

#### Welcome to E-XFL.COM

### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

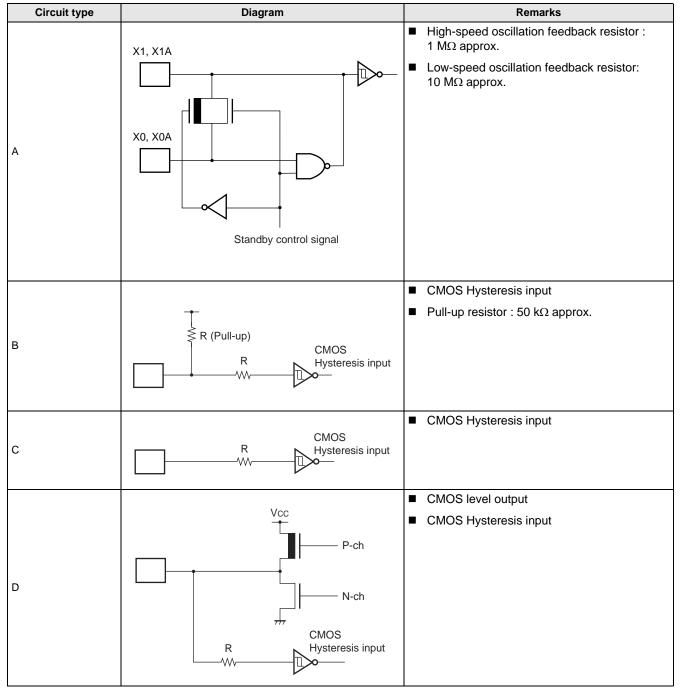
| Product Status             | Active                                                                        |
|----------------------------|-------------------------------------------------------------------------------|
| Core Processor             | F <sup>2</sup> MC-16LX                                                        |
| Core Size                  | 16-Bit                                                                        |
| Speed                      | 16MHz                                                                         |
| Connectivity               | CANbus, EBI/EMI, SCI, Serial I/O, UART/USART                                  |
| Peripherals                | POR, WDT                                                                      |
| Number of I/O              | 81                                                                            |
| Program Memory Size        | 256KB (256K x 8)                                                              |
| Program Memory Type        | FLASH                                                                         |
| EEPROM Size                | -                                                                             |
| RAM Size                   | 8K x 8                                                                        |
| Voltage - Supply (Vcc/Vdd) | 4.5V ~ 5.5V                                                                   |
| Data Converters            | A/D 8x8/10b                                                                   |
| Oscillator Type            | External                                                                      |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                            |
| Mounting Type              | Surface Mount                                                                 |
| Package / Case             | 100-LQFP                                                                      |
| Supplier Device Package    | 100-LQFP (14x14)                                                              |
| Purchase URL               | https://www.e-xfl.com/product-detail/infineon-technologies/mb90f546gspmc-g-fl |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



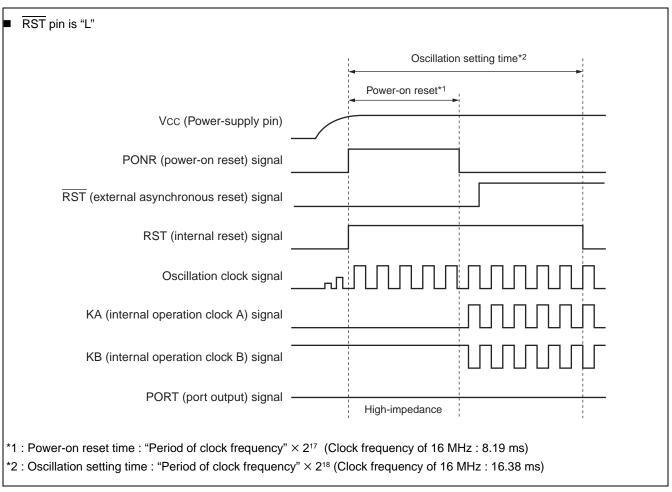
Starting by an external trigger input. Conversion time : 26.3  $\mu$ s


FULL-CAN interfaces
 MB90540G series : 2 channels
 MB90545G series : 1 channel
 Conforming to Version 2.0 Part A and Part B

Flexible message buffering (mailbox and FIFO buffering can be mixed)

- External bus interface : Maximum address space 16 Mbytes
- Package: QFP-100, LQFP-100




# 4. I/O Circuit Type





| Circuit type | Diagram                                                             | Remarks                                                                           |
|--------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|              |                                                                     | CMOS level output                                                                 |
|              |                                                                     | <ul> <li>CMOS Hysteresis input</li> </ul>                                         |
| н            | Vcc<br>Vcc<br>P-ch<br>P-ch<br>N-ch<br>m<br>CMOS<br>Hysteresis input | <ul> <li>Programmable pull-up resistor :<br/>50 kΩ approx.</li> </ul>             |
|              |                                                                     | CMOS level output                                                                 |
|              |                                                                     | <ul> <li>CMOS Hysteresis input</li> </ul>                                         |
|              |                                                                     | <ul> <li>TTL level input (Flash devices in<br/>Flash writer mode only)</li> </ul> |
|              | P-ch                                                                | <ul> <li>Programmable pullup resistor :<br/>50 kΩ approx.</li> </ul>              |
| 1            | N-ch                                                                |                                                                                   |
|              | R<br>R<br>Hysteresis input                                          |                                                                                   |
|              | TTL level input                                                     |                                                                                   |





### (13) Initialization

In the device, there are internal registers which are initialized only by a power-on reset. To initialize these registers, please turn on the power again.

