

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

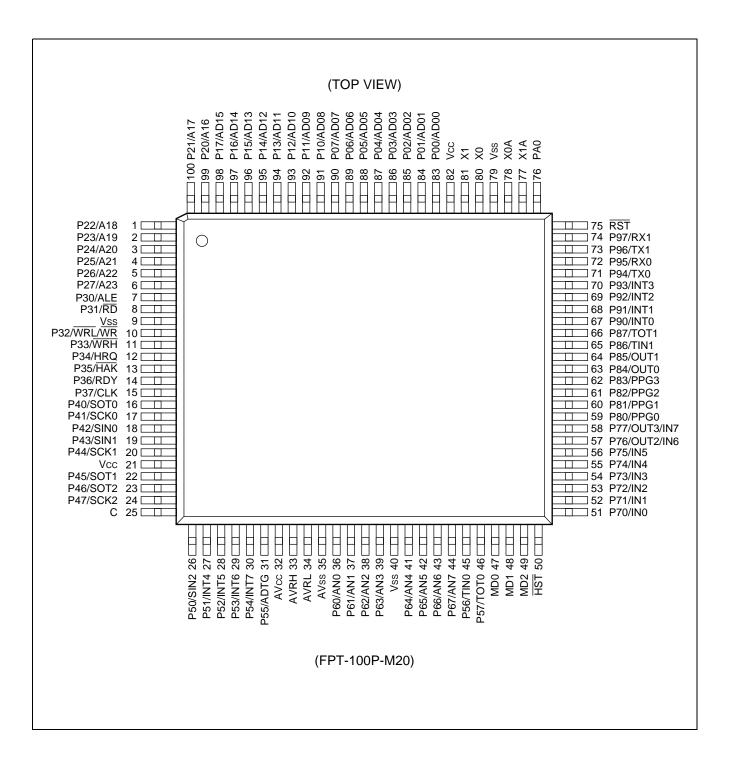
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, EBI/EMI, SCI, Serial I/O, UART/USART
Peripherals	POR, WDT
Number of I/O	81
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90f543gspmc-ge1

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- *2 : It is setting of DIP switch S2 when Emulation pod (MB2145-507) is used.Please refer to the MB2145-507 hardware manual (2.7 Emulator-specific Power Pin) about details.
- *3 : Operating Voltage Range

Products	Operation guarantee range
MB90F543G(S)/F546G(S)/F548G(S)/ MB90549G(S)/F549G(S)/V540/V540G	4.5 V to 5.5 V
MB90F548GL(S)/543G(S)/547G(S)/548G(S)	3.5 V to 5.5 V

