30н		IDR4		XXXXXXXX XXXXXXXB		
003A31н	003C31н	ID register 4		R/W			
003А32н	003С32н				XXXXX XXXXXXXB		
003А33н	003С33н						
003А34н	003C34н				XXXXXXXX XXXXXXXxx		
003А35 н	003C35н	ID register 5	IDR5	R/W			
003А36н	003C36н			1.7, 4.4	XXXXX XXXXXXXXB		
003А37н	003C37н						
003А38н	003C38н				XXXXXXXX XXXXXXXXB		
003А39н	003С39н	ID register 6	IDR6	R/W			
003АЗАн	003С3Ан			11/11	XXXXX XXXXXXXXB		
003А3Вн	003C3Bн						

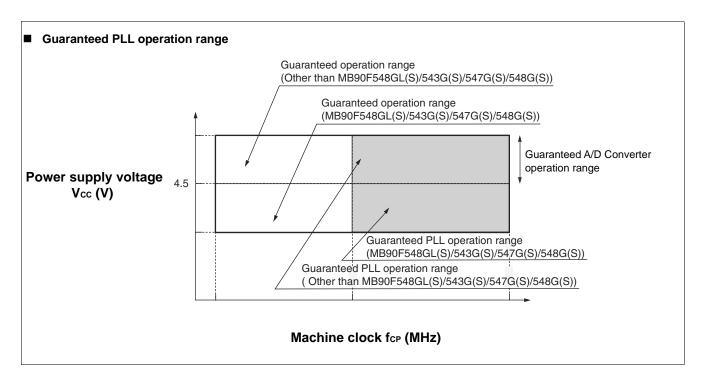

(Continued)

Address		De sietes	Abbreviation	A		
CAN0	CAN1	Register	Abbreviation	Access	Initial Value	
003А3Сн	003С3Сн				XXXXXXXX XXXXXXXxx	
003А3Dн	003C3DH	ID register 7	IDR7	R/W		
003А3Ен	003С3Ен			10,00	XXXXX XXXXXXXXB	
003A3Fн	003C3Fн				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
003A40н	003C40 _H				XXXXXXXX XXXXXXX	
003A41н	003C41н	ID register 8	IDR8	R/W	~~~~~	
003A42н	003C42 _H		IDRO	N/ V V	XXXXX XXXXXXXXB	
003A43н	003C43н					
003A44н	003C44 _H				XXXXXXXX XXXXXXXxx	
003A45н	003C45н	ID register 9	IDR9	R/W		
003А46н	003C46н		IDK9	N/ V V	XXXXX XXXXXXXx	
003A47н	003C47н				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
003A48н	003C48н				XXXXXXXX XXXXXXXxx	
003A49н	003C49н	ID register 10	IDR10	R/W		
003А4Ан	003C4Ан				XXXXX XXXXXXXxB	
003A4Bн	003C4Bн				~~~~~	
003А4Сн	003C4CH				XXXXXXXX XXXXXXXxx	
003A4Dн	003C4DH	ID register 11	IDR11	R/W		
003А4Ен	003C4Eн			1.7.00	XXXXX XXXXXXXx	
003A4Fн	003C4Fн					
003А50н	003С50н			R/W	XXXXXXXX XXXXXXX	
003A51н	003C51н	– ID register 12	IDR12			
003А52н	003С52н			N/ V V	XXXXX XXXXXXXx	
003А53н	003C53н					
003A54 _H	003C54н				XXXXXXXX XXXXXXX	
003А55н	003C55н	– ID register 13	IDR13	R/W	~~~~~	
003A56н	003С56н		IDICI3	1.7.00	XXXXX XXXXXXXXB	
003А57н	003C57н					
003A58н	003C58н				XXXXXXXX XXXXXXXxx	
003А59н	003C59н	ID register 14		P/M		
003А5Ан	003С5Ан	– ID register 14	IDR14	R/W	XXXXX XXXXXXXB	
003A5BH	003С5Вн					
003А5Сн	003С5Сн				XXXXXXXX XXXXXXXxx	
003A5Dн	003C5Dн	ID register 15	IDR15	R/W		
003A5Eн	003C5Eн	ID register 15			XXXXX XXXXXXXx	
003A5Fн	003C5Fн					