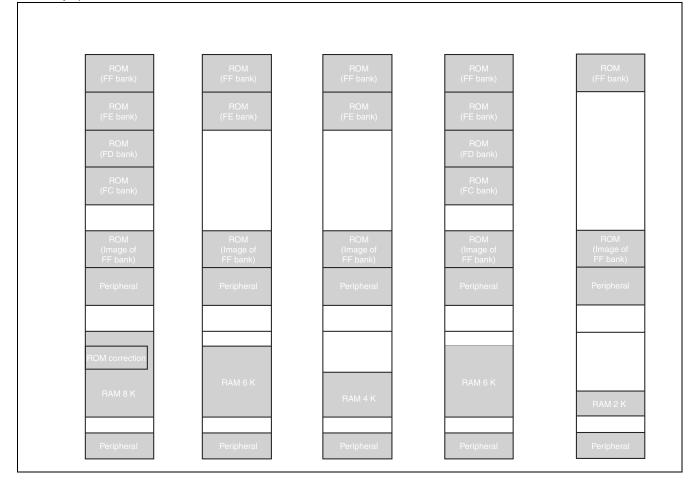
### (14) Directions of "DIV A, Ri" and "DIVW A, RWi" instructions

In the Signed multiplication and division instructions ("DIV A, Ri" and "DIVW A, RWi"), the value of the corresponding bank register (DTB, ADB, USB, SSB) is set in "00H".

If the values of the corresponding bank registers (DTB, ADB, USB, SSB) are set to other than "00H", the remainder by the execution result of the instruction is not stored in the register of the instruction operand.

### (15) Using REALOS

The use of El<sup>2</sup>OS is not possible with the REALOS real time operating system.


#### (16) Caution on Operations during PLL Clock Mode

If the PLL clock mode is selected, the microcontroller attempt to be working with the self-oscillating circuit even when there is no external oscillator or external clock input is stopped. Performance of this operation, however, cannot be guaranteed.



# 7. Memory Map

The memory space of the MB90540G/545G Series is shown below.



Note : The high-order portion of bank 00 gives the image of the FF bank ROM to make the small model of the C compiler effective. Since the low-order 16 bits address are the same, the table in ROM can be referenced without using the "far" specification in the pointer declaration.

For example, an attempt to access  $00C000_{H}$  accesses the value at FFC000\_{H} in ROM. The ROM area in bank FF exceeds 48 Kbytes, and its entire image cannot be shown in bank 00. The image between FF4000\_{H} and FFFFFF\_{H} is visible in bank 00, while the image between FF0000\_{H} and FF3FFF\_{H} is visible only in bank FF.



| Address                            | Register                                                              | Abbreviation | Access | Resource name             | Initial value            |
|------------------------------------|-----------------------------------------------------------------------|--------------|--------|---------------------------|--------------------------|
| A2н to A4н                         | Prohibited                                                            |              |        |                           |                          |
| А5н                                | Automatic ready function select register                              | ARSR         | W      |                           | 0011_00в                 |
| А6н                                | External address output control register                              | HACR         | W      | External Memory<br>Access | 00000000                 |
| А7н                                | Bus control signal selection register                                 | ECSR         | W      |                           | 000000_в                 |
| А8н                                | Watchdog Timer control register                                       | WDTC         | R/W    | Watchdog Timer            | XXXXX 1 1 1 <sub>B</sub> |
| А9н                                | Time Base Timer Control register                                      | TBTC         | R/W    | Time Base Timer           | 1 0 0 1 0 Ов             |
| ААн                                | Watch timer control register                                          | WTC          | R/W    | Watch Timer               | 1 X 0 0 0 0 0 0B         |
| AB <sub>H</sub> to AD <sub>H</sub> | Prohibited                                                            |              |        |                           |                          |
| АЕн                                | Flash memory control status register (Flash only, otherwise reserved) | FMCS         | R/W    | Flash Memory              | 000Х000в                 |
| AFн                                | Prohibited                                                            |              | •      |                           |                          |
| В0н                                | Interrupt control register 00                                         | ICR00        | R/W    |                           | 00000111в                |
| В1н                                | Interrupt control register 01                                         | ICR01        | R/W    |                           | 00000111в                |
| В2н                                | Interrupt control register 02                                         | ICR02        | R/W    | -                         | 00000111в                |
| ВЗн                                | Interrupt control register 03                                         | ICR03        | R/W    | -                         | 00000111в                |
| В4н                                | Interrupt control register 04                                         | ICR04        | R/W    |                           | 00000111в                |
| В5н                                | Interrupt control register 05                                         | ICR05        | R/W    |                           | 00000111в                |
| В6н                                | Interrupt control register 06                                         | ICR06        | R/W    |                           | 00000111в                |
| В7н                                | Interrupt control register 07                                         | ICR07        | R/W    | Interrupt                 | 00000111в                |
| В8н                                | Interrupt control register 08                                         | ICR08        | R/W    | controller                | 00000111в                |
| В9н                                | Interrupt control register 09                                         | ICR09        | R/W    |                           | 00000111в                |
| ВАн                                | Interrupt control register 10                                         | ICR10        | R/W    |                           | 00000111в                |
| ВВн                                | Interrupt control register 11                                         | ICR11        | R/W    |                           | 00000111в                |
| ВСн                                | Interrupt control register 12                                         | ICR12        | R/W    |                           | 00000111в                |
| BDн                                | Interrupt control register 13                                         | ICR13        | R/W    |                           | 00000111в                |
| ВЕн                                | Interrupt control register 14                                         | ICR14        | R/W    |                           | 00000111в                |
| BF <sub>H</sub>                    | Interrupt control register 15                                         | ICR15        | R/W    |                           | 00000111в                |
| COн to FFн                         | External                                                              |              |        |                           |                          |