3. Pin Description

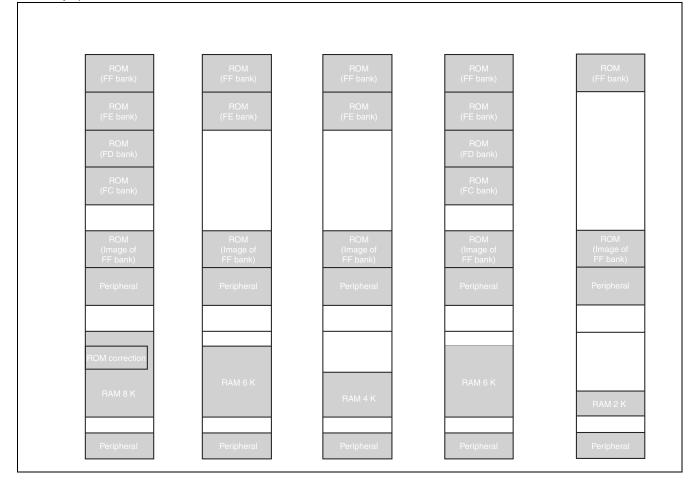
Piı	n No.	Diaman	0:	Even d'un
LQFP*2	QFP ^{∗1}	Pin name	Circuit type	Function
80 81	82 83	X0 X1	A (Oscillation)	High speed crystal oscillator input pins
78	80	X0A	A	Low speed crystal oscillator input pins. For the one clock system parts, perfom external pull-down processing.
77	79	X1A	(Oscillation)	Low speed crystal oscillator input pins. For the one clock system parts, leave it open.
75	77	RST	В	External reset request input pin
50	52	HST	С	Hardware standby input pin
00.45.00	05 40 00	P00 to P07		General I/O port with programmable pullup. This function is enabled in the single-chip mode.
83 to 90	85 to 92	AD00 to AD07		I/O pins for 8 lower bits of the external address/data bus. This function is enabled when the external bus is enabled.
		P10 to P17		General I/O port with programmable pullup. This function is enabled in the single-chip mode.
91 to 98	93 to 100	AD08 to AD15	-1	I/O pins for 8 higher bits of the external address/data bus. This function is enabled when the external bus is enabled.
00.1-0	4 1 2	P20 to P27		General I/O port with programmable pullup. In external bus mode, this function is valid when the corresponding bits in the external address output control resister (HACR) are set to "1".
99 to 6	1 to 8	A16 to A23		8-bit I/O pins for A16 to A23 at the external address/data bus. In external bus mode, this function is valid when the corresponding bits in the external address output control resister (HACR) are set to "0".
7		P30		General I/O port with programmable pullup. This function is enabled in the single-chip mode.
7	9	ALE		Address latch enable output pin. This function is enabled when the external bus is enabled.
0	10	P31		General I/O port with programmable pullup. This function is enabled in the single-chip mode.
8	10	RD		Read strobe output pin for the data bus. This function is enabled when the external bus is enabled.
		P32		General I/O port with programmable pullup. This function is enabled in the single-chip mode or when the WR/WRL pin output is disabled.
10	12	WRL WR	1	Write strobe output pin for the data bus. This function is enabled when both the external bus and the $\overline{WR/WRL}$ pin output are enabled. \overline{WRL} is write-strobe output pin for the lower 8 bits of the data bus in 16-bit access. \overline{WR} is write-strobe output pin for the 8 bits of the data bus in 8-bit access.

(Continued)

Pin	Pin No. Pin name Circuit type Function		Eurotion	
LQFP*2	QFP ^{∗1}	Finname	Circuit type	Function
		P95		General I/O port. This function is always enabled.
72	74	RX0	D	RX input pin for CAN0 Interface. When the CAN function is used, output from the other functions must be stopped.
		P96		General I/O port. This function is enabled when CAN1 disables the output.
73	75	TX1	D	TX output pin for CAN1. This function is enabled when CAN1 enables the output (only MB90540G series) .
		P97		General I/O port. This function is always enabled.
74	76	RX1	D	RX input pin for CAN1 Interface. When the CAN function is used, output from the other functions must be stopped (only MB90540G series) .
76	78	PA0	D	General I/O port. This function is always enabled.
32	34	AVcc	Power supply	Power supply pin for the A/D Converter. This power supply must be turned on or off while a voltage higher than or equal to AV_{CC} is applied to V_{CC} .
35	37	AVss	Power supply	Power supply pin for the A/D Converter.
33	35	AVRH	Power supply	External reference voltage input pin for the A/D Converter. This power supply must be turned on or off while a voltage higher than or equal to AVRH is applied to AVcc.
34	36	AVRL	Power supply	External reference voltage input pin for the A/D Converter.
47, 48	49, 50	MD0, MD1	с	Input pins for specifying the operating mode. The pins must be directly connected to Vcc or Vss.
49	51	MD2	F	Input pin for specifying the operating mode. The pin must be directly connected to Vcc or Vss.
25	27	С	-	Power supply stabilization capacitor pin. It should be connected externally to an 0.1 μF ceramic capacitor.
21, 82	23, 84	Vcc	Power supply	Input pin for power supply (5.0 V) .
9, 40, 79	11, 42, 81	Vss	Power supply	Input pin for power supply (0.0 V) .

*1 : FPT-100P-M06

*2 : FPT-100P-M20


(Continued)

Circuit type	Diagram	Remarks			
		CMOS level output			
		 CMOS Hysteresis input 			
н	Vcc Vcc P-ch P-ch N-ch m CMOS Hysteresis input	 Programmable pull-up resistor : 50 kΩ approx. 			
		CMOS level output			
		 CMOS Hysteresis input 			
		 TTL level input (Flash devices in Flash writer mode only) 			
	P-ch	 Programmable pullup resistor : 50 kΩ approx. 			
1	N-ch				
	R R Hysteresis input				
	TTL level input				

7. Memory Map

The memory space of the MB90540G/545G Series is shown below.

