

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	18
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.25K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.25V
Data Converters	A/D 18x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	24-WFQFN Exposed Pad
Supplier Device Package	24-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f547-im

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

• ROM, RAM capacities

Flash ROM	Data Flash	RAM	RL78/G1D
128 KB	8 KB	12 KB	R5F11AGG
192 KB	8 KB	16 KB	R5F11AGH
256 KB	8 KB	20 KB ^{Note}	R5F11AGJ

Note 19 KB when the self-programming function is used.

1.6 Outline of Functions

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

				(1/2)			
	Item	R5F11AGG	R5F11AGH	R5F11AGJ			
Code flash me	emory	128 KB	192 KB	256 KB			
Data flash me	mory	8 KB	8 KB	8 KB			
RAM		12 KB	16 KB	20 KB ^{Note 1}			
Address space	e	1 MB					
System clock	(RF side)	32 MHz					
Main system	High-speed system	X1 (crystal/ceramic) oscillation	, external main system clock inp	out (EXCLK)			
clock	clock	HS (High-speed main) mode: 1	I to 20 MHz (V_{DD} = 2.7 to 3.6 V)	,			
		HS (High-speed main) mode: 1	I to 16 MHz (V_{DD} = 2.4 to 3.6 V)	,			
		LS (Low-speed main) mode: 1	to 8 MHz (V_{DD} = 1.8 to 3.6 V),				
		LV (Low-voltage main) mode:	1 to 4 MHz (V_{DD} = 1.6 to 3.6 V)				
	High-speed on-chip	HS (High-speed main) mode: 7	1 to 32 MHz (V _{DD} = 2.7 to 3.6 V)	,			
	oscillator	HS (High-speed main) mode:	1 to 16 MHz (Vpp = 2.4 to 3.6 V)),			
		LS (Low-speed main) mode: LV (Low-voltage main) mode: 7	1 to 4 MHz ($V_{DD} = 1.6$ to 3.6 V),				
Subsystem clo	bock	XT1 (Crystal) oscillation, Exter 32.768 kHz	nal main system clock input (E>	(CLKS)			
RF slow clock	External input	External clock input for RF bloc	ck (EXSLK_RF) 32.768 kHz (T)	′P.)			
	On-chip Oscillator	32.768 kHz (TYP.)					
Low-speed on-chip oscillator		15 kHz (TYP.)					
General-purpo	ose register	(8-bit register × 8) × 4 banks					
Minimum instr	ruction execution time	0.03125 μ s (High-speed on-chip oscillation clock: fi $_{H}$ = 32 MHz operation)					
		0.05 μs (High-speed system clock: f _{MX} = 20 MHz operation)					
		30.5 μs (Subsystem clock: fsuB = 32.768 kHz operation)					
Instruction set		Data transfer (8/16 bits)					
		Adder and subtractor/logical	operation (8/16 bits)				
		 Multiplication (8 bits × 8 bits Rotate, barrel shift, and bit r) nanipulation (Set. reset. test. ar	nd Boolean operation), etc.			
I/O port	Total	32 ^{Note 2}	- F				
	CMOS I/O	20 ^{Note 2}					
	CMOS input	5 ^{Note 2}					
	CMOS output	1 ^{Note 2}					
	N-ch O.D. I/O (withstand voltage: 6 V)	2					
	GPIO (RF block)	4					
2.4 GHz RF transceiver		Supporting Bluetooth v4.1 Spe 2.4 GHz ISM Band, GFSK mod (Including AES encryption circu	cification (Single mode). dulation, TDMA/TDD frequency uit.)	hopping			
	I	Adaptivity (Only in slave opera	tion)				
Timer	16-bit timer	8 channels					
	Watchdog timer	1 channel					
	Real-time clock (RTC)	1 channel					
	12-bit interval timer	1 channel					

(Notes are listed on the next page.)