| Address           | Register                             | Abbreviation | Access | Resource name      | Initial value |
|-------------------|--------------------------------------|--------------|--------|--------------------|---------------|
| 1FF0⊦             | Program address detection register 0 | PADR0        | R/W    |                    | XXXXXXXXB     |
| 1FF1⊦             | Program address detection register 0 | PADR0        | R/W    |                    | XXXXXXXXB     |
| 1FF2⊦             | Program address detection register 0 | PADR0        | R/W    | Address Match      | XXXXXXXXB     |
| 1FF3⊦             | Program address detection register 1 | PADR1        | R/W    | Detection Function | XXXXXXXXB     |
| 1FF4 <sub>H</sub> | Program address detection register 1 | PADR1        | R/W    |                    | XXXXXXXXB     |
| 1FF5⊦             | Program address detection register 1 | PADR1        | R/W    |                    | XXXXXXXXB     |



| Address |         | Destister                                 | Abbreviation | A       | Initial Value      |
|---------|---------|-------------------------------------------|--------------|---------|--------------------|
| CAN0    | CAN1    | - Register                                | Appreviation | Access  | initiai value      |
| 003В00н | 003D00н | - Control status register                 | CSR          | R/W, R  | 00000 00-1в        |
| 003B01н | 003D01н |                                           | CSK          | K/VV, K | 00000 00-1в        |
| 003В02н | 003D02н | Lest quest indicator register             | LEIR         | R/W     | 000-000в           |
| 003В03н | 003D03н | Last event indicator register             | LEIR         | K/ VV   | 000-000B           |
| 003В04н | 003D04н | Receive/transmit error counter register   | RTEC         | R       | 0000000 0000000в   |
| 003В05н | 003D05н | - Receive/transmit error counter register | RIEC         | ĸ       |                    |
| 003В06н | 003D06н | Pit timing register                       | BTR          | R/W     | -1111111 1111111в  |
| 003В07н | 003D07н | Bit timing register                       | DIK          | R/VV    | -1111111 11111118  |
| 003В08н | 003D08н |                                           | IDER         | R/W     |                    |
| 003В09н | 003D09н | IDE register                              | IDER         | R/W     | XXXXXXXX XXXXXXXXB |
| 003В0Ан | 003D0AH |                                           | TRTRR        | R/W     | 0000000 0000000в   |
| 003В0Вн | 003D0BH | <ul> <li>Transmit RTR register</li> </ul> | IRIRR        | R/VV    |                    |
| 003В0Сн | 003D0CH | Demote from a receive weiting register    | RFWTR        | R/W     |                    |
| 003B0DH | 003D0DH | - Remote frame receive waiting register   | KEVVIK       | R/W     | XXXXXXXX XXXXXXXXB |
| 003В0Ен | 003D0Eн | Transmit request enable register          | TIER         | R/W     | 0000000 0000000в   |
| 003B0Fн | 003D0Fн | - Transmit request enable register        | HER          | K/VV    | 0000000 000000B    |
| 003B10н | 003D10н |                                           |              |         | XXXXXXXX XXXXXXXxx |
| 003B11н | 003D11н |                                           | AMSR         | R/W     | ~~~~~~             |
| 003B12н | 003D12н | Acceptance mask select register           | AWSR         | K/VV    | XXXXXXXX XXXXXXXxx |
| 003B13н | 003D13н |                                           |              |         | ^^^^^              |
| 003B14н | 003D14н |                                           |              |         |                    |
| 003B15н | 003D15н | Assentance mask register 0                | AMR0         | R/W     | XXXXXXXX XXXXXXXXB |
| 003B16н | 003D16н | Acceptance mask register 0                | AWKU         | K/VV    | XXXXX XXXXXXXXB    |
| 003B17н | 003D17н | 7                                         |              |         | ^^^^^              |
| 003B18н | 003D18н |                                           |              |         |                    |
| 003B19н | 003D19⊦ | Acceptopop mask register 1                | AMR1         | R/W     | XXXXXXXX XXXXXXXXB |
| 003В1Ан | 003D1Aн | Acceptance mask register 1                |              | 17/10   | XXXXX XXXXXXXxB    |
| 003B1Bн | 003D1BH |                                           |              |         | ~~~~~ ~~~~~        |

### List of Message Buffers (ID Registers)

| Add                      | lress                    | Pagistar            | Register Abbreviation |         | Initial Value               |  |
|--------------------------|--------------------------|---------------------|-----------------------|---------|-----------------------------|--|
| CAN0                     | CAN1                     | Register            | Appreviation          | Access  | initial value               |  |
| 003A00н<br>to<br>003A1Fн | 003C00н<br>to<br>003C1Fн | General-purpose RAM | _                     | R/W     | XXXXXXXXB<br>to<br>XXXXXXXB |  |
| 003А20н                  | 003С20н                  |                     |                       |         | XXXXXXXX XXXXXXXX           |  |
| 003A21н                  | 003C21н                  | ID register 0       | IDR0                  | R/W     | ~~~~~~                      |  |
| 003А22н                  | 003С22н                  |                     | IDRO                  | r./ v v | XXXXX XXXXXXXXB             |  |
| 003А23н                  | 003С23н                  |                     |                       |         | ~~~~~ ~~~~~                 |  |