Note : The high-order portion of bank 00 gives the image of the FF bank ROM to make the small model of the C compiler effective. Since the low-order 16 bits address are the same, the table in ROM can be referenced without using the "far" specification in the pointer declaration.

For example, an attempt to access $00C000_{H}$ accesses the value at FFC000_{H} in ROM. The ROM area in bank FF exceeds 48 Kbytes, and its entire image cannot be shown in bank 00. The image between FF4000_{H} and FFFFFF_{H} is visible in bank 00, while the image between FF0000_{H} and FF3FFF_{H} is visible only in bank FF.

Address	Register	Abbreviation	Access	Resource name	Initial value
A2н to A4н	Prohibited				
А5н	Automatic ready function select register	ARSR	W		0011_00в
А6н	External address output control register	HACR	W	External Memory Access	00000000
А7н	Bus control signal selection register	ECSR	W		000000_в
А8н	Watchdog Timer control register	WDTC	R/W	Watchdog Timer	XXXXX 1 1 1 _B
А9н	Time Base Timer Control register	TBTC	R/W	Time Base Timer	1 0 0 1 0 Ов
ААн	Watch timer control register	WTC	R/W	Watch Timer	1 X 0 0 0 0 0 0B
AB _H to AD _H	Prohibited				
АЕн	Flash memory control status register (Flash only, otherwise reserved)	FMCS	R/W	Flash Memory	000Х000в
AFн	Prohibited		•		
В0н	Interrupt control register 00	ICR00	R/W		00000111в
В1н	Interrupt control register 01	ICR01	R/W		00000111в
В2н	Interrupt control register 02	ICR02	R/W	-	00000111в
ВЗн	Interrupt control register 03	ICR03	R/W	-	00000111в
В4н	Interrupt control register 04	ICR04	R/W		00000111в
В5н	Interrupt control register 05	ICR05	R/W		00000111в
В6н	Interrupt control register 06	ICR06	R/W		00000111в
В7н	Interrupt control register 07	ICR07	R/W	Interrupt	00000111в
В8н	Interrupt control register 08	ICR08	R/W	controller	00000111в
В9н	Interrupt control register 09	ICR09	R/W		00000111в
ВАн	Interrupt control register 10	ICR10	ICR10 R/W		00000111в
ВВн	Interrupt control register 11	ICR11	R/W		00000111в
ВСн	Interrupt control register 12	ICR12	R/W		00000111в
BDн	Interrupt control register 13 ICR13 R/W			00000111в	
ВЕн	Interrupt control register 14	ICR14	R/W		00000111в
BF _H	Interrupt control register 15	ICR15	R/W		00000111в
COн to FFн	External				

Address	Register	Abbreviation	Access	Resource name	Initial value
1FF0⊦	Program address detection register 0	PADR0	R/W		XXXXXXXXB
1FF1⊦	Program address detection register 0 PADR0 R/W				XXXXXXXXB
1FF2⊦	Program address detection register 0	PADR0	R/W	Address Match Detection Function	XXXXXXXXB
1FF3⊦	Program address detection register 1	PADR1	R/W		XXXXXXXXB
1FF4 _H	Program address detection register 1	PADR1	R/W		XXXXXXXXB
1FF5⊦	Program address detection register 1	PADR1	R/W		XXXXXXXXB

MB90540G/545G Series

(Continued)

