

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Activo
	ALUVE
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, EBI/EMI, SCI, Serial I/O, UART/USART
Peripherals	POR, WDT
Number of I/O	81
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90f549gpf-g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Starting by an external trigger input. Conversion time : 26.3 μ s

FULL-CAN interfaces
 MB90540G series : 2 channels
 MB90545G series : 1 channel
 Conforming to Version 2.0 Part A and Part B

Flexible message buffering (mailbox and FIFO buffering can be mixed)

- External bus interface : Maximum address space 16 Mbytes
- Package: QFP-100, LQFP-100

- *2 : It is setting of DIP switch S2 when Emulation pod (MB2145-507) is used.Please refer to the MB2145-507 hardware manual (2.7 Emulator-specific Power Pin) about details.
- *3 : Operating Voltage Range

Products	Operation guarantee range
MB90F543G(S)/F546G(S)/F548G(S)/ MB90549G(S)/F549G(S)/V540/V540G	4.5 V to 5.5 V
MB90F548GL(S)/543G(S)/547G(S)/548G(S)	3.5 V to 5.5 V

3. Pin Description

Pin No.		Din nome		Eunction		
LQFP*2	QFP*1	Pin name	Circuit type	Function		
80 81	82 83	X0 X1	A (Oscillation)	High speed crystal oscillator input pins		
78	80	X0A	A	Low speed crystal oscillator input pins. For the one clock system parts, perfom external pull-down processing.		
77	79	X1A	(Oscillation)	Low speed crystal oscillator input pins. For the one clock system parts, leave it open.		
75	77	RST	В	External reset request input pin		
50	52	HST	С	Hardware standby input pin		
82 to 00	95 to 02	P00 to P07		General I/O port with programmable pullup. This function is enabled in the single-chip mode.		
83 10 90	00 10 92	AD00 to AD07		I/O pins for 8 lower bits of the external address/data bus. This function is enabled when the external bus is enabled.		
01 to 09	02 to 100	P10 to P17		General I/O port with programmable pullup. This function is enabled in the single-chip mode.		
91 to 98 93 to 100	93 10 100	AD08 to AD15]	I/O pins for 8 higher bits of the external address/data bus. This function is enabled when the external bus is enabled.		
00 to 6	1 to 0	P20 to P27		General I/O port with programmable pullup. In external bus mode, this function is valid when the corresponding bits in the external address output control resister (HACR) are set to "1".		
99 to 6 1 to 8		A16 to A23		8-bit I/O pins for A16 to A23 at the external address/data bus. In external bus mode, this function is valid when the corresponding bits in the external address output control resister (HACR) are set to "0".		
7	0	P30		General I/O port with programmable pullup. This function is enabled in the single-chip mode.		
7	9	ALE		Address latch enable output pin. This function is enabled when the external bus is enabled.		
	10	P31		General I/O port with programmable pullup. This function is enabled in the single-chip mode.		
8 10		RD		Read strobe output pin for the data bus. This function is enabled when the external bus is enabled.		
		P32		General I/O port with programmable pullup. This function is enabled in the single-chip mode or when the WR/WRL pin output is disabled.		
10	12	WRL WR		Write strobe output pin for the data bus. This function is enabled when both the external bus and the $\overline{WR}/\overline{WRL}$ pin output are enabled. \overline{WRL} is write-strobe output pin for the lower 8 bits of the data bus in 16-bit access. \overline{WR} is write-strobe output pin for the 8 bits of the data bus in 8-bit access.		