# 10. Interrupt Map

|                                        | El <sup>2</sup> OS | Interr   | upt vector                 | Interrupt control register |                               |  |
|----------------------------------------|--------------------|----------|----------------------------|----------------------------|-------------------------------|--|
| Interrupt cause                        | clear              | Number   | Address                    | Number                     | Address                       |  |
| Reset                                  | N/A                | #08      | FFFFDC <sub>H</sub>        | -                          | -                             |  |
| INT9 instruction                       | N/A                | #09      | FFFFD8H                    | -                          | —                             |  |
| Exception                              | N/A                | #10      | FFFFD4H                    | -                          | —                             |  |
| CAN 0 RX                               | N/A                | #11      | FFFFD0H                    | 10000                      | 000000                        |  |
| CAN 0 TX/NS                            | N/A                | #12      | <b>FFFFCC</b> <sub>H</sub> | ICR00                      | 0000В0н                       |  |
| CAN 1 RX                               | N/A                | #13      | FFFFC8H                    | ICR01                      | 0000B1                        |  |
| CAN 1 TX/NS                            | N/A                | #14      | FFFFC4H                    |                            | 0000B1н                       |  |
| External Interrupt INT0/INT1           | *1                 | #15      | FFFFC0H                    | ICR02                      | 0000000                       |  |
| Time Base Timer                        | N/A                | #16      | <b>FFFFBC</b> H            |                            | 0000B2н                       |  |
| 16-bit Reload Timer 0                  | *1                 | #17      | FFFFB8H                    | 10002                      | 0000020                       |  |
| 8/10-bit A/D Converter                 | *1                 | #18      | FFFFB4H                    | ICR03                      | 0000ВЗн                       |  |
| 16-bit Free-run Timer                  | N/A                | #19      | FFFFB0H                    |                            |                               |  |
| External Interrupt INT2/INT3           | *1                 | #20      | <b>FFFFAC</b> H            | ICR04                      | 0000B4H                       |  |
| Serial I/O                             | *1                 | #21      | FFFFA8H                    | 10005                      | 0000B5н                       |  |
| 8/16-bit PPG 0/1                       | N/A                | #22      | FFFFA4H                    | ICR05                      |                               |  |
| Input Capture 0                        | *1                 | #23      | FFFFA0H                    | 10000                      | 0000B6н<br>0000B7н<br>0000B8н |  |
| External Interrupt INT4/INT5           | *1                 | #24      | FFFF9CH                    | ICR06                      |                               |  |
| Input Capture 1                        | *1                 | #25      | FFFF98н                    | ICR07                      |                               |  |
| 8/16-bit PPG 2/3                       | N/A                | #26      | FFFF94H                    |                            |                               |  |
| External Interrupt INT6/INT7           | *1                 | #27      | FFFF90⊦                    | 10000                      |                               |  |
| Watch Timer                            | N/A                | #28      | FFFF8CH                    | ICR08                      |                               |  |
| 8/16-bit PPG 4/5                       | N/A                | #29      | FFFF88 <sub>H</sub>        | ICR09                      | 0000000                       |  |
| Input Capture 2/3                      | *1                 | #30      | FFFF84 <sub>H</sub>        | ICRU9                      | 0000B9н                       |  |
| 8/16-bit PPG 6/7                       | N/A                | #31      | FFFF80H                    | ICR10                      | 000084                        |  |
| Output Compare 0                       | *1                 | #32      | FFFF7CH                    |                            | 0000ВАн                       |  |
| Output Compare 1                       | *1                 | #33      | FFFF78н                    | ICR11                      | 000000                        |  |
| Input Capture 4/5                      | *1                 | #34      | FFFF74 <sub>H</sub>        |                            | 0000ВВн                       |  |
| Output Compare 2/3 - Input Capture 6/7 | *1                 | #35      | FFFF70⊦                    | ICR12                      | 0000BCH                       |  |
| 16-bit Reload Timer 1                  | *1                 | #36      | FFFF6CH                    |                            | UUUUDCH                       |  |
| UART 0 RX                              | *2                 | #37      | FFFF68 <sub>H</sub>        | ICP12                      | 000080                        |  |
| UART 0 TX                              | *1                 | *1 #38 F |                            | ICR13                      | 0000BDн                       |  |
| UART 1 RX                              | *2                 | #39      | FFFF60⊦                    | 10014                      | 000005                        |  |
| UART 1 TX                              | *1                 | #40      | FFFF5CH                    | - ICR14                    | 0000BEH                       |  |
| Flash Memory                           | N/A                | #41      | FFFF58⊦                    | 10045                      | 000005                        |  |
| Delayed interrupt                      | N/A                | #42      | FFFF54H                    | ICR15                      | 0000BFн                       |  |





\*1 : The interrupt request flag is cleared by the EI2OS interrupt clear signal.

\*2 : The interrupt request flag is cleared by the El<sup>2</sup>OS interrupt clear signal. A stop request is available.

Notes :

- N/A : The interrupt request flag is not cleared by the EI<sup>2</sup>OS interrupt clear signal.
- For a peripheral module with two interrupt causes for a single interrupt number, both interrupt request flags are cleared by the El<sup>2</sup>OS interrupt clear signal.
- At the end of El<sup>2</sup>OS, the El<sup>2</sup>OS clear signal will be asserted for all the interrupt flags assigned to the same interrupt number. If one interrupt flag starts the El<sup>2</sup>OS and in the meantime another interrupt flag is set by a hardware event, the later event is lost because the flag is cleared by the El<sup>2</sup>OS clear signal caused by the first event. So it is recommended not to use the El<sup>2</sup>OS for this interrupt number.
- If EI<sup>2</sup>OS is enabled, EI<sup>2</sup>OS is initiated when one of the two interrupt signals in the same interrupt control register (ICR) is asserted. This means that different interrupt sources share the same EI<sup>2</sup>OS Descriptor which should be unique for each interrupt source. For this reason, when one interrupt source uses the EI<sup>2</sup>OS, the other interrupt should be disabled.





