



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                  |
|----------------------------|-------------------------------------------------------------------------|
| Core Processor             | F <sup>2</sup> MC-16LX                                                  |
| Core Size                  | 16-Bit                                                                  |
| Speed                      | 16MHz                                                                   |
| Connectivity               | CANbus, EBI/EMI, SCI, Serial I/O, UART/USART                            |
| Peripherals                | POR, WDT                                                                |
| Number of I/O              | 81                                                                      |
| Program Memory Size        | 256КВ (256К х 8)                                                        |
| Program Memory Type        | FLASH                                                                   |
| EEPROM Size                | -                                                                       |
| RAM Size                   | 6K x 8                                                                  |
| Voltage - Supply (Vcc/Vdd) | 4.5V ~ 5.5V                                                             |
| Data Converters            | A/D 8x8/10b                                                             |
| Oscillator Type            | External                                                                |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                       |
| Mounting Type              | Surface Mount                                                           |
| Package / Case             | 100-BQFP                                                                |
| Supplier Device Package    | 100-QFP (14x20)                                                         |
| Purchase URL               | https://www.e-xfl.com/product-detail/infineon-technologies/mb90f549pf-g |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



- \*2 : It is setting of DIP switch S2 when Emulation pod (MB2145-507) is used.Please refer to the MB2145-507 hardware manual (2.7 Emulator-specific Power Pin) about details.
- \*3 : Operating Voltage Range

| Products                                                           | Operation guarantee range |
|--------------------------------------------------------------------|---------------------------|
| MB90F543G(S)/F546G(S)/F548G(S)/<br>MB90549G(S)/F549G(S)/V540/V540G | 4.5 V to 5.5 V            |
| MB90F548GL(S)/543G(S)/547G(S)/548G(S)                              | 3.5 V to 5.5 V            |



| Pin      | No.               | Din namo     |              | Function                                                                                                                                                                  |
|----------|-------------------|--------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LQFP*2   | QFP <sup>*1</sup> | Fill hame    | Circuit type | Function                                                                                                                                                                  |
| 20       | 22                | P44          | 6            | General I/O port. This function is enabled when UART1 disables the clock output.                                                                                          |
| 20       | 22                | SCK1         | G            | Serial clock pulse I/O pin for UART1. This function is enabled when UART1 enables the serial clock output.                                                                |
| 22       | 24                | P45          | G            | General I/O port. This function is enabled when UART1 disables the serial data output.                                                                                    |
| 22       | 24                | SOT1         | 0            | Serial data output pin for UART1. This function is enabled when UART1 enables the serial data output.                                                                     |
| 22       | 25                | P46          | G            | General I/O port. This function is enabled when the Extended I/O serial interface disables the serial data output.                                                        |
| 23       | 20                | SOT2         | 6            | Serial data output pin for the Extended I/O serial interface. This function is enabled when the Extended I/O serial interface enables the serial data output.             |
|          |                   | P47          |              | General I/O port. This function is enabled when the Extended I/O serial interface disables the clock output.                                                              |
| 24       | 26                | SCK2         | G            | Serial clock pulse I/O pin for the Extended I/O serial interface . This function is<br>enabled when the Extended I/O serial interface enables the Serial clock<br>output. |
|          |                   | P50          |              | General I/O port. This function is always enabled.                                                                                                                        |
| 26       | 28                | SIN2         | D            | Serial data input pin for the Extended I/O serial interface . Set the corresponding Port Direction Register to input if this function is used.                            |
|          |                   | P51 to P54   |              | General I/O port. This function is always enabled.                                                                                                                        |
| 27 to 30 | 29 to 32          | INT4 to INT7 | D            | External interrupt request input pins for INT4 to INT7. Set the corresponding Port Direction Register to input if this function is used.                                  |
|          |                   | P55          |              | General I/O port. This function is always enabled.                                                                                                                        |
| 31       | 33                | ADTG         | D            | Trigger input pin for the A/D converter. Set the corresponding Port Direction Register to input if this function is used.                                                 |
| 26 to 20 | 29 to 11          | P60 to P63   | E            | General I/O port. This function is enabled when the analog input enable register specifies a port.                                                                        |
| 30 10 39 | 30 10 4 1         | AN0 to AN3   |              | Analog input pins for the 8/10-bit A/D converter. This function is enabled when the analog input enable register specifies A/D.                                           |
| 11 to 11 | 12 to 16          | P64 to P67   | F            | General I/O port. The function is enabled when the analog input enable register specifies a port.                                                                         |
| 41 10 44 | 43 10 40          | AN4 to AN7   |              | Analog input pins for the 8/10-bit A/D converter. This function is enabled when the analog input enable register specifies A/D.                                           |
|          |                   | P56          |              | General I/O port. This function is always enabled.                                                                                                                        |
| 45       | 47                | TINO         | D            | Event input pin for the 16-bit reload timers 0. Set the corresponding Port Direction Register to input if this function is used.                                          |







