

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

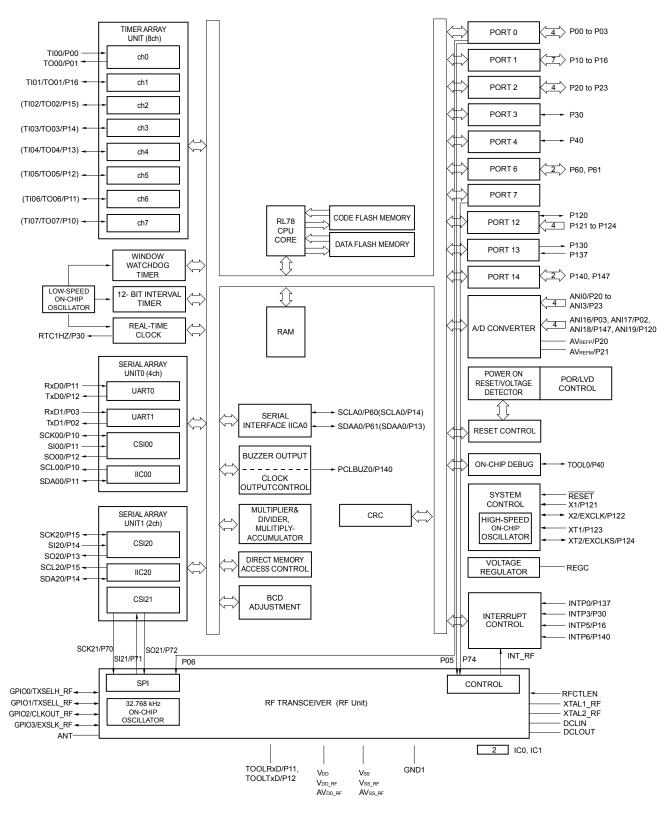
Details

E·XFl

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	32
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-WFQFN Exposed Pad
Supplier Device Package	48-HWQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f11agganb-20

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


• ROM, RAM capacities

Flash ROM	Data Flash	RAM	RL78/G1D
128 KB	8 KB	12 KB	R5F11AGG
192 KB	8 KB	16 KB	R5F11AGH
256 KB	8 KB	20 KB ^{Note}	R5F11AGJ

Note 19 KB when the self-programming function is used.

1.5 Block Diagram

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

Caution P00, P02, P03, and P10 to P15 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.4.2 Input current

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} = \text{V}_{DD_{RF}} = \text{AV}_{DD_{RF}} \le 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_{RF}} = \text{AV}_{SS_{RF}} = 0 \text{ V})$

Items	Symbol	Conditior	IS	MIN.	TYP.	MAX.	Unit
Input voltage, high	Vih1	P00, P01, P02, P03, P10, P11, P12, P13, P14, P15, P16, P30, P40, P120, P130, P140, P147	Normal mode (I _{THL} = 1)	0.8Vdd		Vdd	V
	put voltage, high VIH1 P00, P01, P P12, P13, P P40, P120, I VIH2 P01, P03, P P15, P16 VIH3 P20, P21, P VIH4 P60, P61 VIH5 P121, P122, VIH6 GPIO0, GPI put voltage, low VIL1 P00, P01, P P12, P13, P P40, P120, I	P01, P03, P10, P11, P13, P14, P15, P16	TTL mode 3.3 V ≤ V _{DD} ≤ 3.6 V	2.0		Vdd	V
			TTL mode 1.6 V ≤ V _{DD} < 3.3V	1.5		Vdd	V
	VIH3	P20, P21, P22, P23		0.7V _{DD}		VDD	V
	VIH4	P60, P61		0.7VDD		6.0	V
	VIH5	P121, P122, P123, P124, P137,	RESET	0.8VDD		VDD V VDD V VDD V VDD V VDD V VDD V	V
	VIHRF	GPIO0, GPIO1, GPIO2, GPIO3		0.85Vdd_rf		Vdd_rf	V
Input voltage, low	VIHRF GPI00, GPI01, GPI02, GPI0 voltage, low VIL1 P00, P01, P02, P03, P10, P1	Normal mode (I _{THL} = 1)	0		0.2Vdd	V	
VIHRF GPIO0, GPIO1, GPIO2, GPIO3 Input voltage, low VIL1 P00, P01, P02, P03, P10, P11, P12, P13, P14, P15, P16, P30, P40, P120, P140, P147 VIL2 P01, P03, P10, P11, P13, P14, P15, P16, P30, P40, P120, P140, P147	TTL mode 3.3 V ≤ V _{DD} ≤ 3.6 V	0		0.5	V		
			TTL mode 1.6 V ≤ V _{DD} < 3.3V	0		0.32	V
	VIL3	P20, P21, P22, P23		. mode 2.0 Vod V \leq Vod \leq 3.6 V 1.5 Vod . mode 1.5 Vod V \leq Vod \leq 3.3 V 0.7 Vod Vod 0.7 Vod 0.0 0.0 0.7 Vod Vod 0.0 0.7 Vod 0.0 0.0 0.85 Vod 0 0 . mode 0 0.2 Vod . mode 0 0.32 V \leq Vod \leq 3.3 V 0 0.3 Vod 0 0.3 Vod 0.3 Vod ET 0 0.2 Vod	V		
	VIL4	P60, P61	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.3VDD	V	
	VIL5	P121, P122, P123, P124, P137,	RESET	0		0.2VDD	V
	VILRF	GPIO0, GPIO1, GPIO2, GPIO3		0		0.1VDD_RF	V