Pin	No.	Din namo	Circuit type	Function				
LQFP*2	QFP ^{*1}	Fill hame	Circuit type	r uncuon				
20	22	P44	C	General I/O port. This function is enabled when UART1 disables the clock output.				
20	22	SCK1	G	Serial clock pulse I/O pin for UART1. This function is enabled when UART1 enables the serial clock output.				
22	24	P45	G	General I/O port. This function is enabled when UART1 disables the serial data output.				
22	24	SOT1	0	Serial data output pin for UART1. This function is enabled when UART1 enables the serial data output.				
22	25	P46	G	General I/O port. This function is enabled when the Extended I/O serial interface disables the serial data output.				
23	20	SOT2	6	Serial data output pin for the Extended I/O serial interface. This function is enabled when the Extended I/O serial interface enables the serial data output.				
		P47		General I/O port. This function is enabled when the Extended I/O serial interface disables the clock output.				
24 26		SCK2	G	Serial clock pulse I/O pin for the Extended I/O serial interface . This function is enabled when the Extended I/O serial interface enables the Serial clock output.				
		P50		General I/O port. This function is always enabled.				
26	28	SIN2	D	Serial data input pin for the Extended I/O serial interface . Set the corresponding Port Direction Register to input if this function is used.				
		P51 to P54		General I/O port. This function is always enabled.				
27 to 30	29 to 32	INT4 to INT7	D	External interrupt request input pins for INT4 to INT7. Set the corresponding Port Direction Register to input if this function is used.				
		P55		General I/O port. This function is always enabled.				
31	33	ADTG	D	Trigger input pin for the A/D converter. Set the corresponding Port Direction Register to input if this function is used.				
26 to 20	29 to 11	P60 to P63	E	General I/O port. This function is enabled when the analog input enable register specifies a port.				
30 10 39	30 10 4 1	AN0 to AN3		Analog input pins for the 8/10-bit A/D converter. This function is enabled when the analog input enable register specifies A/D.				
11 to 11	12 to 16	P64 to P67	F	General I/O port. The function is enabled when the analog input enable register specifies a port.				
41 10 44	43 10 40	AN4 to AN7		Analog input pins for the 8/10-bit A/D converter. This function is enabled when the analog input enable register specifies A/D.				
		P56		General I/O port. This function is always enabled.				
45	47	TINO	D	Event input pin for the 16-bit reload timers 0. Set the corresponding Port Direction Register to input if this function is used.				

4. I/O Circuit Type

5. Handling Devices

(1) Preventing latch-up

CMOS IC chips may suffer latch-up under the following conditions :

- A voltage higher than Vcc or lower than Vss is applied to an input or output pin.
- A voltage higher than the rated voltage is applied between Vcc and Vss.

■ The AVcc power supply is applied before the Vcc voltage.

Latch-up may increase the power supply current drastically, causing thermal damage to the device.

For the same reason, care must also be taken in not allowing the analog power-supply voltage (AVcc, AVRH) to exceed the digital power-supply voltage.

(2) Handling unused pins

Leaving unused input pins open may result in misbehavior or latch up and possible permanent damage of the device. Therefor they must be pulled up or pulled down through resistors. In this case those resistors should be more than 2 k Ω .

Unused bi-directional pins should be set to the output state and can be left open, or the input state with the above described connection.

(3) Using external clock

To use external clock, drive X0 pin only and leave X1 pin unconnected. Below is a diagram of how to use external clock.

(4) Use of the sub-clock

Use one clock system parts when the sub-clock is not used. In that case, pull-down the pin X0A and leave the pin X1A open. When using two clock system parts, a 32 kHz oscillator has to be connected to the X0A and X1A pins.

(5) Power supply pins (Vcc/Vss)

In products with multiple V_{cc} or V_{ss} pins, the pins of a same potential are internally connected in the device to avoid abnormal operations including latch-up. However you must connect the pins to an external power and a ground line to lower the electromagnetic emission level to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating.

Make sure to connect Vcc and Vss pins via the lowest impedance to power lines.

It is recommended to provide a bypass capacitor of around 0.1 µF between Vcc and Vss pins near the device.

(6) Pull-up/down resistors

The MB90540G/545G Series does not support internal pull-up/down resistors (except Port0 – Port3 : pull-up resistors) . Use external components where needed.

(7) Crystal Oscillator Circuit

Noises around X0 or X1 pins may be possible causes of abnormal operations. Make sure to provide bypass capacitors via the shortest distances from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure, to the utmost effort, that lines of oscillation circuits do not cross the lines of other circuits.