### (6) Pull-up/down resistors

The MB90540G/545G Series does not support internal pull-up/down resistors (except Port0 – Port3 : pull-up resistors) . Use external components where needed.

### (7) Crystal Oscillator Circuit

Noises around X0 or X1 pins may be possible causes of abnormal operations. Make sure to provide bypass capacitors via the shortest distances from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure, to the utmost effort, that lines of oscillation circuits do not cross the lines of other circuits.

It is highly recommended to provide a printed circuit board artwork surrounding X0 and X1 pins with a ground area for stabilizing the operation.

### (8) Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply (AVcc, AVRH, AVRL) and analog inputs (AN0 to AN7) after turning-on the digital power supply (Vcc).

Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage does not exceed AVRH or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

### (9) Connection of Unused Pins of A/D Converter

Connect unused pins of A/D converter to  $AV_{CC} = V_{CC}$ ,  $AV_{SS} = AVRH = V_{SS}$ .

### (10) N.C. Pin

The N.C. (internally connected) pin must be opened for use.

### (11) Notes on Energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at 50  $\mu$ s or more (0.2 V to 2.7 V).





### (13) Initialization

In the device, there are internal registers which are initialized only by a power-on reset. To initialize these registers, please turn on the power again.

### (14) Directions of "DIV A, Ri" and "DIVW A, RWi" instructions

In the Signed multiplication and division instructions ("DIV A, Ri" and "DIVW A, RWi"), the value of the corresponding bank register (DTB, ADB, USB, SSB) is set in "00H".

If the values of the corresponding bank registers (DTB, ADB, USB, SSB) are set to other than "00H", the remainder by the execution result of the instruction is not stored in the register of the instruction operand.

### (15) Using REALOS

The use of El<sup>2</sup>OS is not possible with the REALOS real time operating system.

#### (16) Caution on Operations during PLL Clock Mode

If the PLL clock mode is selected, the microcontroller attempt to be working with the self-oscillating circuit even when there is no external oscillator or external clock input is stopped. Performance of this operation, however, cannot be guaranteed.



# 6. Block Diagram



\_\_\_\_\_



# 7. Memory Map

The memory space of the MB90540G/545G Series is shown below.



Note : The high-order portion of bank 00 gives the image of the FF bank ROM to make the small model of the C compiler effective. Since the low-order 16 bits address are the same, the table in ROM can be referenced without using the "far" specification in the pointer declaration.

For example, an attempt to access  $00C000_{H}$  accesses the value at FFC000\_{H} in ROM. The ROM area in bank FF exceeds 48 Kbytes, and its entire image cannot be shown in bank 00. The image between FF4000\_{H} and FFFFFF\_{H} is visible in bank 00, while the image between FF0000\_{H} and FF3FFF\_{H} is visible only in bank FF.