# **11. Electrical Characteristics**

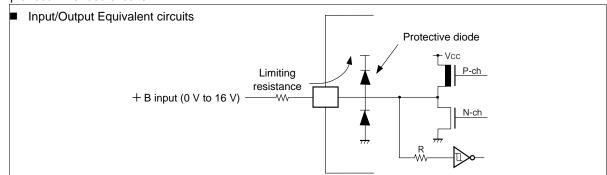
# 11.1 Absolute Maximum Ratings

 $(V_{SS} = AV_{SS} = 0.0 V)$ 

| Parameter                             | Symbol            | Va                   | alue      | Units | Remarks                          |
|---------------------------------------|-------------------|----------------------|-----------|-------|----------------------------------|
| Farameter                             | Symbol            | Min                  | Max       | Units | Remarks                          |
|                                       | Vcc               | Vss - 0.3            | Vss + 6.0 | V     |                                  |
| Power supply voltage                  | AVcc              | Vss - 0.3            | Vss + 6.0 | V     | Vcc = AVcc *1                    |
|                                       | AVRH, AVRL        | V <sub>SS</sub> -0.3 | Vss + 6.0 | V     | AVcc≥AVRH/AVRL, AVRH≥<br>AVRL *1 |
| Input voltage                         | Vi                | $V_{SS} - 0.3$       | Vss + 6.0 | V     | *2                               |
| Output voltage                        | Vo                | $V_{SS} = 0.3$       | Vss + 6.0 | V     | *2                               |
| Maximum clamp current                 |                   | - 2.0                | + 2.0     | mA    | *6                               |
| Total maximum clamp current           | $\Sigma$   Iclamp | -                    | 20        | mA    | *6                               |
| "L" level max output current          | lol               | -                    | 15        | mA    | *3                               |
| "L" level avg. output current         | Iolav             | -                    | 4         | mA    | *4                               |
| "L" level max overall output current  | ΣΙοι              | -                    | 100       | mA    |                                  |
| "L" level avg. overall output current | $\Sigma$ Iolav    | -                    | 50        | mA    | *5                               |
| "H" level max output current          | Іон               | -                    | -15       | mA    | *3                               |
| "H" level avg. output current         | Іонач             | -                    | -4        | mA    | *4                               |
| "H" level max overall output current  | ΣІон              | -                    | -100      | mA    |                                  |
| "H" level avg. overall output current | ΣΙομαν            | -                    | -50       | mA    | *5                               |
| Dower concurration                    | Pp                | -                    | 500       | mW    | Flash device                     |
| Power consumption                     | ΓD                | —                    | 400       | mW    | MASK ROM                         |
| Operating temperature                 | TA                | -40                  | +105      | °C    |                                  |
| Storage temperature                   | Тѕтс              | -55                  | +150      | °C    |                                  |

\*1 : AVcc, AVRH, AVRL should not exceed Vcc. Also, AVRH, AVRL should not exceed AVcc, and AVRL does not exceed AVRH.

- \*2 : VI and Vo should not exceed Vcc + 0.3 V. However if the maximum current to/from an input is limited by some means with external components, the IcLAMP rating supercedes the VI rating.
- \*3 : The maximum output current is a peak value for a corresponding pin.
- \*4 : Average output current is an average current value observed for a 100 ms period for a corresponding pin.


\*5 : Total average current is an average current value observed for a 100 ms period for all corresponding pins.

\*6 :

- Applicable to pins : P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, PA0
- Use within recommended operating conditions.
- Use at DC voltage (current).
- □ The + B signal should always be applied with a limiting resistance placed between the + B signal and the microcontroller.
- The value of the limiting resistance should be set so that when the + B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the + B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
- Note that if a + B signal is input when the microcontroller current is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the + B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on result.
- □ Care must be taken not to leave the + B input pin open.



- Note that analog system input/output pins other than the A/D input pins (LCD drive pins, comparator input pins, etc.) cannot accept + B signal input.
- □ Sample recommended circuits :



WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.



# **11.3 DC Characteristics**

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 V \text{ to } 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ }^{\circ}\text{C} \text{ to } +105 \text{ }^{\circ}\text{C})$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V\_{CC} = 5.0 V ± 10%, V\_{SS} = AV\_{SS} = 0.0 V, T\_A = -40 \text{ }^{\circ}\text{C} \text{ to } +105 \text{ }^{\circ}\text{C})

| Parameter               | Symbol | Pin name                                                        | Condition                                   | Condition |     |           |       | Remarks                    |
|-------------------------|--------|-----------------------------------------------------------------|---------------------------------------------|-----------|-----|-----------|-------|----------------------------|
| Parameter               | Symbol | Symbol I in name Condition M                                    |                                             | Min       | Тур | Max       | Units | Remarks                    |
| Input H                 | VIHS   | CMOS<br>hysteresis<br>input pin                                 | -                                           | 0.8 Vcc   | _   | Vcc + 0.3 | v     |                            |
| voltage                 | Vін    | TTL input pin                                                   | -                                           | 2.0       | —   | —         | V     |                            |
|                         | VIHM   | MD input pin                                                    | -                                           | Vcc - 0.3 | —   | Vcc + 0.3 | V     |                            |
| Input L                 | Vils   | CMOS<br>hysteresis<br>input pin                                 | -                                           | Vcc - 0.3 | _   | 0.2 Vcc   | V     |                            |
| voltage                 | VIL    | TTL input pin                                                   | -                                           | —         | —   | 0.8       | V     |                            |
|                         | VILM   | MD input pin                                                    | -                                           | Vss - 0.3 | —   | Vss + 0.3 | V     |                            |
| Output H<br>voltage     | Vон    | All output pins                                                 | $V_{CC} = 4.5 V,$<br>$I_{OH} = -4.0 mA$     | Vcc - 0.5 | _   | _         | V     |                            |
| Output L<br>voltage     | Vol    | All output pins                                                 | $V_{CC} = 4.5 V,$<br>$I_{OL} = 4.0 mA$      | -         | _   | 0.4       | V     |                            |
| Input leak<br>current   | lı∟    | -                                                               | $V_{CC} = 5.5 V,$ $V_{SS} < V_{I} < V_{CC}$ | -5        | _   | 5         | μΑ    |                            |
| Pull-up<br>resistance   | Rup    | P00 to P07,<br>P10 to P17,<br>P20 to P27,<br>P30 to P37,<br>RST | _                                           | 25        | 50  | 100       | kΩ    |                            |
| Pull-down<br>resistance | Rdown  | MD2                                                             | -                                           | 25        | 50  | 100       | kΩ    | Except<br>Flash<br>devices |