It is highly recommended to provide a printed circuit board artwork surrounding X0 and X1 pins with a ground area for stabilizing the operation.

(8) Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply (AVcc, AVRH, AVRL) and analog inputs (AN0 to AN7) after turning-on the digital power supply (Vcc).

Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage does not exceed AVRH or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

(9) Connection of Unused Pins of A/D Converter

Connect unused pins of A/D converter to $AV_{CC} = V_{CC}$, $AV_{SS} = AVRH = V_{SS}$.

(10) N.C. Pin

The N.C. (internally connected) pin must be opened for use.

(11) Notes on Energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at 50 μ s or more (0.2 V to 2.7 V).

(12) Indeterminate outputs from ports 0 and 1 (MB90V540G only)

During oscillation setting time of step-down circuit (during a power-on reset) after the power is turned on, the outputs from ports 0 and 1 become following state.

■ If RST pin is "H", the outputs become indeterminate.

■ If RST pin is "L", the outputs become high-impedance. Pay attention to the port output timing shown as follow.

(13) Initialization

In the device, there are internal registers which are initialized only by a power-on reset. To initialize these registers, please turn on the power again.

(14) Directions of "DIV A, Ri" and "DIVW A, RWi" instructions

In the Signed multiplication and division instructions ("DIV A, Ri" and "DIVW A, RWi"), the value of the corresponding bank register (DTB, ADB, USB, SSB) is set in "00H".

If the values of the corresponding bank registers (DTB, ADB, USB, SSB) are set to other than "00H", the remainder by the execution result of the instruction is not stored in the register of the instruction operand.

(15) Using REALOS

The use of El²OS is not possible with the REALOS real time operating system.

(16) Caution on Operations during PLL Clock Mode

If the PLL clock mode is selected, the microcontroller attempt to be working with the self-oscillating circuit even when there is no external oscillator or external clock input is stopped. Performance of this operation, however, cannot be guaranteed.

Address		Pogiator	Abbroviation	A	Initial Value
CAN0	CAN1	- Register	Appreviation	Access	
003A24 _H	003C24н				· · · · · · · · · · · · · · · · · · ·
003А25н	003C25н	ID register 1			
003А26н	003С26н		IDRI	r/w	
003A27н	003C27н				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
003A28н	003C28 _H				*****
003А29н	003C29н	ID register 2		DAM	
003А2Ан	003C2Aн		IDINZ	r./ VV	××××× ×××××××××
003A2BH	003C2BH				^^^^^ ~~
003А2Сн	003C2Cн		IDR3	R/W	
003A2Dн	003C2Dн	ID register 3			
003A2Eн	003C2Eн	Tegister 5			XXXXX XXXXXXXX
003A2FH	003C2Fн				
003A30H	003C30н			R/W	
003А31 н	003C31н	ID register 4	IDR4		
003А32н	003C32H				XXXXX XXXXXXXX
003А33н	003C33н				
003A34H	003C34н				
003А35н	003C35н	ID register 5		R/W	
003А36н	003С36н		IDKS		····
003А37 н	003C37н				~~~~~
003А38н	003C38н		IDR6		××××××××××××××××××××××××××××××××××××××
003А39н	003С39н	ID register 6		DAM	
003АЗАн	003С3Ан	ט ופטוטור ט		FX/ VV	
003А3Вн	003С3Вн	7			~~~~~ ~~~~~

(Continued)