| Address                            | Register                                             | Abbreviation | Access | Resource name                          | Initial value    |
|------------------------------------|------------------------------------------------------|--------------|--------|----------------------------------------|------------------|
| $47_{\text{H}}$ to $4B_{\text{H}}$ | Prohibited                                           |              |        |                                        |                  |
| 4Cн                                | Input capture control status register 0/1            | ICS01        | R/W    | Input Capture 0/1                      | 00000000         |
| 4Dн                                | Input capture control status register 2/3            | ICS23        | R/W    | Input Capture 2/3                      | 00000000         |
| 4Eн                                | Input capture control status register 4/5            | ICS45        | R/W    | Input Capture 4/5                      | 00000000         |
| 4F <sub>H</sub>                    | Input capture control status register 6/7            | ICS67        | R/W    | Input Capture 6/7                      | 00000000         |
| 50н                                | Timer control status register 0                      | TMCSR0       | R/W    |                                        | 00000000         |
| 51н                                | Timer control status register 0                      | TMCSR0       | R/W    |                                        | 0000в            |
| 52н                                | Timer register 0/reload register 0                   | TMR0/TMRLR0  | R/W    | To-bit Reload Timer U                  | XXXXXXXXB        |
| 53н                                | Timer register 0/reload register 0                   | TMR0/TMRLR0  | R/W    |                                        | XXXXXXXAB        |
| 54н                                | Timer control status register 1                      | TMCSR1       | R/W    |                                        | 00000000         |
| 55н                                | Timer control status register 1                      | TMCSR1       | R/W    | 16 bit Polood Timor 1                  | 0 0 0 0в         |
| 56н                                | Timer register 1/reload register 1                   | TMR1/TMRLR1  | R/W    |                                        | XXXXXXXXB        |
| 57н                                | Timer register 1/reload register 1                   | TMR1/TMRLR1  | R/W    |                                        | XXXXXXXXB        |
| <b>58</b> н                        | Output compare control status register 0             | OCS0         | R/W    | Output Compore 0/1                     | 000000в          |
| 59н                                | Output compare control status register 1             | OCS1         | R/W    | Output Compare 0/1                     | 0 0 0 0 0в       |
| 5Ан                                | Output compare control status register 2             | OCS2         | R/W    | Output Compare 2/2                     | 000000в          |
| 5Вн                                | Output compare control status register 3             | OCS3         | R/W    | Output Compare 2/3                     | 00000в           |
| 5Cн to 6Bн                         | Prohibited                                           | •            |        |                                        |                  |
| 6Сн                                | Timer Data register                                  | TCDT         | R/W    |                                        | 00000000         |
| 6Dн                                | Timer Data register                                  | TCDT         | R/W    | I/O Timer                              | 00000000         |
| 6Eн                                | Timer Control register                               | TCCS         | R/W    |                                        | 00000000         |
| 6Fн                                | ROM mirror function selection register               | ROMM         | R/W    | ROM Mirror                             | 1в               |
| 70н to 7Fн                         | Reserved for CAN 0 Interface.                        | •            |        | ·                                      |                  |
| 80н to 8Fн                         | Reserved for CAN 1 Interface.                        |              |        |                                        |                  |
| 90н to 9Dн                         | Prohibited                                           |              |        |                                        |                  |
| 9Ен                                | Program address detection<br>control status register | PACSR        | R/W    | Address Match<br>Detection<br>Function | 000000000        |
| 9 <b>F</b> н                       | Delayed interrupt/release register                   | DIRR         | R/W    | Delayed Interrupt                      | 0в               |
| АОн                                | Low-power mode control register                      | LPMCR        | R/W    | Low Power<br>Controller                | 00011000в        |
| А1н                                | Clock selection register                             | CKSCR        | R/W    | Low Power<br>Controller                | 1 1 1 1 1 1 0 OB |

# MB90540G/545G Series



(Continued)

| Address        | Register                      | Abbreviation | Access | Resource name      | Initial value |
|----------------|-------------------------------|--------------|--------|--------------------|---------------|
| 3928н          | Output Compare Register 0     | OCCP0        | R/W    |                    | XXXXXXXAB     |
| 3929н          | Output Compare Register 0     | OCCP0        | R/W    | Output Compare 0/1 | XXXXXXXXB     |
| 392Ан          | Output Compare Register 1     | OCCP1        | R/W    |                    | XXXXXXXXB     |
| 392Вн          | Output Compare Register 1     | OCCP1        | R/W    |                    | XXXXXXXXB     |
| 392Сн          | Output Compare Register 2     | OCCP2        | R/W    |                    | XXXXXXXXB     |
| 392Dн          | Output Compare Register 2     | OCCP2        | R/W    | Output Compare 2/2 | XXXXXXXAB     |
| 392Ен          | Output Compare Register 3     | OCCP3        | R/W    |                    | XXXXXXXAB     |
| 392Fн          | Output Compare Register 3     | OCCP3        | R/W    |                    | XXXXXXXXB     |
| 3930н to 39FFн | Reserved                      |              |        |                    |               |
| ЗА00н to ЗАFFн | Reserved for CAN 0 Interface. |              |        |                    |               |
| 3B00н to 3BFFн | Reserved for CAN 0 Interface. |              |        |                    |               |
| 3C00н to 3CFFн | Reserved for CAN 1 Interface. |              |        |                    |               |
| 3D00н to 3DFFн | Reserved for CAN 1 Interface. |              |        |                    |               |
| 3E00н to 3FFFн | Reserved                      |              |        |                    |               |

- Read/write notation
  - R/W : Reading and writing permitted
  - R : Read-only
  - W : Write-only

### Initial value notation

- 0 : Initial value is "0".
- 1 : Initial value is "1".
- X : Initial value is undefined.
- \_ : Initial value is unused.