 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 V \text{ to } 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ °C to } +105 \text{ °C})$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V\_{CC} = 5.0 V ± 10\%, V\_{SS} = AV\_{SS} = 0.0 V, T\_A = -40 \text{ °C to } +105 \text{ °C})

| Parameter         | Sym-  | Pin name                                                   | Condition                                                    |     | Value |      | Units           | Remarks                             |
|-------------------|-------|------------------------------------------------------------|--------------------------------------------------------------|-----|-------|------|-----------------|-------------------------------------|
| Parameter         | bol   | Pin name                                                   | Condition                                                    | Min | Тур   | Max  | Units           | Remarks                             |
|                   | lcc   |                                                            | Internal frequency : 16 MHz, At normal operating             | _   | 40    | 55   | mA              |                                     |
|                   | ICC   |                                                            | Internal frequency : 16 MHz, At<br>Flash programming/erasing | -   | 50    | 70   | mA              | Flash device                        |
|                   | Iccs  |                                                            | Internal frequency : 16 MHz, At sleep mode                   | _   | 12    | 20   | mA              |                                     |
|                   |       |                                                            | $V_{cc} = 5.0 \text{ V} \pm 10\%$                            | -   | 300   | 600  | μA              |                                     |
|                   | Icts  |                                                            |                                                              | —   | 600   | 1100 | μA              | MB90F548GL (S) only                 |
| Power             | 1015  |                                                            | Internal frequency : 2 MHz,<br>At pseudo timer mode          | _   | 200   | 400  | μΑ              | MB90543G(S)/547G(S)/<br>548(S) only |
| supply            | Vcc   | Internal frequency : 8 kHz,                                | —                                                            | 400 | 750   | μΑ   | MB90F548GL only |                                     |
| current*          | ICCL  |                                                            | At sub operation, $T_A = 25 \text{ °C}$                      | —   | 50    | 100  | μΑ              | MASK ROM                            |
|                   |       |                                                            |                                                              | —   | 150   | 300  | μΑ              | Flash device                        |
|                   | ICCLS |                                                            | Internal frequency : 8 kHz,                                  | _   | 15    | 40   | μA              |                                     |
|                   |       |                                                            | At sub sleep, $T_A = 25 \ ^\circ C$                          |     | -     |      |                 |                                     |
|                   | Ісст  |                                                            | Internal frequency : 8 kHz,                                  | _   | 7     | 25   | μA              |                                     |
|                   | 1     |                                                            | At timer mode, $T_A = 25 \text{ °C}$                         |     | 5     | 20   |                 |                                     |
|                   | Іссн1 |                                                            | At stop, $T_A = 25 \text{ °C}$                               | _   | 5     | 20   | μΑ              |                                     |
|                   | Іссн2 |                                                            | At hardware standby mode, $T_A = 25 \ ^{\circ}C$             | -   | 50    | 100  | μΑ              |                                     |
| Input<br>capacity | CIN   | Other than<br>AVcc, AVss,<br>AVRH,<br>AVRL, C,<br>Vcc, Vss | _                                                            | _   | 5     | 15   | pF              |                                     |

\* : The power supply current testing conditions are when using the external clock.



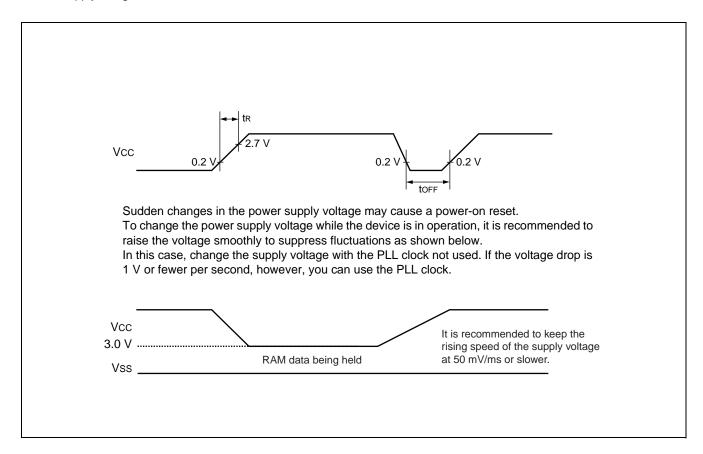
 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 V \text{ to } 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ }^{\circ}\text{C} \text{ to } +105 \text{ }^{\circ}\text{C})$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V\_{CC} = 5.0 V ± 10\%, V\_{SS} = AV\_{SS} = 0.0 V, T\_A = -40 \text{ }^{\circ}\text{C} \text{ to } +105 \text{ }^{\circ}\text{C})