Address	Register	Abbreviation	Access	Resource name	Initial value			
3928н	Output Compare Register 0	OCCP0	R/W		XXXXXXXXB			
3929н	Output Compare Register 0	OCCP0	R/W	Output Compare 0/1	XXXXXXXXB			
392Ан	Output Compare Register 1	OCCP1	R/W	Output Compare 0/1	XXXXXXXXB			
392Вн	Output Compare Register 1	OCCP1	R/W		XXXXXXXXB			
392Сн	Output Compare Register 2	OCCP2	R/W		XXXXXXXXB			
392Dн	Output Compare Register 2	OCCP2	R/W	Output Compore 2/2	XXXXXXXXB			
392Ен	Output Compare Register 3	OCCP3	R/W	Output Compare 2/3	XXXXXXXXB			
392Fн	Output Compare Register 3	OCCP3	R/W		XXXXXXXXB			
3930н to 39FFн	Reserved			·				
3A00H to 3AFFH	Reserved for CAN 0 Interface.							
3B00H to 3BFFH	Reserved for CAN 0 Interface.							
3C00н to 3CFFн	Reserved for CAN 1 Interface.							
3D00н to 3DFFн	Reserved for CAN 1 Interface.							
3E00н to 3FFFн	Reserved							

- Read/write notation
 - R/W : Reading and writing permitted
 - R : Read-only
 - W : Write-only

Initial value notation

- 0 : Initial value is "0".
- 1 : Initial value is "1".
- X : Initial value is undefined.
- _ : Initial value is unused.

Note: Any write access to reserved addresses in I/O map should not be performed. A read access to reserved addresses results in reading "X".

9. CAN Controller

The MB90540G series contains two CAN controllers (CAN0 and CAN1), the MB90545G series contains only one (CAN0). The Evaluation Chip MB90V540G also has two CAN controllers.

The CAN controller has the following features :

- Conforms to CAN Specification Version 2.0 Part A and B
 - Supports transmission/reception in standard frame and extended frame formats
- Supports transmission of data frames by receiving remote frames
- 16 transmitting/receiving message buffers
 - □ 29-bit ID and 8-byte data
 - Multi-level message buffer configuration
- Provides full-bit comparison, full-bit mask, acceptance register 0/acceptance register 1 for each message buffer as ID acceptance mask
 - Two acceptance mask registers in either standard frame format or extended frame formats
- Bit rate programmable from 10 Kbps to 1 Mbps (when input clock is at 16 MHz)

List of Control Registers

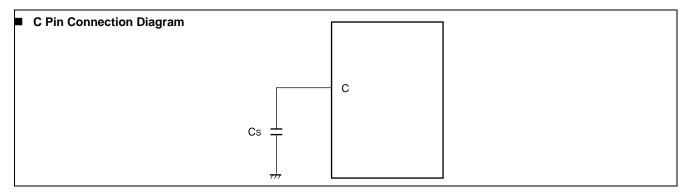
Address		Register	Abbreviation	Access	Initial Value	
CAN0	CAN1	Kegiatei	Abbieviation	ALLESS	initial value	
000070н	000080н	Message buffer valid register	BVALR	R/W	00000000 00000000в	
000071н	000081 н	Nessage builet valid register	DVALK	N/ W	0000000 000000B	
000072н	000082н	Transmit request register	TREOR	R/W	0000000 0000000	
000073н	000083н		IREQR	r//v		
000074н	000084н	Transmit cancel register	TCANR	w	0000000 0000000 _в	
000075н	000085н		ICANK	vv	0000000 000000B	
000076н	000086н	Transmit complete register	TCR	R/W	0000000 00000000	
000077н	000087н		TOR	1.5.00	0000000 000000B	
000078н	000088н	Receive complete register	RCR	R/W	0000000 0000000в	
000079н	000089н	Receive complete register				
00007Ан	00008Ан	Remote request receiving register	RRTRR	R/W	0000000 0000000в	
00007Bн	00008Bн	Remote request receiving register		N/ W		
00007Cн	00008Сн		ROVRR	R/W	00000000 00000000в	
00007Dн	00008Dн	Receive overrun register	ROVER	r/vv		
00007Eн	00008Eн	Receive interrupt enable register	RIER	R/W	00000000 00000000B	
00007Fн	00008Fн	Receive interrupt enable register		IN/ VV		