Note: Any write access to reserved addresses in I/O map should not be performed. A read access to reserved addresses results in reading "X".



# **11.3 DC Characteristics**

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 V \text{ to } 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ }^{\circ}\text{C} \text{ to } +105 \text{ }^{\circ}\text{C})$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V\_{CC} = 5.0 V ± 10%, V\_{SS} = AV\_{SS} = 0.0 V, T\_A = -40 \text{ }^{\circ}\text{C} \text{ to } +105 \text{ }^{\circ}\text{C})

| Baramatar               | Symbol | Din nomo                                                        | Condition                                      | Value     |     |                | Unite |                            |  |
|-------------------------|--------|-----------------------------------------------------------------|------------------------------------------------|-----------|-----|----------------|-------|----------------------------|--|
| Farameter               | Symbol | Fininame                                                        | Condition                                      | Min       | Тур | Max            | Units | Remarks                    |  |
| Input H                 | Vihs   | CMOS<br>hysteresis<br>input pin                                 | _                                              | 0.8 Vcc   | _   | Vcc + 0.3      | v     |                            |  |
| voltage                 | Vih    | TTL input pin                                                   | —                                              | 2.0       | —   | -              | V     |                            |  |
|                         | Vihm   | MD input pin                                                    | -                                              | Vcc - 0.3 | —   | $V_{CC} + 0.3$ | V     |                            |  |
| Input L                 | Vils   | CMOS<br>hysteresis<br>input pin                                 | _                                              | Vcc - 0.3 | -   | 0.2 Vcc        | V     |                            |  |
| voltage                 | VIL    | TTL input pin                                                   | -                                              | -         | -   | 0.8            | V     |                            |  |
|                         | VILM   | MD input pin                                                    | -                                              | Vss - 0.3 | —   | $V_{SS} + 0.3$ | V     |                            |  |
| Output H<br>voltage     | Vон    | All output pins                                                 | $V_{CC} = 4.5 V,$<br>I <sub>OH</sub> = -4.0 mA | Vcc - 0.5 | _   | _              | V     |                            |  |
| Output L<br>voltage     | Vol    | All output pins                                                 | $V_{CC} = 4.5 V,$<br>$I_{OL} = 4.0 mA$         | _         | _   | 0.4            | V     |                            |  |
| Input leak<br>current   | lı.    | _                                                               | Vcc = 5.5 V,<br>Vss < Vi < Vcc                 | -5        | _   | 5              | μΑ    |                            |  |
| Pull-up<br>resistance   | Rup    | P00 to P07,<br>P10 to P17,<br>P20 to P27,<br>P30 to P37,<br>RST | -                                              | 25        | 50  | 100            | kΩ    |                            |  |
| Pull-down<br>resistance | Rdown  | MD2                                                             | _                                              | 25        | 50  | 100            | kΩ    | Except<br>Flash<br>devices |  |



## **11.4 AC Characteristics**

### 11.4.1 Clock Timing

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 V \text{ to } 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ }^{\circ}\text{C} \text{ to } +105 \text{ }^{\circ}\text{C})$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V\_{CC} = 5.0 V ± 10\%, V\_{SS} = AV\_{SS} = 0.0 V, T\_A = -40 \text{ }^{\circ}\text{C} \text{ to } +105 \text{ }^{\circ}\text{C})