Add	Iress	Pogistor	Abbroviation	Access	Initial Value
CAN0	CAN1	Register	Abbreviation	Access	
003A88н	003C88н				XXXXXXXXB
to	to	Data register 1 (8 bytes)	DTR1	R/W	to
003A8Fн	003C8Fн				XXXXXXXXB
003А90н	003С90н				XXXXXXXXB
to	to	Data register 2 (8 bytes)	DTR2	R/W	to
003А97н	003С97н				XXXXXXXB
003A98н	003C98н		DTDO		XXXXXXXB
10 00349Eu		Data register 3 (8 bytes)	DIR3	R/W	
to	to	Data register 4 (8 bytes)	DTR4	R/W	to
003AA7н	003CA7н		Dinte	10,11	XXXXXXXXB
003АА8н	003CA8н				XXXXXXXXB
to	to	Data register 5 (8 bytes)	DTR5	R/W	to
003AAFн	003CAFн				XXXXXXXXB
003АВ0н	003СВ0н				XXXXXXXXB
to	to	Data register 6 (8 bytes)	DTR6	R/W	to
003AB7H	003CB7H				XXXXXXXXB
003AB8н	003CB8H	Data register 7 (9 b) tea)	DTD7	DAA	
10 003ABE	10 003CBE	Data register 7 (8 bytes)	DIRI	r./ v v	
003400	003000				
to	to	Data register 8 (8 bytes)	DTR8	R/W	to
003AC7н	003CC7H		2		XXXXXXXB
003AC8н	003CC8H				XXXXXXXB
to	to	Data register 9 (8 bytes)	DTR9	R/W	to
003ACFн	003CCFн				XXXXXXXXB
003AD0н	003CD0н		DTR10		XXXXXXXXB
to	to	Data register 10 (8 bytes)		R/W	to
003AD7н	003CD7н				XXXXXXXB
003AD8H	003CD8H	Data wasiatan 11 (0 kutaa)	DTD44		XXXXXXXB
		Data register 11 (8 bytes)	DIRII	R/VV	
003450					
to	to	Data register 12 (8 bytes)	DTR12	R/W	to
003AE7H	003CE7H				XXXXXXXB
003AE8H	003CE8H				XXXXXXXB
to	to	Data register 13 (8 bytes)	DTR13	R/W	to
003AEFн	003CEFH				XXXXXXXB
003AF0н	003CF0н				XXXXXXXB
to	to	Data register 14 (8 bytes)	DTR14	R/W	to
003AF7н	003CF7н				XXXXXXXXB
003AF8H	003CF8H		DTD45	DAA	XXXXXXXB
to	to	Data register 15 (8 bytes)	DTR15	R/W	
UUSAFFH	UUSUFFH				ΛΛΛΛΛΛΛΒ

10. Interrupt Map

	El ² OS	Interrupt vector		Interrupt control register	
interrupt cause	clear	Number	Number Address		Address
Reset	N/A	#08	FFFFDCH	-	-
INT9 instruction	N/A	#09	FFFFD8H	—	—
Exception	N/A	#10	FFFFD4H	—	—
CAN 0 RX	N/A	#11	FFFFD0H	ICD00	000000
CAN 0 TX/NS	N/A	#12	FFFFCC ^H	ICRUU	UUUUBUH
CAN 1 RX	N/A	#13	FFFFC8H	10001	0000P1
CAN 1 TX/NS	N/A	#14	FFFFC4H		UUUUB IH
External Interrupt INT0/INT1	*1	#15	FFFFC0H	ICD02	0000000
Time Base Timer	N/A	#16	FFFFBC H		0000628
16-bit Reload Timer 0	*1	#17	FFFFB8H	10002	000002
8/10-bit A/D Converter	*1	#18	FFFFB4H		0000638
16-bit Free-run Timer	N/A	#19	FFFFB0H		0000P4
External Interrupt INT2/INT3	*1	#20	FFFFACH		0000848
Serial I/O	*1	#21	FFFFA8H	ICDOF	0000B5н
8/16-bit PPG 0/1	N/A	#22	FFFFA4 _H		
Input Capture 0	*1	#23	FFFFA0H	IC POG	0000B6⊦
External Interrupt INT4/INT5	*1	#24	FFFF9CH		
Input Capture 1	*1	#25	FFFF98⊦		0000 B7 н
8/16-bit PPG 2/3	N/A	#26	FFFF94 _H		
External Interrupt INT6/INT7	*1	#27	FFFF90 _H		000088
Watch Timer	N/A	#28	FFFF8CH		0000000
8/16-bit PPG 4/5	N/A	#29	FFFF88 _H		0000800
Input Capture 2/3	*1	#30	FFFF84 _H	10109	00000094
8/16-bit PPG 6/7	N/A	#31	FFFF80 _H		0000BA
Output Compare 0	*1	#32	FFFF7CH		0000BAH
Output Compare 1	*1	#33	FFFF78⊦	ICR11	0000BB
Input Capture 4/5	*1	#34	FFFF74 _H	loitti	0000BBH
Output Compare 2/3 - Input Capture 6/7	*1	#35	FFFF70 _H	ICR12	
16-bit Reload Timer 1	*1	#36	FFFF6CH	101(12	
UART 0 RX	*2	#37	FFFF68 _H		
UART 0 TX	*1	#38	FFFF64 _H	101(13	
UART 1 RX	*2	#39	FFFF60 _H		0000BE
UART 1 TX	*1	#40	FFFF5CH		
Flash Memory	N/A	#41	FFFF58 _H		
Delayed interrupt	N/A	#42	FFFF54H		UUUUDFH