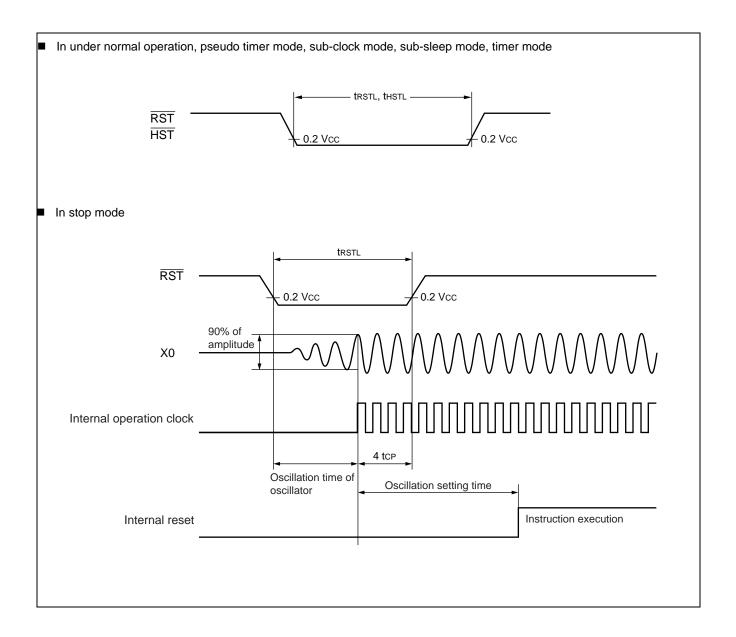
- Note that analog system input/output pins other than the A/D input pins (LCD drive pins, comparator input pins, etc.) cannot accept + B signal input.
- □ Sample recommended circuits :

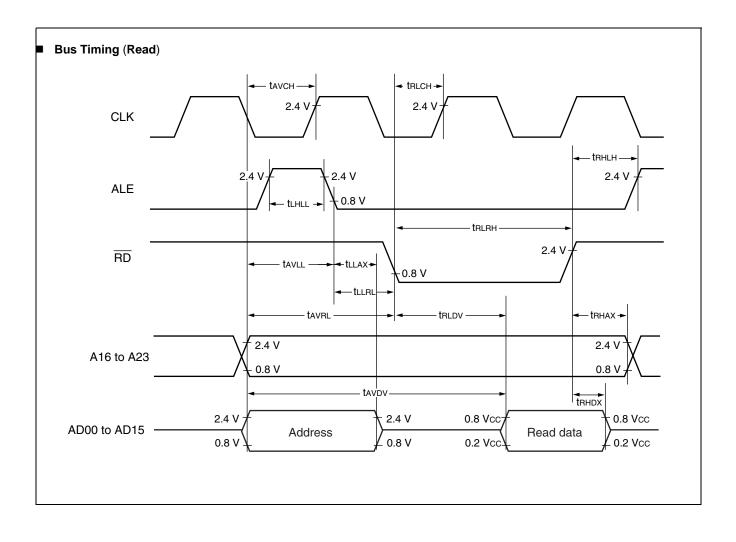
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.




 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 V \text{ to } 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ °C to } +105 \text{ °C})$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 5.0 V ± 10\%, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ °C to } +105 \text{ °C})

Deveneter	Sym-	Pin name	Condition		Value		Units	Demente
Parameter	bol Finnar		Condition	Min	Тур	Max	Units	Remarks
	lcc		Internal frequency : 16 MHz, At normal operating	_	40	55	mA	
	ICC		Internal frequency : 16 MHz, At Flash programming/erasing	-	50	70	mA	Flash device
	Iccs		Internal frequency : 16 MHz, At sleep mode	_	12	20	mA	
			$V_{cc} = 5.0 \text{ V} \pm 10\%$	-	300	600	μΑ	
	Icts			—	600	1100	μΑ	MB90F548GL (S) only
Power	1013		Internal frequency : 2 MHz, At pseudo timer mode	-	200	400	μΑ	MB90543G(S)/547G(S)/ 548(S) only
supply		Vcc	Internal frequency : 8 kHz,	—	400	750	μΑ	MB90F548GL only
current*	ICCL		At sub operation, $T_A = 25 \text{ °C}$	—	50	100	μΑ	MASK ROM
			At sub operation, TA = 25°C	—	150	300	μΑ	Flash device
	Iccls		Internal frequency : 8 kHz, At sub sleep, $T_A = 25 \text{ °C}$	-	15	40	μΑ	
	Ісст		Internal frequency : 8 kHz, At timer mode, $T_A = 25 \text{ °C}$	-	7	25	μΑ	
	Іссн1		At stop, $T_A = 25 \ ^\circ C$	—	5	20	μΑ	
	Іссн2		At hardware standby mode, $T_A = 25 \text{ °C}$	-	50	100	μΑ	
Input capacity	CIN	Other than AVcc, AVss, AVRH, AVRL, C, Vcc, Vss	_	_	5	15	pF	