| Deremeter | Symbol | Din nome | Value |        | Unito | Domorko |                                                                                            |
|-----------|--------|----------|-------|--------|-------|---------|--------------------------------------------------------------------------------------------|
| Parameter | Symbol | Pin name | Min   | Тур    | Max   | Units   | Remarks                                                                                    |
| fc        |        |          | 3     | _      | 16    | MHz     | No multiplier<br>When using an oscillator circuit<br>$V_{cc} = 5.0 V \pm 10\%$             |
|           |        |          | 8     | _      | 16    | MHz     | PLL multiplied by 1<br>When using an oscillator circuit<br>$V_{cc} = 5.0 V \pm 10\%$       |
|           |        |          | 4     | _      | 8     | MHz     | PLL multiplied by 2<br>When using an oscillator circuit<br>$V_{cc} = 5.0 V \pm 10\%$       |
|           | fc     | X0, X1   | 3     | _      | 5.33  | MHz     | PLL multiplied by 3<br>When using an oscillator circuit<br>$V_{cc} = 5.0 V \pm 10\%$       |
|           |        |          | 3     | _      | 4     | MHz     | PLL multiplied by 4<br>When using an oscillator circuit<br>$V_{cc} = 5.0 V \pm 10\%$       |
|           |        |          | 3     | _      | 5     | MHz     | When using an oscillator circuit<br>Vcc < 4.5 V(MB90F548GL(S)/543G(S)/<br>547G(S)/548G(S)) |
|           |        |          | 3     | _      | 16    | MHz     | No multiplier<br>When using an external clock                                              |
|           |        |          | 8     | _      | 16    | MHz     | PLL multiplied by 1<br>When using an external clock                                        |
|           |        |          | 4     | _      | 8     | MHz     | PLL multiplied by 2<br>When using an external clock                                        |
|           |        |          | 3     | _      | 5.33  | MHz     | PLL multiplied by 3<br>When using an external clock                                        |
|           |        |          | 3     | _      | 4     | MHz     | PLL multiplied by 4<br>When using an external clock                                        |
|           | fc∟    | X0A, X1A | -     | 32.768 | -     | kHz     |                                                                                            |



### 11.4.2 Clock Output Timing

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 V \text{ to } 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ °C to } +105 \text{ °C})$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V\_{CC} = 5.0 V ± 10\%, V\_{SS} = AV\_{SS} = 0.0 V, T\_A = -40 \text{ °C to } +105 \text{ °C})

| Parameter                               | Symbol        | Din nama  | Condition                       | Value |     | Unite | Pomarks |
|-----------------------------------------|---------------|-----------|---------------------------------|-------|-----|-------|---------|
| Falameter                               | Symbol        | Fill hame | Condition                       | Min   | Max | Units | Remarks |
| Cycle time                              | tcyc          | CLK       | $y_{00} = 5 y_{0}^{2} + 10^{0}$ | 62.5  | -   | ns    |         |
| $CLK\uparrow \rightarrow CLK\downarrow$ | <b>t</b> CHCL | GLK       | Vcc - 5 V ± 1070                | 20    | —   | ns    |         |



### 11.4.3 Reset and Hardware Standby Input Timing

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 V \text{ to } 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ }^{\circ}\text{C} \text{ to } +105 \text{ }^{\circ}\text{C})$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V\_{CC} = 5.0 V ± 10\%, V\_{SS} = AV\_{SS} = 0.0 V, T\_A = -40 \text{ }^{\circ}\text{C} \text{ to } +105 \text{ }^{\circ}\text{C})

| Boromotor                   | Symbol        | Pin  | Value                                  |     | Unito | Bemerke                                                                   |
|-----------------------------|---------------|------|----------------------------------------|-----|-------|---------------------------------------------------------------------------|
| Farameter                   | Symbol        | name | Min                                    | Max | Units | Remarks                                                                   |
|                             |               |      | 4 tcp                                  | -   | ns    | Under normal operation                                                    |
|                             |               |      | Oscillation time of oscillator + 4 tcp | -   | ms    | In stop mode                                                              |
|                             |               |      | 100                                    | _   | μs    | In pseudo timer mode (MB90543G<br>(S) /547G (S) /548G (S) )               |
| Reset input time            | trst∟         | RSI  | 4 tcp                                  | _   | ns    | In pseudo timer mode<br>(Other than MB90543G (S) /547G<br>(S) /548G (S) ) |
|                             |               |      | 2 tlcp                                 | _   | μs    | In sub-clock mode,<br>sub-sleep mode,<br>timer mode                       |
| Hardware standby input time | <b>t</b> HSTL | HST  | 4 tcp                                  | —   | ns    | Under normal operation                                                    |

Note : " $t_{cp}$ " represents one cycle time of the machine clock.

Oscillation time of oscillator is time that amplitude reached the 90%. In the crystal oscillator, the oscillation time is between several ms to tens of ms. In ceramic oscillator, the oscillation time is between handreds of  $\mu$ s to several ms. In the external clock, the oscillation time is 0 ns.

Any reset can not fully initialize the Flash Memory if it is performing the automatic algorithm.