10. Interrupt Map

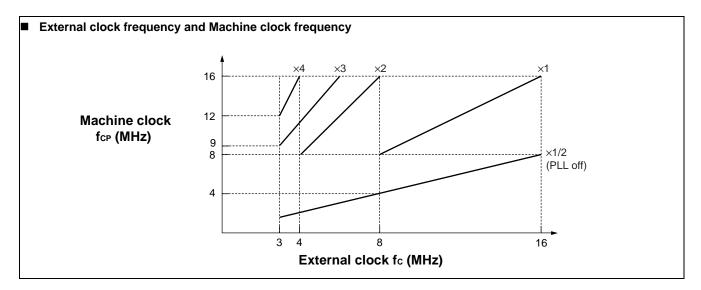
	El ² OS	Interr	upt vector	Interrupt c	ontrol register
Interrupt cause	clear	Number	Address	Number	Address
Reset	N/A	#08	FFFFDC _H	-	-
INT9 instruction	N/A	#09	FFFFD8H	-	—
Exception	N/A	#10	FFFFD4H	-	—
CAN 0 RX	N/A	#11	FFFFD0H	10000	0000B0н
CAN 0 TX/NS	N/A	#12	FFFFCC _H	ICR00	0000000
CAN 1 RX	N/A	#13	FFFFC8H	ICR01	0000B1
CAN 1 TX/NS	N/A	#14	FFFFC4H		0000B1H
External Interrupt INT0/INT1	*1	#15	FFFFC0H	ICR02	0000000
Time Base Timer	N/A	#16	FFFFBC H		0000B2н
16-bit Reload Timer 0	*1	#17	FFFFB8H	10002	0000020
8/10-bit A/D Converter	*1	#18	FFFFB4H	ICR03	0000ВЗн
16-bit Free-run Timer	N/A	#19	FFFFB0H		0000 В4 н
External Interrupt INT2/INT3	*1	#20	FFFFAC H	ICR04	0000044
Serial I/O	*1	#21	FFFFA8H	10005	0000B5н
8/16-bit PPG 0/1	N/A	#22	FFFFA4H	ICR05	
Input Capture 0	*1	#23	FFFFA0H	ICR06	0000B6н
External Interrupt INT4/INT5	*1	#24	FFFF9CH		
Input Capture 1	*1	#25	FFFF98н	ICR07	0000B7н
8/16-bit PPG 2/3	N/A	#26	FFFF94H		
External Interrupt INT6/INT7	*1	#27	FFFF90⊦	10000	
Watch Timer	N/A	#28	FFFF8CH	ICR08	0000В8н
8/16-bit PPG 4/5	N/A	#29	FFFF88 _H	ICR09	0000000
Input Capture 2/3	*1	#30	FFFF84 _H	ICRU9	0000B9н
8/16-bit PPG 6/7	N/A	#31	FFFF80H	ICR10	000084
Output Compare 0	*1	#32	FFFF7CH		0000ВАн
Output Compare 1	*1	#33	FFFF78н	ICR11	000000
Input Capture 4/5	*1	#34	FFFF74 _H		0000ВВн
Output Compare 2/3 - Input Capture 6/7	*1	#35	FFFF70⊦	ICR12	0000BCH
16-bit Reload Timer 1	*1	#36	FFFF6CH		UUUUDCH
UART 0 RX	*2	#37	FFFF68 _H	ICP12	000080
UART 0 TX	*1	#38	FFFF64 _H	ICR13	0000BDн
UART 1 RX	*2	#39	FFFF60⊦	10014	000005
UART 1 TX	*1	#40	FFFF5CH	- ICR14	0000BEн
Flash Memory	N/A	#41	FFFF58⊦	10045	000005
Delayed interrupt	N/A	#42	FFFF54H	ICR15	0000BFн