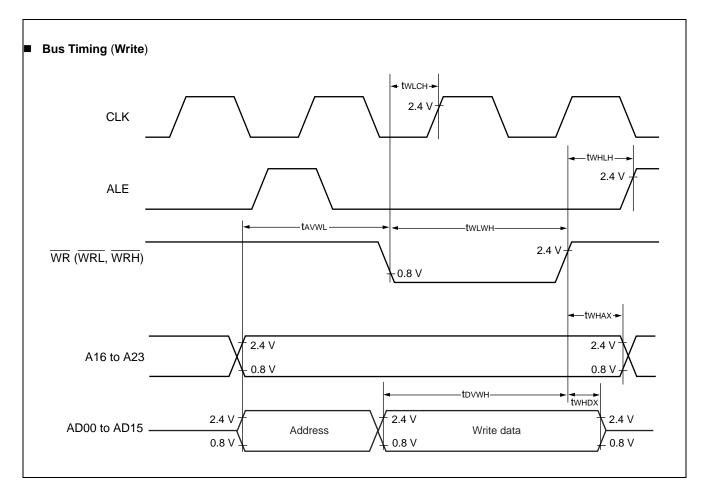

* : The power supply current testing conditions are when using the external clock.

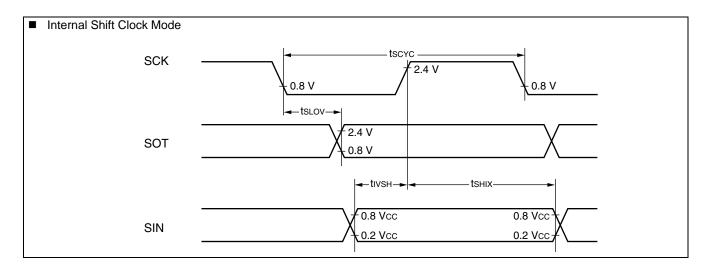


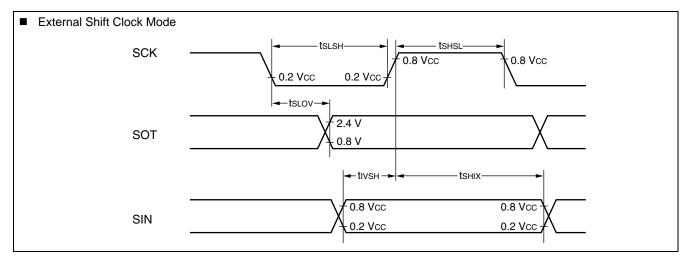
11.4.5 Bus Timing (Read)

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 V \text{ to } 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ °C to } + 105 \text{ °C})$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 5.0 V ± 10%, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ °C to } + 105 \text{ °C})