### 11.4.4 Power On Reset

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 \text{ V to } 5.5 \text{ V}, V_{SS} = AV_{SS} = 0.0 \text{ V}, T_A = -40 \text{ }^\circ\text{C} \text{ to } + 105 \text{ }^\circ\text{C})$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V\_{CC} = 5.0 \text{ V} \pm 10\%, V\_{SS} = AV\_{SS} = 0.0 \text{ V}, T\_A = -40 \text{ }^\circ\text{C} \text{ to } + 105 \text{ }^\circ\text{C})

| Paramotor          | Symbol Pin name |           | Condition | Value |     | Unite | Remarks                     |  |
|--------------------|-----------------|-----------|-----------|-------|-----|-------|-----------------------------|--|
| Farameter          | Symbol          | Fininanie | Condition | Min   | Max | Units | Remarks                     |  |
| Power on rise time | tr              | Vcc       | _         | 0.05  | 30  | ms    | *                           |  |
| Power off time     | toff            | Vcc       |           | 50    | —   | ms    | Waiting time until power-on |  |

\*: Vcc must be kept lower than 0.2 V before power-on.

Notes : ■ The above values are used for creating a power-on reset.

Some registers in the device are initialized only upon a power-on reset. To initialize these register, turn on the power supply using the above values.







### 11.4.5 Bus Timing (Read)

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 V \text{ to } 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ °C to } + 105 \text{ °C})$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V\_{CC} = 5.0 V ± 10%, V\_{SS} = AV\_{SS} = 0.0 V, T\_A = -40 \text{ °C to } + 105 \text{ °C})

| Parameter                                                   | Symbol        | Bin name                                  | Condition | Va                      | lue          | Units | Romarks  |
|-------------------------------------------------------------|---------------|-------------------------------------------|-----------|-------------------------|--------------|-------|----------|
| Falameter                                                   | Symbol        | Fininanie                                 | Condition | Min                     | Max          | Units | Rellians |
| ALE pulse width                                             | <b>t</b> lhll | ALE                                       |           | tcp/2 — 20              | -            | ns    |          |
| Valid address $\rightarrow ALE\downarrow$ time              | tavll         | ALE,<br>A16 to A23,<br>AD00 to AD15       |           | tcp/2 — 20              | _            | ns    |          |
| $ALE \downarrow \rightarrow Address valid time$             | tllax         | ALE, AD00 to<br>AD15                      |           | tср/2 — 15              | -            | ns    |          |
| Valid address $\rightarrow \overline{RD} \downarrow$ time   | tavrl         | A16 toA23,<br><u>AD</u> 00 to AD15,<br>RD |           | tcp — 15                | _            | ns    |          |
| Valid address → Valid data<br>input                         | tavdv         | A16 to A23,<br>AD00 to AD15               |           | _                       | 5 tcp/2 — 60 | ns    |          |
| RD pulse width                                              | <b>t</b> rlrh | RD                                        | _         | 3 tcp/2 — 20            | —            | ns    |          |
| $\overline{RD} \downarrow \rightarrow Valid data input$     | trldv         | RD, AD00 to<br>AD15                       |           | _                       | 3 tср/2 — 60 | ns    |          |
| $\overline{RD}^{\uparrow} \rightarrow Data$ hold time       | <b>t</b> RHDX | RD, AD00 to<br>AD15                       |           | 0                       | _            | ns    |          |
| $\overline{RD}^{\uparrow} \rightarrow ALE^{\uparrow}$ time  | trhlh         | RD, ALE                                   |           | tcp/2 — 15              | -            | ns    |          |
| $\overline{RD}$ $\uparrow$ $\rightarrow$ Address valid time | <b>t</b> RHAX | RD, A16 to A23                            |           | tcp/2 — 10              | -            | ns    |          |
| Valid address $\rightarrow \text{ CLK}^{\uparrow}$ time     | tavcн         | A16 to A23,<br>AD00 to AD15,<br>CLK       |           | tcp/2 — 20              | _            | ns    |          |
| $\overline{RD} \downarrow \rightarrow CLK^{\uparrow}$ time  | <b>t</b> RLCH | RD, CLK                                   |           | t <sub>CP</sub> /2 — 20 | -            | ns    |          |
| $ALE \downarrow \rightarrow \overline{RD} \downarrow time$  | tllrl         | ALE, RD                                   |           | t <sub>CP</sub> /2 — 15 | _            | ns    |          |