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings (T_A = 25°C) (1/2)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	VDD	VDD	-0.5 to +6.5	V
	VDDRF1	Vdd_rf	-0.5 to +4.0	V
	VDDRF2	AVdd_rf	–0.5 to +4.0	V
	VDDRF3	DCLIN	–0.5 to +4.0	V
	VSSRF	Vss_rf, AVss_rf	-0.5 to +0.3	V
Input voltage	VI1	P00, P01, P02, P03, P10, P11, P12, P14, P15, P16, P20, P21, P22, P23, P30, P40, P120, P121, P122, P123, P124, P137, P140, P147, RESET	-0.3 to V _{DD} +0.3 ^{Note 1}	V
	V ₁₂	P60, P61	-0.3 to +6.5	V
	VIRF1	GPIO0, GPIO1, GPIO2, GPIO3	-0.3 to V _{DD_RF} +0.3 Note 2	V
	VIRF2	ANT	–0.5 to +1.4	V
Output voltage	Vo	P00, P01, P02, P03, P10, P11, P12, P14, P15, P16, P20, P21, P22, P23, P30, P40, P60, P61, P120, P130, P140, P147	-0.3 to V _{DD} +0.3 ^{Note 1}	V
	VORF	GPIO0, GPIO1, GPIO2, GPIO3, DCLOUT	-0.3 to V _{DD_RF} +0.3 ^{Note 2}	V
Analog input voltage	Vai	ANI0, ANI1, ANI2, ANI3, ANI16, ANI17, ANI18, ANI19	-0.3 to V_{DD}+0.3 and -0.3 to V_{REF(+)}+0.3 Notes 2, 4	V
REGC pin input voltage	VIREGC	REGC	–0.3 to +2.8 and –0.3 to V _{DD} +0.3 ^{Note 3}	V
IC pin input voltage	Viic	IC0, IC1	–0.5 to +0.3	V

Notes 1. Must be 6.5 V or lower.

- 2. Must be 4.0 V or lower.
- **3.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
- 4. Do not exceed AV_{REF(+)} + 0.3 V in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** $AV_{REF(+)}$: + side reference voltage of the A/D converter.
 - 3. Reference voltage is Vss.

2.3 Oscillator Characteristics

2.3.1 X1, XT1, XRF oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} = \text{V}_{DD_RF} = \text{AV}_{DD_RF} \le 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_RF} = \text{AV}_{SS_RF} = 0 \text{ V})$

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency ^{Note 1} Ceramic resonator Crystal resonator	Ceramic resonator	fx	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	1		20	MHz
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$	1		8	MHz	
			$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 1.8 \text{ V}$	1		4	MHz
XT1 clock oscillation frequency ^{Note 1}		fхт		32	32.768	35	kHz
RF base clock oscillation frequencyNote 2		fxrf			32		MHz
RF base clock oscillation accuracy ^{Note 2}	n frequency	fxrfp		-20		+20	ppm

Notes 1. Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time.

Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

- 2. This Oscillator characteristics is base clock for RF Transceiver.
- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user.

Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

2.3.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} = \text{V}_{DD_RF} = \text{AV}_{DD_RF} \le 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_RF} = \text{AV}_{SS_RF} = 0 \text{ V})$

Oscillators	Symbol	C	onditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency ^{Notes 1, 2}	fін			1		32	MHz
High-speed on-chip oscillator clock	fінр	–20 to +85°C	1.8 V ≤ V _{DD} ≤3.6 V	-1.5		+1.5.	%
frequency accuracy			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	-5.0		+5.0	%
		–40 to –20°C	$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	-2.5		+2.5.	%
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency Notes 3	f∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy	filp			-15		+15	%
On-chip oscillator clock frequency for the RF slow clock ^{Note 3}	filrf				32.768		kHz
On-chip oscillator clock frequency accuracy for the RF slow clock	filrfp			-0.025		0.025	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register.

2. This indicates the oscillator characteristics only. Refer to AC Characteristics for instruction execution time.

3. This indicates the oscillator characteristics only.

2.4 DC Characteristics

2.4.1 Output current

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \leq \text{V}_{DD} = \text{V}_{DD_{RF}} = \text{AV}_{DD_{RF}} \leq 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_{RF}} = \text{AV}_{SS_{RF}} = 0 \text{ V})$