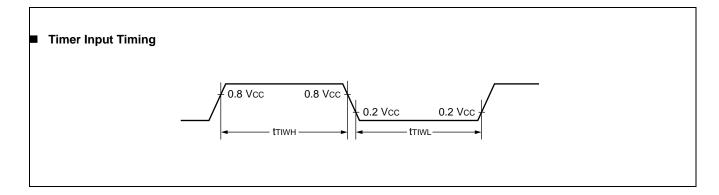
Parameter	Symbol	Pin name	Condition	Va	alue	Units	Remarks
Farameter	Symbol	Finname	Condition	Min	Max	Units	Reillarks
ALE pulse width	t lhll	ALE		tcp/2 — 20	-	ns	
Valid address $\rightarrow ALE \downarrow$ time	tavll	ALE, A16 to A23, AD00 to AD15		tcp/2 — 20	_	ns	
$ALE\downarrow \rightarrow Address valid time$	tllax	ALE, AD00 to AD15		tср/2 — 15	-	ns	
Valid address $\rightarrow \overline{RD}\downarrow$ time	t avrl	A16 toA23, AD00 to AD15, RD		tcp — 15	_	ns	
Valid address → Valid data input	tavdv	A16 to A23, AD00 to AD15		-	5 tcp/2 - 60	ns	
RD pulse width	trlrh	RD	_	3 t _{CP} /2 — 20	-	ns	
$\overline{RD} \downarrow \rightarrow Valid data input$	t RLDV	RD, AD00 to AD15		_	3 tcp/2 — 60	ns	
$\overline{RD} \uparrow \to Data$ hold time	t RHDX	RD, AD00 to AD15		0	-	ns	
$\overline{RD}^{\uparrow} \rightarrow ALE^{\uparrow}$ time	trhlh	RD, ALE		tcp/2 — 15	-	ns	
\overline{RD} \uparrow \rightarrow Address valid time	t RHAX	RD, A16 to A23		tcp/2 — 10	_	ns	
Valid address $\rightarrow \text{CLK}^{\uparrow}$ time	tavch	A16 to A23, AD00 to AD15, CLK		tcp/2 — 20	_	ns	
$\overline{RD} \downarrow \rightarrow CLK\uparrow$ time	t RLCH	RD, CLK		tcp/2 — 20	-	ns	
$ALE \downarrow \rightarrow \overline{RD} \downarrow time$	tllrl	ALE, RD		tcp/2 — 15	_	ns	




11.4.6 Bus Timing (Write)

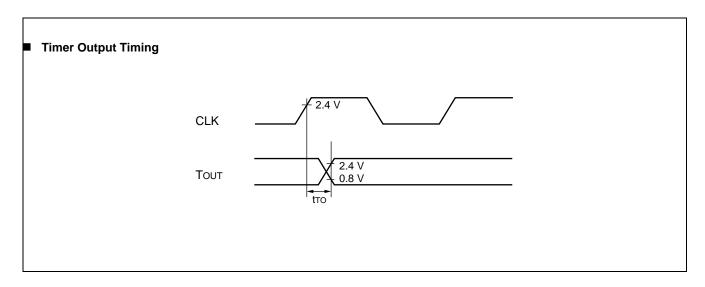

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ °C to} + 105 \text{ °C})$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 5.0 V ± 10%, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ °C to} + 105 \text{ °C})

Parameter	Symbol Pin name		Condition	Value		Units	Remarks
Faranieter			Condition	Min	Max	Units	Remarks
Valid address $\rightarrow \overline{\mathrm{WR}} \downarrow$ time	tavwl	A16 to A23 AD00 to AD15, WR		tcp — 15	_	ns	
WR pulse width	twlwh	WR		3 tcp/2 — 20	—	ns	
Valid data output $\rightarrow \overline{WR}^{\uparrow}$ time	tovwн	AD00 to AD15, WR		3 tcp/2 — 20	_	ns	
$\overline{WR} \uparrow \to Data$ hold time	twhdx	AD00 to AD15, WR	_	20	_	ns	
$\overline{WR}^{\uparrow} \rightarrow Address$ valid time	t WHAX	A16 to A23, WR		tcp/2 — 10	—	ns	
$\overline{WR}^{\uparrow} \rightarrow ALE^{\uparrow}$ time	twhlh	WR, ALE		tcp/2 — 15	—	ns	
$\overline{WR}^{\uparrow} \rightarrow CLK^{\uparrow}$ time	twlch	WR, CLK		t _{CP} /2 — 20	—	ns	