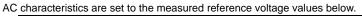
11.2 Recommended Conditions

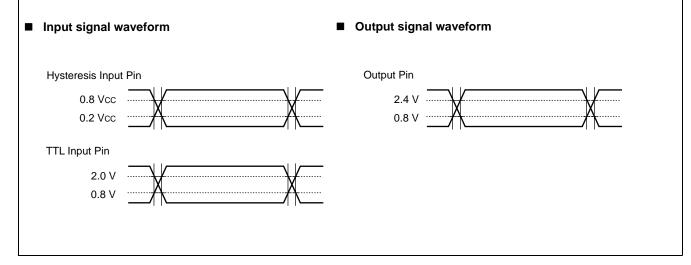
 $(V_{SS} = AV_{SS} = 0.0 V)$

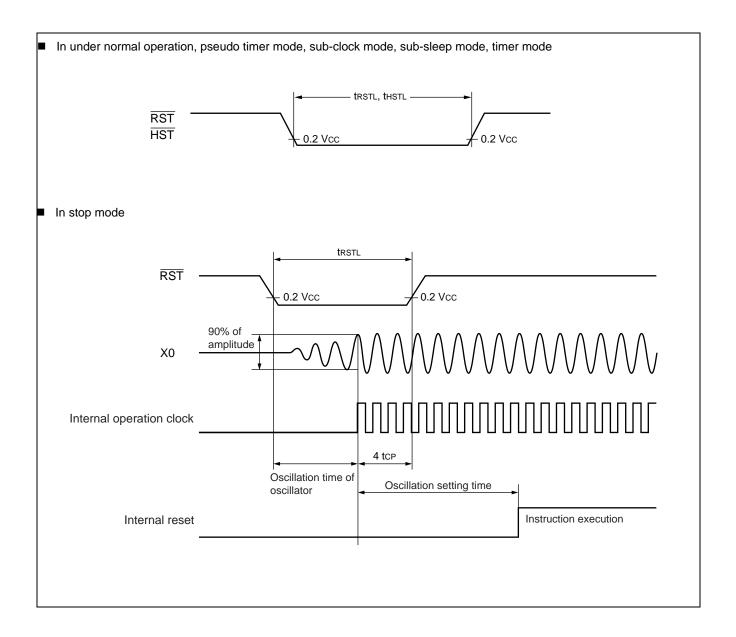

Parameter	Symbol		Value		Units	Remarks
raiameter	Symbol	Min	Тур	Max	Units	Kelliarks
	Vcc, AVcc	4.5	5.0	5.5		Under normal operation : Other than MB90F548GL(S)/543G(S)/547G(S)/548G(S)
Power supply voltage					V	Under normal operation when A/D conveter is used : MB90F548GL(S)/543G(S)/547G(S)/548G(S)
		3.5	5.0	5.5	v	Under normal operation when A/D conveter is not used : MB90F548GL(S)/543G(S)/547G(S)/548G(S)
		3.0	—	5.5	V	Maintain RAM data in stop mode
Smooth capacitor	Cs	0.022	0.1	1.0	μF	*
Operating temperature	TA	-40	—	+105	°C	

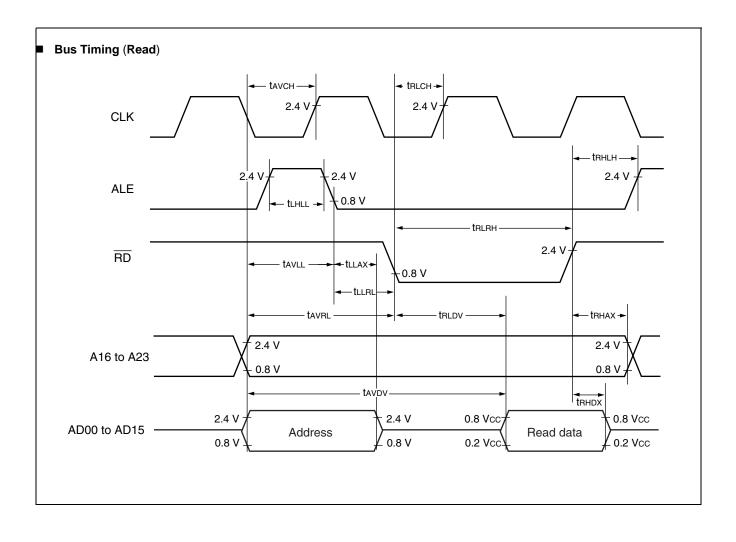
*: Use a ceramic capacitor or a capacitor of better 4. AC characteristics. The bypass capacitor should be greater than this capacitor.