### 11.4.7 Ready Input Timing

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 \text{ V to } 5.5 \text{ V}, V_{SS} = AV_{SS} = 0.0 \text{ V}, T_A = -40 \text{ }^{\circ}\text{C to } + 105 \text{ }^{\circ}\text{C})$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V\_{CC} = 5.0 \text{ V} \pm 10\%, V\_{SS} = AV\_{SS} = 0.0 \text{ V}, T\_A = -40 \text{ }^{\circ}\text{C to } + 105 \text{ }^{\circ}\text{C})

| Parameter      | Symbol Pin name |            | Condition | Val | ue  | Units | Pomarks  |
|----------------|-----------------|------------|-----------|-----|-----|-------|----------|
| Falameter      | Symbol Pin nam  | Finitianie | Condition | Min | Max | onits | Kennarks |
| RDY setup time | <b>t</b> RYHS   | RDY        |           | 45  | -   | ns    |          |
| RDY hold time  | tryнн           | RDY        |           | 0   | —   | ns    |          |

Note : If the RDY setup time is insufficient, use the auto-ready function.





### 11.5 A/D Converter

### **11.5.1 Electrical Characteristics**

 $(V_{CC} = AV_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = AV_{SS} = 0.0 \text{ V}, 3.0 \text{ V} \le AVRH - AVRL, T_A = -40 \text{ °C to} + 105 \text{ °C})$ 

| Parameter                          | Symbol | Pin name   | Value             |                   |                   |       | Demerler                           |
|------------------------------------|--------|------------|-------------------|-------------------|-------------------|-------|------------------------------------|
|                                    |        |            | Min               | Тур               | Max               | Units | Remarks                            |
| Resolution                         | -      | _          | —                 | -                 | 10                | bit   |                                    |
| Conversion error                   | -      | _          | —                 | -                 | ± 5.0             | LSB   |                                    |
| Nonlinearity error                 | -      | _          | -                 | -                 | ± 2.5             | LSB   |                                    |
| Differential nonlinearity<br>error | _      | -          | -                 | -                 | ± 1.9             | LSB   |                                    |
| Zero transition voltage            | Vот    | AN0 to AN7 | AVRL — 3.5<br>LSB | AVRL + 0.5<br>LSB | AVRL + 4.5<br>LSB | V     |                                    |
| Full scale transition voltage      | Vfst   | AN0 to AN7 | AVRH — 6.5<br>LSB | AVRH — 1.5<br>LSB | AVRH + 1.5<br>LSB | V     |                                    |
| Compare time                       | _      | _          | 352 tc₽           | _                 | _                 | ns    | Internal<br>frequency :<br>16 MHz  |
| Sampling time                      | _      | _          | 64 tcp            | _                 | _                 | ns    | Internal<br>frequency :<br>16 MHz  |
| Analog port input current          | Iain   | AN0 to AN7 | -1                | -                 | 1                 | μΑ    | $V_{cc} = AV_{cc} = 5.0 V \pm 1\%$ |
| Analog input voltage range         | Vain   | AN0 to AN7 | AVRL              | -                 | AVRH              | V     |                                    |
| Reference voltage range            | -      | AVRH       | AVRL + 2.7        | -                 | AVcc              | V     |                                    |
|                                    | —      | AVRL       | 0                 | -                 | AVRH — 2.7        | V     |                                    |
| Power supply current               | la     | AVcc       | -                 | 5                 | -                 | mA    |                                    |
|                                    | Іан    | AVcc       | -                 | -                 | 5                 | μA    | *                                  |
| Reference voltage supply current   | IR     | AVRH       | -                 | 400               | 600               | μΑ    | Flash device                       |
|                                    |        |            | —                 | 140               | 260               | μΑ    | MASK ROM                           |
|                                    | Irh    | AVRH       | -                 | -                 | 5                 | μA    | *                                  |
| Offset between input channels      | _      | AN0 to AN7 | _                 | _                 | 4                 | LSB   |                                    |

\* : When not using an A/D converter, this is the current ( $V_{CC} = AV_{CC} = AVRH = 5.0$  V) when the CPU is stopped.

Note: The functionality of the A/D converter is only guaranteed for VCC =  $5.0 \text{ V} \pm 10 \%$  (also for MB90543G(S)/547G(S)/548G(S)/F548G(S)/F548GL(S)).



### (Continued)



### 11.5.3 Notes on Using A/D Converter

Select the output impedance value for the external circuit of analog input according to the following conditions, :

Output impedance values of the external circuit of 15 kΩ or lower are recommended.