| <b>D</b>                       |               |          |       | Value |     |       |                                                                                            |
|--------------------------------|---------------|----------|-------|-------|-----|-------|--------------------------------------------------------------------------------------------|
| Parameter                      | Symbol        | Pin name | Min   | Тур   | Max | Units | Remarks                                                                                    |
|                                |               |          | 62.5  | _     | 333 | ns    | No multiplier<br>When using an oscillator circuit<br>$V_{cc} = 5.0 V \pm 10\%$             |
|                                |               |          | 62.5  | _     | 125 | ns    | PLL multiplied by 1<br>When using an oscillator circuit<br>$V_{cc} = 5.0 V \pm 10\%$       |
|                                |               |          | 125   | _     | 250 | ns    | PLL multiplied by 2<br>When using an oscillator circuit<br>$V_{cc} = 5.0 V \pm 10\%$       |
|                                |               |          | 187.5 | _     | 333 | ns    | PLL multiplied by 3<br>When using an oscillator circuit<br>$V_{cc} = 5.0 V \pm 10\%$       |
| Clock cycle time               | tсуL          | X0, X1   | 250   | _     | 333 | ns    | PLL multiplied by 4<br>When using an oscillator circuit<br>$V_{cc} = 5.0 V \pm 10\%$       |
|                                |               |          | 200   | _     | 333 | ns    | When using an oscillator circuit<br>Vcc < 4.5 V(MB90F548GL(S)/543G(S)/<br>547G(S)/548G(S)) |
|                                |               |          | 62.5  | -     | 333 | ns    | No multiplier<br>When using an external clock                                              |
|                                |               |          | 62.5  | -     | 125 | ns    | PLL multiplied by 1<br>When using an external clock                                        |
|                                |               |          | 125   | -     | 250 | ns    | PLL multiplied by 2<br>When using an external clock                                        |
|                                |               |          | 187.5 | -     | 333 | ns    | PLL multiplied by 3<br>When using an external clock                                        |
|                                |               |          | 250   | -     | 333 | ns    | PLL multiplied by 4<br>When using an external clock                                        |
|                                | <b>t</b> LCYL | X0A, X1A | —     | 30.5  | —   | μs    |                                                                                            |
| Input clock pulse width        | Pwh, Pwl      | X0       | 10    | —     | _   | ns    | Duty ratio is about $30\%$ to $70\%$ .                                                     |
|                                | Pwlh, Pwll    | X0A      | —     | 15.2  | —   | μs    |                                                                                            |
| Input clock rise and fall time | tcr, tcf      | X0       | _     | —     | 5   | ns    | When using an external clock                                                               |
| Machine clock frequency        | fcp           | -        | 1.5   | —     | 16  | MHz   | When using main clock                                                                      |
|                                | flcp          | -        | —     | 8.192 | _   | kHz   | When using sub-clock                                                                       |
| Machine clock cycle time       | tcp           | —        | 62.5  | —     | 666 | ns    | When using main clock                                                                      |
|                                | <b>t</b> LCP  | -        | -     | 122.1 | -   | μs    | When using sub-clock                                                                       |



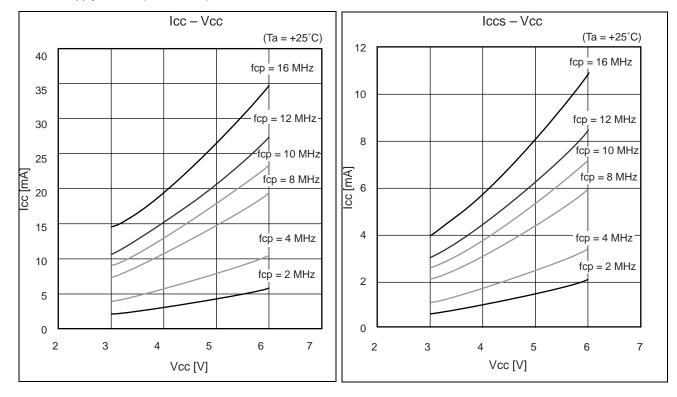


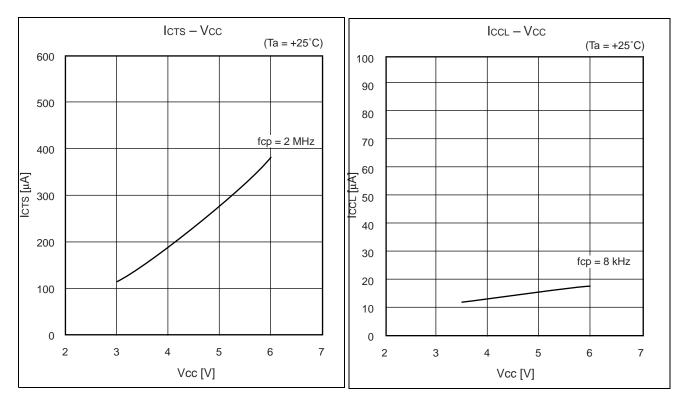
### 11.4.4 Power On Reset


 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 \text{ V to } 5.5 \text{ V}, V_{SS} = AV_{SS} = 0.0 \text{ V}, T_A = -40 \text{ }^{\circ}\text{C to } + 105 \text{ }^{\circ}\text{C})$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V\_{CC} = 5.0 \text{ V} \pm 10\%, V\_{SS} = AV\_{SS} = 0.0 \text{ V}, T\_A = -40 \text{ }^{\circ}\text{C to } + 105 \text{ }^{\circ}\text{C})

| Parameter          | Symbol | Pin name  | Condition | Va   | lue | Units | Remarks                     |
|--------------------|--------|-----------|-----------|------|-----|-------|-----------------------------|
| Faiametei          | Symbol | Fininanie | Condition | Min  | Max | Units | Remarks                     |
| Power on rise time | tR     | Vcc       | _         | 0.05 | 30  | ms    | *                           |
| Power off time     | toff   | Vcc       |           | 50   | _   | ms    | Waiting time until power-on |