Items	Symbol	Conditic	ons		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	P00, P01, P02, P03, P10, P11, P12, P13, P14, P15, P16, P30, P40, P120, P130, P140, P147	Per pin	$1.6 V \le V_{DD} \le 3.6 V$			-10.0 ^{Note 2}	mA
		OH1 P00, P01, P02, P03, P10, P11, P12, P13, P14, P15, P16, P30, P40, P120, P130, P140, P147 P00, P01, P02, P03, P40, P120, P130 P140 P10, P11, P12, P13, P14, P15, P16, P30, P147 Total of all pins ^{Note 3} IOH2 P20, P21, P22, P23 IOHRF GPI00, GPI01, GPI02, GPI03 IOL1 P00, P01, P02, P03, P10, P11, P12, P130, P140, P147	Total Note 3	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$			-10.0	mA
		P140		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$			-5.0	mA
				$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$			-2.5	mA
		P10, P11, P12, P13, P14, P15, P16,	Total Note 3	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$			-19.0	mA
		P30, P147		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$			-10.0	mA
				1.6 V ≤ V _{DD} < 1.8 V			-5.0	mA
		Total of all pins ^{Note 3}		$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$			-135.0 ^{Note 4}	mA
	Іон2	P20, P21, P22, P23	Per pin	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$			-0.1 ^{Note 2}	mA
			Total Note 3	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$			-1.5	mA
	IOHRF	GPIO0, GPIO1, GPIO2, GPIO3	Per pin	$1.6 \text{ V} \le \text{V}_{\text{DD}_{RF}} \le 3.6 \text{ V}$			-2.0	mA
Output current, low ^{Note 1}	Iol1	P00, P01, P02, P03, P10, P11, P12, P13, P14, P15, P16, P30, P40, P120, P130, P140, P147	Per pin	1.6 V ≤ V _{DD} ≤ 3.6 V			20.0 Note 2	mA
		P60, P61	Per pin	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$			15.0 Note 2	mA
		P00, P01, P02, P03, P40, P120, P130,	Total Note 3	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$			15.0	mA
		P140		1.8 V ≤ V _{DD} < 2.7 V			9.0	mA
				$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$			4.5	mA
		P10, P11, P12, P13, P14, P15, P16,	Total Note 3	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$			35.0	mA
		P30, P60, P61, P147		1.8 V ≤ V _{DD} < 2.7 V			20.0	mA
				1.6 V ≤ V _{DD} < 1.8 V			10.0	mA
		Total of all pins ^{Note 3}		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$			150.0	mA
	IOL2	P20, P21, P22, P23	Per pin	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$			0.4 Note 2	mA
			Total Note 3	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$			5.0	mA
	IOLRF	GPIO0, GPIO1, GPIO2, GPIO3	Per pin	$1.6 \text{ V} \le \text{V}_{\text{DD}_{\text{RF}}} \le 3.6 \text{ V}$			2.0	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} pin to an output pin.

- 2. However, do not exceed the total current value.
- **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$
- <Example> Where n = 50% and IoH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(50 \times 0.01) = -14.0$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

4. Product for industrial applications (R5F11AGGDNB, R5F11AGHDNB, R5F11AGJDNB) is –100.0 mA.

(Caution and Remark are listed on the next page.)

Caution P00, P02, P03, and P10 to P15 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.4.2 Input current

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} = \text{V}_{DD_{RF}} = \text{AV}_{DD_{RF}} \le 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_{RF}} = \text{AV}_{SS_{RF}} = 0 \text{ V})$

Items	Symbol	Condition	าร	MIN.	TYP.	MAX.	Unit
Input voltage, high	Vih1	P00, P01, P02, P03, P10, P11, P12, P13, P14, P15, P16, P30, P40, P120, P130, P140, P147	Normal mode (I _{THL} = 1)	0.8Vdd		Vdd	V
	VIH2	P01, P03, P10, P11, P13, P14, P15, P16	TTL mode 3.3 V ≤ V _{DD} ≤ 3.6 V	2.0		Vdd	V
			TTL mode 1.6 V ≤ V _{DD} < 3.3V	1.5		Vdd	V
	VIH3	P20, P21, P22, P23		0.7Vdd		Vdd	V
	VIH4	P60, P61		0.7Vdd		6.0	V
v v	VIH5	P121, P122, P123, P124, P137,	0.8VDD		Vdd	V	
	VIHRF	GPIO0, GPIO1, GPIO2, GPIO3	0.85Vdd_rf		VDD_RF	V	
Input voltage, low	VIL1	P00, P01, P02, P03, P10, P11, P12, P13, P14, P15, P16, P30, P40, P120, P140, P147	Normal mode (I _{THL} = 1)	0		0.2Vdd	V
	VIL2	P01, P03, P10, P11, P13, P14, P15, P16	TTL mode 3.3 V ≤ V _{DD} ≤ 3.6 V	0		0.5	V
			TTL mode 1.6 V ≤ V _{DD} < 3.3V	0		0.32	V
	VIL3	P20, P21, P22, P23		0		0.3VDD	V
	VIL4	P60, P61		0		0.3VDD	V
	VIL5	P121, P122, P123, P124, P137,	RESET	0		0.2VDD	V
	VILRF	GPIO0, GPIO1, GPIO2, GPIO3		0		0.1VDD_RF	V