When capacitors are connected to external pins, the capacitance of several thousand times the internal capacitor value is recommended to minimized the effect of voltage distribution between the external capacitor and internal capacitor.
Note: When the output impedance of the external circuit is too high the sampling period for analog voltages may not be sufficient.

Note : When the output impedance of the external circuit is too high, the sampling period for analog voltages may not be sufficient (sampling period =  $4.00 \ \mu s$  @machine clock of 16 MHz).



### 11.5.4 Error

The smaller the |AVRH - AVRL|, the greater the error would become relatively.



Power supply current (MB90F549G)







# 15. Major Changes

Spansion Publication Number: DS07-13703-7E

| Section                                                 | Change Results                                                                                                                                   |  |  |  |  |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| ■ PRODUCT LINEUP                                        | Changed the name in peripheral resource.                                                                                                         |  |  |  |  |
|                                                         | 16-bit I/O Timer $\rightarrow$ 16-bit Free-run Timer                                                                                             |  |  |  |  |
| ■ I/O CIRCUIT TYPE                                      | Changed the name of input typ.                                                                                                                   |  |  |  |  |
|                                                         | Hysteresis $\rightarrow$ CMOS Hysteresis                                                                                                         |  |  |  |  |
|                                                         | $HYS \rightarrow CMOS Hysteresis$                                                                                                                |  |  |  |  |
| ■ BLOCK DIAGRAM                                         | Changed the arrow direction of SOT1 signal at UART1(SCI).<br>" $\leftarrow \rightarrow$ " (input/output) $\rightarrow$ " $\leftarrow$ " (output) |  |  |  |  |
| ■ I/O MAP                                               | Changed the text of "Note".                                                                                                                      |  |  |  |  |
| ■ INTERRUPT MAP                                         | Changed the name of peripheral resource of the pin number: #19.                                                                                  |  |  |  |  |
|                                                         | I/O Timer $\rightarrow$ 16-bit Free-run Timer                                                                                                    |  |  |  |  |
| ELECTRICAL CHARACTERISTICS<br>2. Recommended Conditions | Changed the remarks of "parameter: Power supply voltage".                                                                                        |  |  |  |  |
| 3. DC Characteristics                                   | Changed the maximum value of symbol : VILM of parameter: Input voltage. Vcc + 0.3 $\rightarrow$ Vss + 0.3                                        |  |  |  |  |
|                                                         | Added the following remarks for parameter : Pull-down resistance.<br>Except Flash device                                                         |  |  |  |  |
| 4. AC Characteristics<br>(1) Clock Timing               | Added the value when using an external clock in Oscillation frequency and Clock cycle time on (1) Clock Timing for parameter.                    |  |  |  |  |
|                                                         | Added the item of A/D converter operation range in figure of " Guaranteed PLL operation range"                                                   |  |  |  |  |
| (3) Reset and Hardware Standby Input Timing             | Changed the following item.                                                                                                                      |  |  |  |  |
|                                                         | (3) Reset and Hardware Standby Input Timing Remarks:                                                                                             |  |  |  |  |
|                                                         | $2t_{CP} \rightarrow 2t_{LCP}$                                                                                                                   |  |  |  |  |
| (4) Power On Reset                                      | Changed as follows;                                                                                                                              |  |  |  |  |
|                                                         | Due to repetitive operation $\rightarrow$ Waiting time until power-on                                                                            |  |  |  |  |
| 5. A/D Converter                                        | Changed the unit of Zero transition voltage and Full scale transition voltage. $mV \rightarrow V$                                                |  |  |  |  |
| ORDERING INFORMATION                                    | Added the MB90F548GLPMC in Part Numbers.                                                                                                         |  |  |  |  |

NOTE: Please see "Document History" about later revised information.

## **Document History**

Document Title: MB90F543G(S)/546G(S)/548G(S)/549G(S)/549G(S)/V540G/MB90543G(S)/547G(S)/548G(S)/F548GL(S) CMOS F2MC-16LX MB90540G/545G Series 16-bit Proprietary Microcontroller Document Number: 002-07696 Orig. of Change Submission Revision ECN **Description of Change** Date \*\* Migrated to Cypress and assigned document number 002-07696. No change to document contents or format. AKIH 11/13/2008 \_ \*A 5537115 AKIH 11/30/2016 Updated to Cypress template