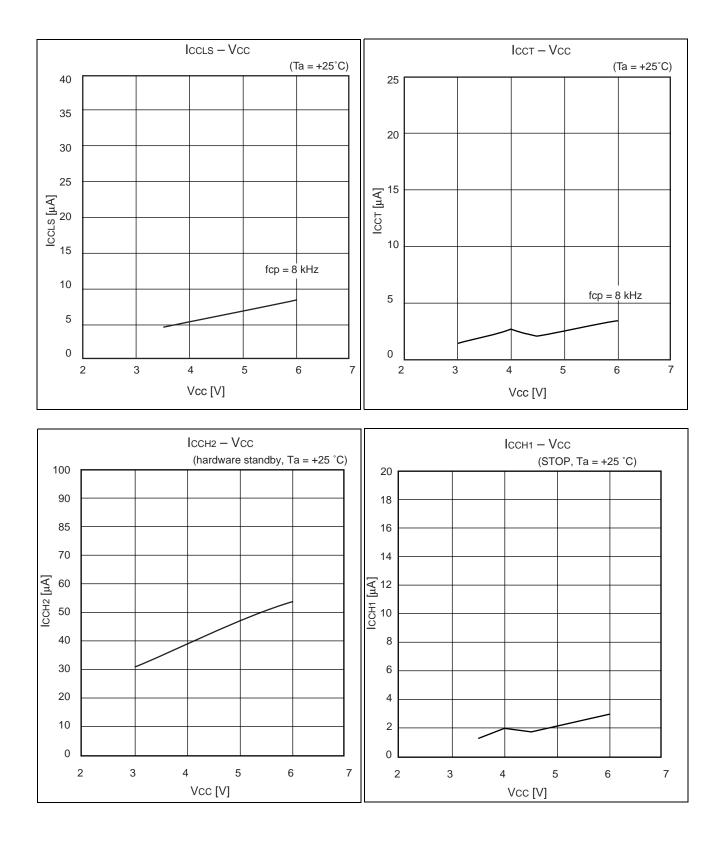
\*: Vcc must be kept lower than 0.2 V before power-on.


Notes : ■ The above values are used for creating a power-on reset.

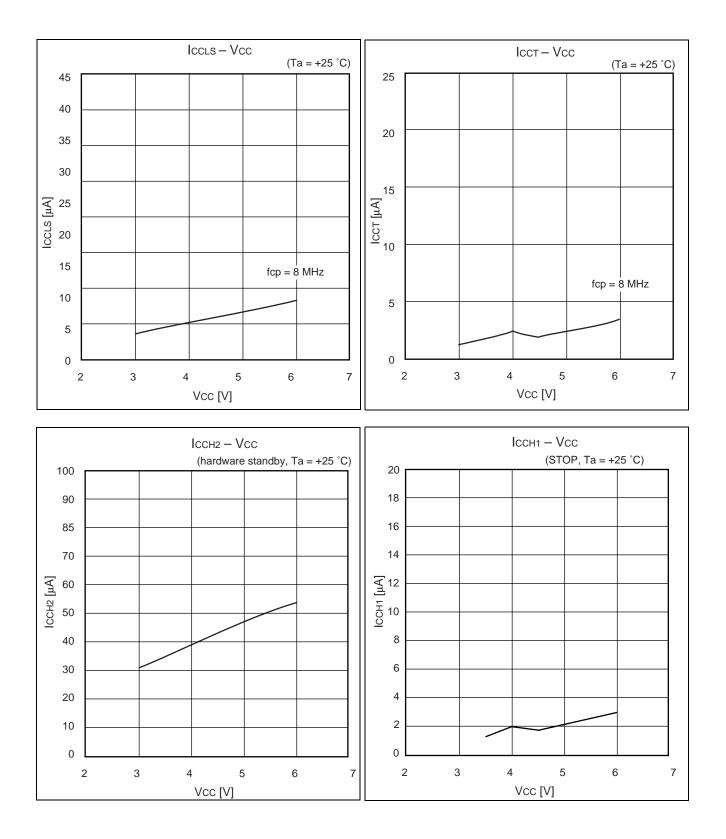

Some registers in the device are initialized only upon a power-on reset. To initialize these register, turn on the power supply using the above values.





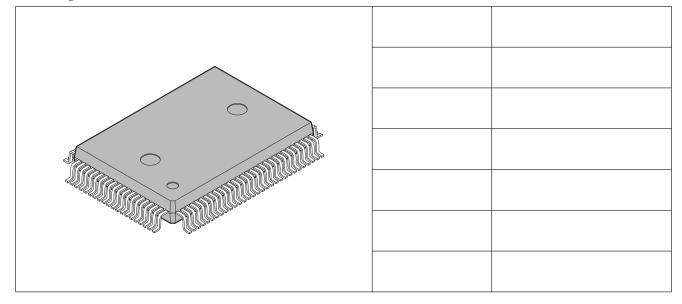

■ Power supply current (MB90549G)

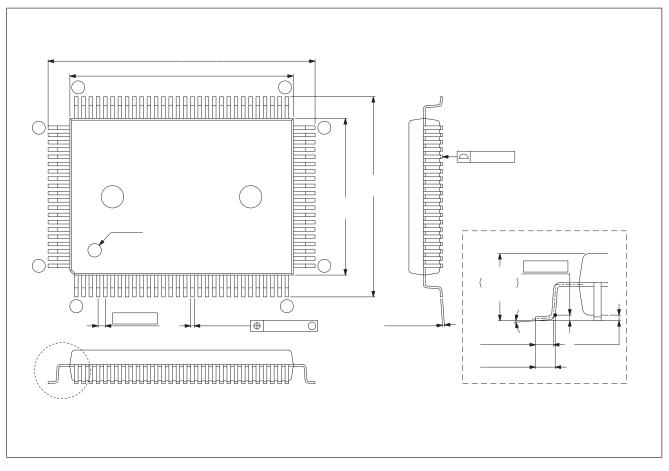






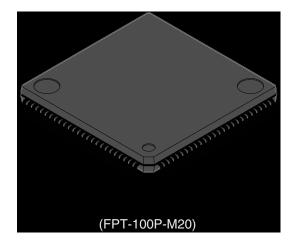








# 14. Package Dimensions