- Caution The maximum value of V_I of pins P00, P02, P03, and P10 to P15 is V_{DD}, even in the N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(2) Standby current

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \leq \text{V}_{DD} = \text{V}_{DD_{RF}} = \text{AV}_{DD_{RF}} \leq 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_{RF}} = \text{AV}_{SS_{RF}} = 0 \text{ V})$

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
HALT	IDD2	HS (high-speed	f⊪ = 32 MHz ^{Note 4}	V _{DD} = 3.0 V		0.62	1.86	mA
current		main) mode ^{Note 7}	f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 3.0 V		0.50	1.45	mA
			f⊪ = 16 MHz ^{Note 4}	V _{DD} = 3.0 V		0.44	1.11	mA
		LS (low-speed main)	f⊪ = 8 MHz ^{Note 4}	V _{DD} = 3.0 V		290	620	μA
		mode Note 7		V _{DD} = 2.0 V		290	620	μA
		LV (low-voltage	f⊪ = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		440	680	μA
		main) mode ^{Note 7}		V _{DD} = 2.0 V		440	680	μA
		HS (high-speed	f _{MX} = 20 MHz ^{Note 3}	V_{DD} = 3.0 V ^{Note 9}		0.31	1.08	mA
		main) mode ^{Note 7}				0.48	1.28	mA
			f _{MX} = 10 MHz ^{Note 3}	V _{DD} = 3.0 V ^{Note 9}		0.21	0.63	mA
						0.28	0.71	mA
		LS (low-speed main)	f _{MX} = 8 MHz ^{Note 3}	V_{DD} = 3.0 V ^{Note 9}		110	360	μA
		mode Note 7				160	420	μA
			V _{DD} = 2.0 V ^{Note 9}		110	360	μA	
					160	420	μA	
		Subsystem clock operation	f _{SUB} = 32.768kHz ^{Note 5}	T _A = -40°C ^{Note 9}		0.28	0.61	μA
						0.47	0.80	μA
				T _A = +25°C ^{Note 9}		0.34	0.61	μA
						0.53	0.80	μA
				T _A = +50°C ^{Note 9}		0.41	2.30	μA
						0.60	2.49	μA
				T _A = +70°C ^{Note 9}		0.64	4.03	μA
						0.83	4.22	μA
				$T_A = +85^{\circ}C^{\text{ Note 9}}$		1.09	8.04	μA
						1.28	8.23	μA
STOP	Ірдз	Ta = -40°C				0.19	0.52	μA
current Note 6, 8		TA = +25°C	TA = +25°C					μA
		TA = +50°C				0.32	2.21	μA
		TA = +70°C				0.55	3.94	μA
		TA = +85°C				1.00	7.95	μA

(Notes and Remarks are listed on the next page.)

(3) Current for each peripheral circuit

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \leq \text{V}_{DD} = \text{V}_{DD_{RF}} = \text{AV}_{DD_{RF}} \leq 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_{RF}} = \text{AV}_{SS_{RF}} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscillator operating current	I _{FIL} Note 1				0.20		μA
Current when PCLBUZ0 and EXSLK_RF are connected together and MCU supplies RF slow clock to RF	I _{PCEX} Note 1				1.0		μA
RTC operating current	IRTC Notes 1, 2, 3				0.02		μA
12-bit interval timer operating current	lı⊤ ^{Notes 1, 2, 4}				0.02		μA
Watchdog timer operating current	WDT Notes 1, 2, 5	f⊩ is 15 kHz			0.22		μA
A/D converter operating current	ADC Notes 1, 6	When conversion at maximum speed	$AV_{REFP} = V_{DD} = 3.0 V$		0.5	0.7	mA
A/D converter reference voltage current	ADREF Note 1				75.0		μA
Thermometer sensor operating current	ITMPS Note 1				75.0		μA
LVD operating current	LVI Note 1, 7				0.08		μA
Flash self-programming operating current	FSP Notes 1, 9				2.50	12.20	mA
BGO current	IBGO Notes 1, 8				2.50	12.20	mA
SNOOZE operating current	ISNOZ Note 1	ADC operation	The mode is performed Note 10		0.50	0.60	mA
			The A/D conversion operations are performed, Low voltage mode, AV _{REFP} = V _{DD} = 3.0 V		1.20	1.44	mA
		CSI/UART operation			0.70	0.84	mA