11.4.10 Timer Input Timing

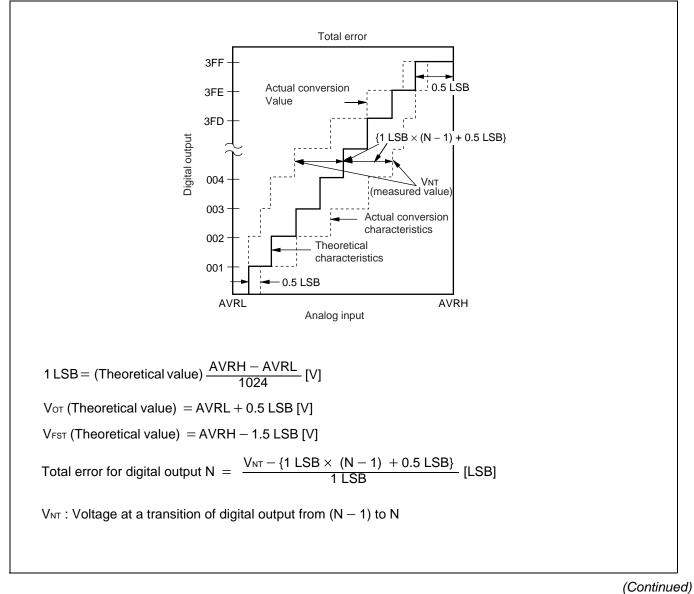
 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 V \text{ to } 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ }^{\circ}\text{C} \text{ to } +105 \text{ }^{\circ}\text{C})$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 5.0 V ± 10\%, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ }^{\circ}\text{C} \text{ to } +105 \text{ }^{\circ}\text{C})


Parameter	Symbol	Pin name	Condition	Va	ue	Units	Remarks
Falanetei	Symbol	Finname	Condition	Min	Max	Units	Remarks
Input pulso width	tтіwн	TIN0, TIN1	_	4 +==	_	20	
Input pulse width	t⊤ıw∟	IN0 to IN7	_	4 tcp		ns	

11.4.11 Timer Output Timing

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 V \text{ to } 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ °C to } + 105 \text{ °C})$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 5.0 V ± 10%, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ °C to } + 105 \text{ °C})

Parameter	Symbol	Pin name	Pin name Condition		Value		Remarks
Farameter	Symbol	Fiii liaine	Condition	Min	Max	Units	Remarks
$CLK^\uparrow \to T_{OUT}$ change time	tтo	TOT0 , TOT1, PPG0 to PPG3	_	30	_	ns	


11.5.2 A/D Converter Glossary

Resolution : Analog changes that are identifiable with the A/D converter

Linearity error : The deviation of the straight line connecting the zero transition point ("00 0000 0000" $\leftrightarrow \rightarrow$ "00 0000 0001") with the full-scale transition point ("11 1111 1110" $\leftrightarrow \rightarrow$ "11 1111 1111") from actual conversion characteristics

Differential linearity error : The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

Total error : The total error is defined as a difference between the actual value and the theoretical value, which includes zero-transition error/full-scale transition error and linearity error.

13. Ordering Information

Part number	Package	Remarks
MB90F543GPF		
MB90F543GSPF		
MB90F546GPF		
MB90F546GSPF		
MB90F548GPF		
MB90F548GSPF		
MB90F548GLPF		
MB90F548GLSPF		
MB90F549GPF	100-pin Plastic QFP	
MB90F549GSPF	(FPT-100P-M06)	
MB90543GPF		
MB90543GSPF		
MB90547GPF		
MB90547GSPF		
MB90548GPF		
MB90548GSPF		
MB90549GPF		
MB90549GSPF		
MB90F543GPMC		
MB90F543GSPMC		
MB90F546GPMC		
MB90F546GSPMC		
MB90F548GPMC		
MB90F548GSPMC		
MB90F548GLPMC		
MB90F548GLSPMC		
MB90F549GPMC	100-pin Plastic LQFP	
MB90F549GSPMC	(FPT-100P-M20)	
MB90543GPMC		
MB90543GSPMC		
MB90547GPMC		
MB90547GSPMC		
MB90548GPMC		
MB90548GSPMC		
MB90549GPMC		
MB90549GSPMC		

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers cypress.	ooni, ann
Automotive cypress.com/au	Itomotive
Clocks & Buffers cypress.co	m/clocks
Interface cypress.com/	/interface
Internet of Things cypres	s.com/iot
Lighting & Power Control cypress.com/pc	owerpsoc
Memory cypress.com	/memory
PSoC cypress.c	com/psoc
Touch Sensing cypress.co	om/touch
USB Controllers cypress.	.com/usb
Wireless/RF cypress.com	/wireless

PSoC[®]Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Forums | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuctitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

[©] Cypress Semiconductor Corporation, 2002-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.