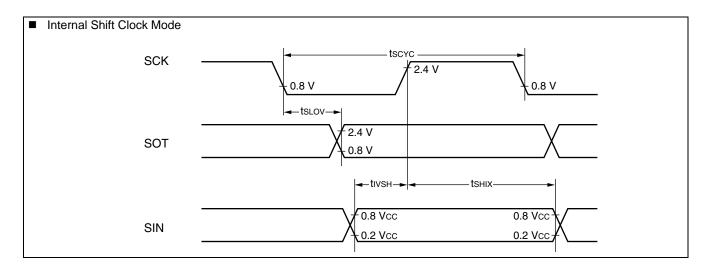

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

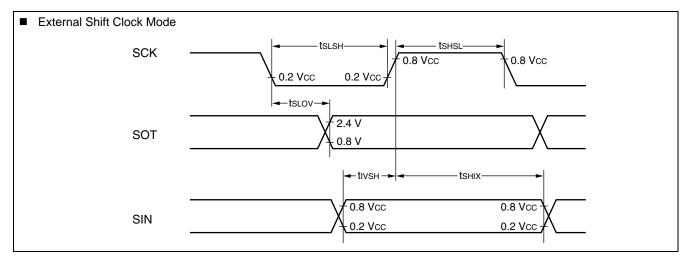

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

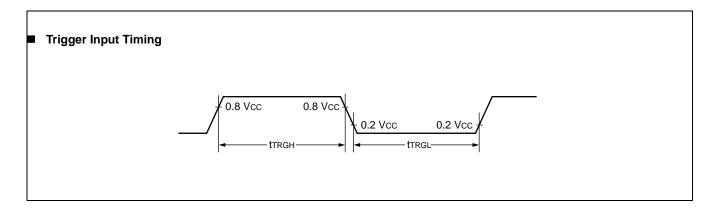

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.



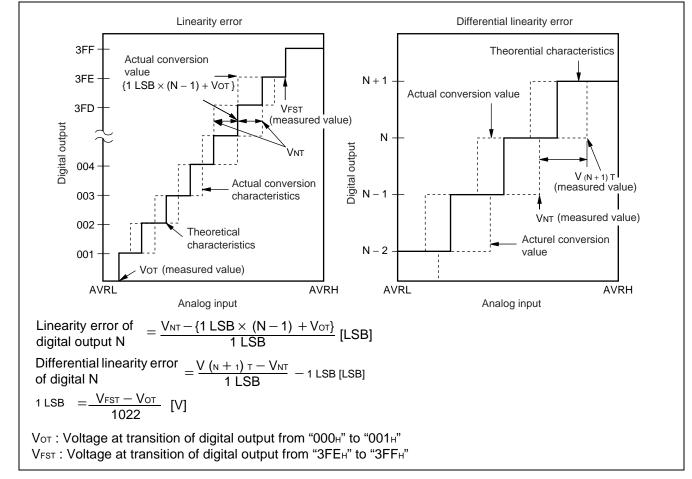






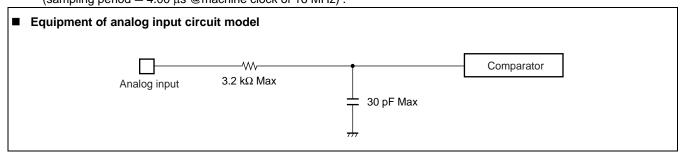


11.4.12 Trigger Input Timing


 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 V \text{ to } 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ °C to } + 105 \text{ °C})$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 5.0 V ± 10%, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ °C to } + 105 \text{ °C})

Parameter	Symbol	Pin name	name Condition		lue	Units	Remarks	
Falameter	Symbol	Fiii liailie	Condition	Min	Max	Units	Remarks	
Input pulse width	tтrgн	INT0 to INT7,		5 tcp	_	ns	Under nomal operation	
	t trgl	ADTG		1		μs	In stop mode	

(Continued)

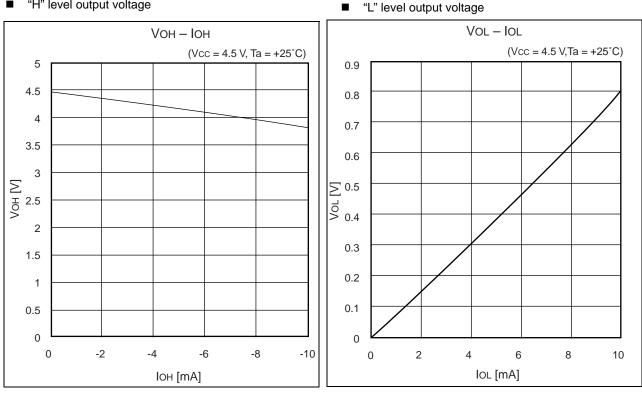

11.5.3 Notes on Using A/D Converter

Select the output impedance value for the external circuit of analog input according to the following conditions, :