Notes 1. Current flowing to VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the XT1 oscillator). The value of the current value of the RL78 microcontroller is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. Also, add the value of IFIL in case of selecting low-speed on-chip oscillator. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- **4.** Current flowing only to the 12 bit interval timer (including the operating current of the low-speed on-chip oscillator). The current value of the MCU is the sum of IDD1 or IDD2 and IIT when fcLK = fsUB when the watchdog timer operates in STOP mode. When using low-speed on-chip oscillator, add IFIL.
- **5.** Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the MCU is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
- 6. Current flowing only to the A/D converter. The current value of MCU is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 7. Current flowing only to the LVD circuit. The current value of MCU is the sum of IDD1, IDD2 or IDD3 and ILVI when the LVD circuit is in operation.
- 8. Current flowing when operates rewriting to Data flash.
- **9.** Current flowing when operates flash self-programming.
- **10.** Shift time to the SNOOZE mode is referred User's Manual: Hardware.

(**Remarks** are listed on the next page.)

Items	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Interrupt input high-level width, low-level width	tinth, tintl	INTP0, INTP3, INTP5, INTP6	1			μs
External PA control output High- level width	t pahrf	TXSELH_RF	283			μs
External PA control output low- level width	t PALRF	TXSELL_RF	283			μs
RESET low-level width	trsl	RESET	10			μs
RESET_RF internal pin low- level width	t RSTLRF	RESET_RF internal pin	31			μs

(T _A = -40 to +85°C	, 1.6 V ≤ V _{DD} =	VDD_RF = AVDD_F	RF ≤ 3.6 V, Vss =	= Vss_rf = AVss_rf	= 0 V) (2/2)
--------------------------------	-----------------------------	-----------------	-------------------	--------------------	--------------

Minimum Instruction Execution Time during Main System Clock Operation

TCY VS VDD (HS (high-speed main) mode)

TCY VS VDD (LS (low-speed main) mode)

TCY VS VDD (LV (low-voltage main) mode)

(3) During communication at same potential (CSI mode) (Internal communication, supporting CSI21 only)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	t _{KCY1} ≥ 2/f _{CLK} ^{Note}	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	250		250		500		ns
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	-		250		500		ns
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	-		Ι		500		ns

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \leq \text{V}_{DD} = \text{V}_{DD_{RF}} = \text{AV}_{DD_{RF}} \leq 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_{RF}} = \text{AV}_{SS_{RF}} = 0 \text{ V})$

Note Use the fclk more than 6.5 MHz and lower than 24 MHz.

Remark This specification is for CSI21 only.

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

Remarks 1. R_b[Ω]:Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance

2. r: IIC number (r = 00, 20), g: PIM number (g =1), h: POM number (h = 1)

fMCK: Serial array unit operation clock frequency
 (Operation clockw to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0), mn = 00, 02)

(7) Communication at different potential (1.8 V, 2.5 V) (UART mode)

Parameter	Symbol	Conditions			HS (high-speed main) Mode	LS (low-speed main) Mode	LV (low-voltage main) Mode	Unit
					MAX.	MAX.	MAX.	
Transfer	e Reception		2.7 V	\leq V _{DD} \leq 3.6 V, 2.3 V \leq V _b \leq 2.7 V	fмск/6 ^{Note 1}	fмск/6 ^{Note 1}	fмск/6 ^{Note 1}	bps
rate				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ ^{Note 3}	5.3	1.3	0.6	Mbps
			2.4 V	$\leq V_{DD} \leq 3.3 \text{ V}, 1.6 \text{ V} \leq V_{b} \leq 2.0 \text{ V}$	fмск/6 Note 1	fмск/6 ^{Note 1}	fмск/6 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$	2.6	1.3	0.6	Mbps
			1.8 V	\leq V _{DD} < 3.3 V, 1.6 V \leq V _b \leq 2.0 V	-	fмск/6 Notes 1, 2	fмск/6 Notes 1, 2	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note 3	-	1.3	1.3	Mbps
		Transmission	ransmission 2.7 V 2.4 V 1.8 V	\leq V _{DD} \leq 3.6 V, 2.3 V \leq V _b \leq 2.7 V	Note 4	Note 4	Note 4	bps
				Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 2.7 kΩ, V_b = 2.3 V	1.2 ^{Note 5}	1.2 ^{Note 5}	1.2 Note 5	Mbps
				$\leq V_{DD} < 3.3 \text{ V}, 1.6 \text{ V} \leq V_{b} \leq 2.0 \text{ V}$	Notes 2, 6	Notes 2, 6	Notes 2, 6	bps
				Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$	0.43	0.43	0.43	Mbps
				\leq V _{DD} < 3.3 V, 1.6 V \leq V _b \leq 2.0 V	-	Notes 2, 6	Notes 2, 6	bps
				Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$	_	0.43 Notes 7	0.43 ^{Notes 7}	Mbps