11.2 Recommended Conditions

 $(V_{SS} = AV_{SS} = 0.0 V)$

Paramotor	Symbol	Value		Unite	Remarks		
Farameter	Symbol	Min	Тур	Max	Units	itenial KS	
	Vcc, AVcc	4.5	5.0	5.5		Under normal operation : Other than MB90F548GL(S)/543G(S)/547G(S)/548G(S)	
Power supply voltage					V	Under normal operation when A/D conveter is used : MB90F548GL(S)/543G(S)/547G(S)/548G(S)	
		3.5	5.0	5.5	v	Under normal operation when A/D conveter is not used : MB90F548GL(S)/543G(S)/547G(S)/548G(S)	
		3.0	—	5.5	V	Maintain RAM data in stop mode	
Smooth capacitor	Cs	0.022	0.1	1.0	μF	*	
Operating temperature	TA	-40	-	+105	°C		

*: Use a ceramic capacitor or a capacitor of better 4. AC characteristics. The bypass capacitor should be greater than this capacitor.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

11.4.12 Trigger Input Timing

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 V \text{ to } 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ °C to } + 105 \text{ °C})$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 5.0 V ± 10%, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ °C to } + 105 \text{ °C})

Parameter	Symbol	Pin name	Condition -	Val	lue	Units	Remarks
Farameter	Symbol			Min	Max		
Input pulse width	tтrgн	INT0 to INT7,	_	5 tcp	_	ns	Under nomal operation
	t trgl	ADTG		1	_	μs	In stop mode

11.5.2 A/D Converter Glossary

Resolution : Analog changes that are identifiable with the A/D converter

Linearity error : The deviation of the straight line connecting the zero transition point ("00 0000 0000" $\leftrightarrow \rightarrow$ "00 0000 0001") with the full-scale transition point ("11 1111 1110" $\leftrightarrow \rightarrow$ "11 1111 1111") from actual conversion characteristics

Differential linearity error : The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

Total error : The total error is defined as a difference between the actual value and the theoretical value, which includes zero-transition error/full-scale transition error and linearity error.

(Continued)

11.5.3 Notes on Using A/D Converter

Select the output impedance value for the external circuit of analog input according to the following conditions, :

Output impedance values of the external circuit of 15 kΩ or lower are recommended.

When capacitors are connected to external pins, the capacitance of several thousand times the internal capacitor value is recommended to minimized the effect of voltage distribution between the external capacitor and internal capacitor.
Note: When the output impedance of the external circuit is too high the sampling period for analog voltages may not be sufficient.

Note : When the output impedance of the external circuit is too high, the sampling period for analog voltages may not be sufficient (sampling period = $4.00 \ \mu s$ @machine clock of 16 MHz).

11.5.4 Error

The smaller the |AVRH - AVRL|, the greater the error would become relatively.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Lighting & Power Control	cypress.com/powerpsoc
Memory	cypress.com/memory
PSoC	cypress.com/psoc
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless/RF	cypress.com/wireless

PSoC[®]Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Forums | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuctitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

[©] Cypress Semiconductor Corporation, 2002-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.