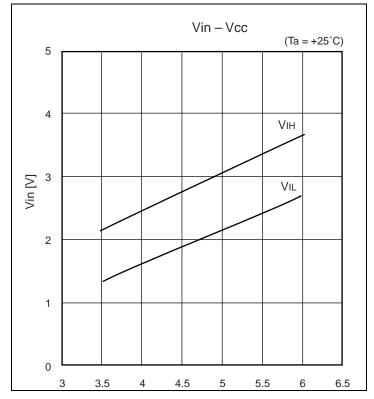
Output impedance values of the external circuit of 15 kΩ or lower are recommended.

When capacitors are connected to external pins, the capacitance of several thousand times the internal capacitor value is recommended to minimized the effect of voltage distribution between the external capacitor and internal capacitor.
Note: When the output impedance of the external circuit is too high the sampling period for analog voltages may not be sufficient.

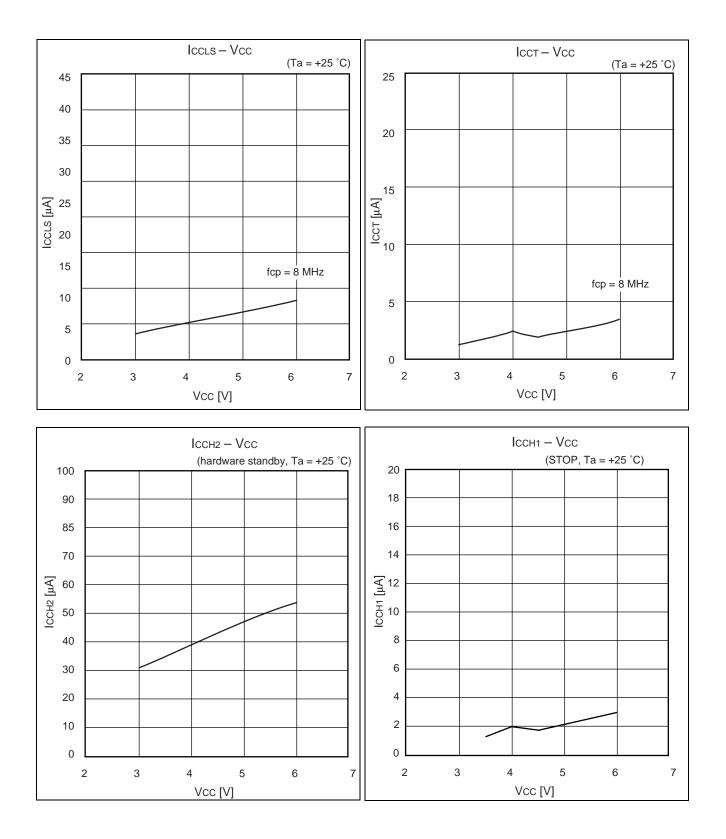
Note : When the output impedance of the external circuit is too high, the sampling period for analog voltages may not be sufficient (sampling period = $4.00 \ \mu s$ @machine clock of 16 MHz).


11.5.4 Error

The smaller the |AVRH - AVRL|, the greater the error would become relatively.



12. Example Characteristics


"H" level output voltage

■ "H" level input voltage/ "L" level input voltage (Hysterisis inpiut)

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers cypress.	ooni, ann
Automotive cypress.com/au	Itomotive
Clocks & Buffers cypress.co	m/clocks
Interface cypress.com/	/interface
Internet of Things cypres	s.com/iot
Lighting & Power Control cypress.com/pc	owerpsoc
Memory cypress.com	/memory
PSoC cypress.c	com/psoc
Touch Sensing cypress.co	om/touch
USB Controllers cypress.	.com/usb
Wireless/RF cypress.com	/wireless

PSoC[®]Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Forums | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuctitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

[©] Cypress Semiconductor Corporation, 2002-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.