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \leq \text{V}_{DD} = \text{V}_{DD_{RF}} = \text{AV}_{DD_{RF}} \leq 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_{RF}} = \text{AV}_{SS_{RF}} = 0 \text{ V})$

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- **2.** Use it with $V_{DD} \ge V_b$.
- 3. Maximum operating frequency of CPU and peripheral hardware clock (fcLK) is following

 HS (high-speed main) mode:
 $32 \text{ MHz} (2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V})$

 16 MHz (2.4 V $\le \text{V}_{DD} \le 3.6 \text{ V})$

LS (low-speed main) mode: 8 MHz ($1.8 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$)

- LV (low-voltage main) mode: 4 MHz (1.8 V \leq V_{DD} \leq 3.6 V)
- 4. The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq V_DD \leq 3.6 V and 2.3 V \leq Vb \leq 2.7 V

- Maximum transfer rate = 1/{-Cb × Rb × ln (1 2.0/Vb)} × 3 [bps]
- Baud rate error (theoretical value) =

(1/transfer rate × 2 - {-Cb × Rb × ln (1 - 2.0/Vb)} / (1/transfer rate) × number of transferred bits)

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- **5.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.
- **6.** The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8V \leq V_{DD} < 3.3 V and 1.6 V \leq Vb \leq 2.0 V

(9) Communication at different potential (1.8 V, 2.5 V) (CSI mode: master mode, SCKp... internal clock output)

Parameter	Symbol		Conditions	HS (hig main)	h-speed Mode	LS (low main)	/-speed Mode	LV (low main)	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tксү1 ≥ 4/fc∟к	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V \\ 2.3 \ V \leq V_b \leq 2.7 \ V \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	500		1150		1150		ns
			$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V \\ 1.6 \ V \leq V_b \leq 2.0 \ V \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	1150		1150		1150		ns
			$\begin{split} 1.8 \ V &\leq V_{DD} < 3.3 \ V \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 3}} \\ C_b &= 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$	-		1150		1150		ns
SCKp high-level width Note 1	t кн1	2.7 V ≤ V _{DD} C _b = 30 pF,	$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 3.6 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V \\ C_{\text{b}} = 30 \ \text{pF}, \ R_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$			tксү1/2- 170		tксү1/2- 170		ns
		2.4 V ≤ V _{DD} C _b = 30 pF,	tксү1/2- 458		tксү1/2- 458		tксү1/2- 458		ns	
		1.8 V ≤ V _{DD} ³ C _b = 30 pF,	.8 V ≤ V _{DD} < 3.3 V, 1.6 V ≤ V _b ≤ 2.0 V ^{Note} C_b = 30 pF. R_b = 5.5 kΩ			tксү1/2 — 458		tксү1/2 — 458		ns
SCKp low-level width Note 1	t ĸ∟1	2.7 V ≤ V _{DD} C _b = 30 pF,	tксү1/2 – 18		tксү1/2 – 50		tксү1/2 – 50		ns	
		$2.4 V \le V_{DD}$ $C_b = 30 \text{ pF},$	tксү1/2 – 50		tксү1/2 – 50		tксү1/2 – 50		ns	
		1.8 V ≤ V _{DD} C _b = 30 pF,	< 3.3 V, 1.6 V ≤ V _b ≤ 2.0 V ^{Note 3} R _b = 5.5 kΩ	-		tксү1/2 – 50		tксү1/2 – 50		ns
	tsıkı	$2.7 V \le V_{DD}$ $C_b = 30 \text{ pF},$	≤ 3.6 V, 2.3 V ≤ V₀ ≤ 2.7 V R₀ = 2.7 kΩ	177		479		479		ns
		$2.4 V \le V_{DD}$ $C_b = 30 \text{ pF},$	< 3.3 V, 1.6 V ≤ V₅ ≤ 2.0 V R₅ = 5.5 kΩ	479		479		479		ns
		$\begin{array}{l} 1.8 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V \ ^{\text{Note 3}} \\ C_{b} = 30 \ pF, \ R_{b} = 5.5 \ k\Omega \end{array}$		-		479		479		ns
SIp hold time (from SCKp↑) Note 1, 2	tksi1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		19		19		19		ns
		$2.4 V \le V_{DD}$ $C_b = 30 \text{ pF},$	< 3.3 V, 1.6 V ≤ V _b ≤ 2.0 V R _b = 5.5 kΩ	19		19		19		ns
		$1.8 V \le V_{DD}$ $C_b = 30 \text{ pF},$	< 3.3 V, 1.6 V \leq V _b \leq 2.0 V ^{Note 3} R _b = 5.5 kΩ	-		19		19		ns

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} = \text{V}_{DD_RF} = A\text{V}_{DD_RF} \le 3.6 \text{ V}, \text{ V}_{SS} = \text{V}_{SS_RF} = A\text{V}_{SS_RF} = 0 \text{ V})$

(1/2)

Notes 1. Supporting CSI00 and CSI20.

- 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
- **3.** Use it with $V_{DD} \ge V_b$.

(Caution are listed on the next page.)

Parameter	Symbol	Conditions	HS (higl main)	HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode	
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V \\ 2.3 \ V \leq V_b \leq 2.7 \ V \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/f _{МСК} + 135 ^{Note 3}		1/fмск + 190 Note 3		1/fмск + 190 Note 3		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V \\ 2.3 \ V \leq V_b \leq 2.7 \ V \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/f _{МСК} + 190 ^{Note 3}		1/fмск + 190 Note 3		1/fмск + 190 Note 3		ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V \\ 1.6 \ V \leq V_b \leq 2.0 \ V \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	1/f _{МСК} + 190 ^{Note 3}		1/fмск + 190 Note 3		1/fмск + 190 Note 3		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}} \\ C_b = 100 \ \text{pF}, \ R_b = 5.5 \ \text{k}\Omega \end{array}$	-		1/fмск + 190 Note 3		1/fмск + 190 Note 3		ns
Data hold time (transmission)	thd:dat	2.7 V \leq V _{DD} \leq 3.6 V 2.3 V \leq V _b \leq 2.7 V C _b = 50 pF, R _b = 2.7 k Ω	0 Note 4	305	0 ^{Note 4}	305	0 Note 4	305	ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V \\ 2.3 \ V \leq V_b \leq 2.7 \ V \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	0 Note 4	355	0 Note 4	355	0 Note 4	355	ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V \\ 1.6 \ V \leq V_b \leq 2.0 \ V \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	0 Note 4	405	0 ^{Note 4}	405	0 ^{Note 4}	405	ns
		$\label{eq:VDD} \begin{split} & 1.8 \ V \leq V_{DD} < 3.3 \ V \\ & 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}} \\ & C_b = 100 \ \text{pF}, \ R_b = 5.5 \ \text{k}\Omega \end{split}$	-	_	0 Note 4	405	0 Note 4	405	ns

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} = \text{V}_{DD_RF} = \text{AV}_{DD_RF} \le 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_RF} = \text{AV}_{SS_RF} = 0 \text{ V})$

(2/2)

Notes 1. The value must also be $f_{MCK}/4$ or lower.

2. Use it with $V_{DD} \ge V_b$.

3. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (V_{DD} tolerance) mode for the SDAr pin and the N-ch open drain output (V_{DD} tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target : ANI16 to ANI19

Parameter	Symbol	C	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V_{DD} ^{Note 3}	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 3.6 \text{ V}$		1.2	±5.0	LSB
			$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 3.6 \text{ V}^{\text{Note 4}}$		1.2	±8.5	LSB
Conversion time	Tcony	10-bit resolution	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	3.1875		39	μs
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	17		39	μs
			$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 3.6 \text{ V}$	57		95	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution AV _{REFP} = V_{DD} ^{Note 3}	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 3.6 \text{ V}$			±0.35	%FSR
			$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 3.6 \text{ V}^{\text{Note 4}}$			±0.60	%FSR
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 3.6 \text{ V}$			±0.35	%FSR
			$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 3.6 \text{ V}^{\text{Note 4}}$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 3.6 \text{ V}$			±3.5	LSB
		AV _{REFP} = V _{DD} ^{Note 3}	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 3.6 \text{ V}^{\text{Note 4}}$			±6.0	LSB
Differential linearity error Note	DLE	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 3.6 \text{ V}$			±2.0	LSB
1		AV _{REFP} = V _{DD} ^{Note 3}	1.6 V \leq AV _{REFP} \leq 3.6 V ^{Note 4}			±2.5	LSB
Analog input voltage	VAIN			0		AVREFP and VDD	V

(T_A = -40 to +85°C, 1.6 V ≤ AV_{REFP} ≤ V_{DD} = V_{DD_RF} = AV_{DD_RF} ≤ 3.6 V, V_{SS} = V_{SS_RF} = AV_{SS_RF} = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Notes 1. Excludes quantization error (±1/2 LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- **3.** When AVREFP < VDD, MAX. value is following. Overall error: Zero-scale error / Full-scale error:

 \pm 4 LSB is added to the MAX. value of AV_{REFP} = V_{DD}. ± 0.2 %FSR is added to the MAX. value of AV_{REFP} = V_{DD}. Integral linearity error / Differential linearity error: ±2 LSB is added to the MAX. value n of AVREFP = VDD.

4. When the the conversion time is set to 57 µs (min.) and 95 µs (max.).

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), conversion target : ANI0 to ANI3, ANI16 to ANI19

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} = \text{V}_{DD_{RF}} = \text{AV}_{DD_{RF}} \le 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_{RF}} = \text{AV}_{SS_{RF}} = 0 \text{ V}, \text{Reference voltage (+)} = \text{V}_{BGR}$ Note ³, Reference voltage (-) = AV_{REFM} ^{Note 4} = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES				8		bit
Conversion time	Tcony	8-bit resolution	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$			±1.0	LSB
Analog input voltage	VAIN			0		VBGR Note 3	V

Notes 1. Excludes quantization error $(\pm 1/2 \text{ LSB})$.

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. Refer to 2.8.2 Temperature sensor and internal reference voltage characteristics.

4. When reference voltage (-) = Vss, MAX. value is following.

Zero-scale error:±0.35 %FSR is added to the MAX. value of reference voltage (–) = AVREFM.Integral linearity error:±0.5 LSB is added to the MAX. value of reference voltage (–) = AVREFM.Differential linearity error:±0.2 LSB is added to the MAX. value of reference voltage (–) = AVREFM.

2.9.2 RF reception characteristics

Unless specified otherwise, the measurement is performed by our evaluation board.

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
RF input frequency	RFrxfrin			2402		2480	MHz
Maximum input level	RFLEVL	PER ≤ 30.8%	RF low power mode	-10	0	-	dBm
		RF input pin	RF normal mode	-10	1	-	dBm
			RF high performance mode	-10	1	-	dBm
Receiver sensitivity	RFsty	PER ≤ 30.8%	RF low power mode	-	-60	-50	dBm
			RF normal mode	-	-90	-70	dBm
			RF high performance mode	-	-92	-70	dBm
Secondary radiation	RFRXSP		30 MHz to 1 GHz	-	-72	-57	dBm/
							100 kHz
			1 GHz to 12 GHz	-	-57	-54	dBm/
							100 kHz
Common channel rejection ratio	RFCCR	PER ≤ 30.8%, Pri	f = –67dBm	-21	-12	-	dB
Adjacent channel	RFADCR	PER ≤ 30.8%	±1 MHz	-15	-5	-	dB
rejection ratio		Prf =67 dBm	±2 MHz	17	29	-	dB
			±3 MHz	27	34	-	dB
Blocking	RFblk	PER ≤ 30.8%	30 MHz - 2000 MHz	-30	-13	-	dB
		Prf =67 dBm	2000 MHz to 2399 MHz	-35	-30	-	dBm
			2484 MHz to 3000 MHz	-35	-30	-	dBm
			> 3000 MHz	-30	-17	-	dBm
Frequency tolerance	RFrxferr	PER ≤ 30.8%		-250		+250	kHz
RSSI accuracy	RFRSSIS	T _A = +25°C, -70 d	dBm ≤ Prf ≤ –10 dBm	-4	0	4	dB

2.9.3 Performance mapping for typical RF (Reference)

(1) Peak Current during RF Transmission

Unless specified otherwise, the measurement is performed by our evaluation board. Current consumption is not including MCU unit.

Notice 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits software or information 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product. 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc. Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics. 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, lease evaluate the safety of the final products or systems manufactured by you 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information.

RENESAS

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 **Renesas Electronics Europe Limited** Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +88-10-8235-1155, Fax: +88-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tei: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited Non-sease Lectronics nong round Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +55-631-30200, Fax: +65-6213-0300 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207. Block B. Menara Amcorp. Amco Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777 Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141