- Caution The maximum value of V_I of pins P00, P02, P03, and P10 to P15 is V_{DD}, even in the N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- **Notes 1.** Current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed system clock and subsystem clock are stopped.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - When high-speed on-chip oscillator and high-speed system clock are stopped. When setting ultra-low current consumption (AMPHS1 = 1). Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: 2.7 V ≤ V_{DD} ≤ 3.6 V@1 MHz to 32 MHz
 - 2.4 V \leq V_{DD} \leq 3.6 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}@1 \text{ MHz}$ to 8 MHz
 - LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}@1 \text{ MHz}$ to 4 MHz
 - 6. The upper value is for square-wave input and the lower is with an oscillator connected.
- **Remarks 1.** fmx: High-speed system clock frequency (External main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - **4.** Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

- **Notes 1.** Current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: 2.7 V ≤ V_{DD} ≤ 3.6 V@1 MHz to 32 MHz
 - 2.4 V \leq V_{DD} \leq 3.6 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $1.8 V \le V_{DD} \le 3.6 V@1 MHz$ to 8 MHz
 - LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}@1 \text{ MHz}$ to 4 MHz
 - 8. If operation of the subsystem clock when STOP mode, same as when HALT mode of subsystem clock operation.
 - 9. The upper value is for square-wave input and the lower is with an oscillator connected.

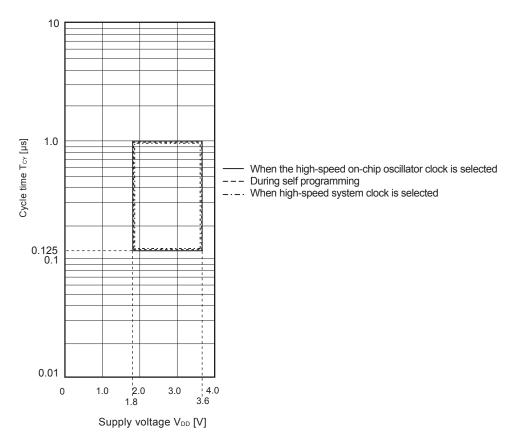
Remarks 1. fmx: High-speed system clock frequency (External main system clock frequency)

- 2. fin: High-speed on-chip oscillator clock frequency
- 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

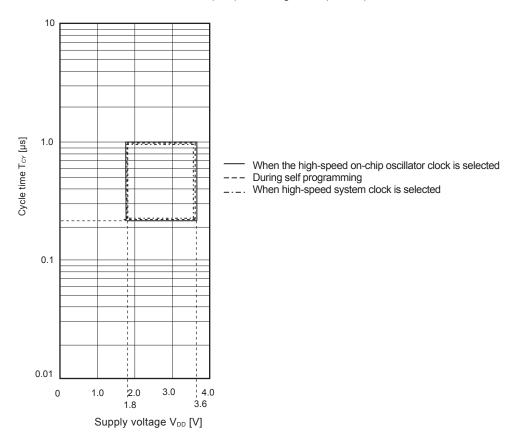
(3) Current for each peripheral circuit

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \leq \text{V}_{DD} = \text{V}_{DD_{RF}} = \text{AV}_{DD_{RF}} \leq 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_{RF}} = \text{AV}_{SS_{RF}} = 0 \text{ V})$

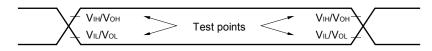
Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscillator operating current	I _{FIL} ^{Note 1}				0.20		μA
Current when PCLBUZ0 and EXSLK_RF are connected together and MCU supplies RF slow clock to RF	I _{PCEX} Note 1				1.0		μA
RTC operating current	IRTC Notes 1, 2, 3				0.02		μA
12-bit interval timer operating current	I _{IT} ^{Notes 1, 2, 4}				0.02		μA
Watchdog timer operating current	Notes 1, 2, 5	f⊩ is 15 kHz			0.22		μA
A/D converter operating current	ADC Notes 1, 6	When conversion at maximum speed	AV _{REFP} = V _{DD} = 3.0 V		0.5	0.7	mA
A/D converter reference voltage current	ADREF Note 1				75.0		μA
Thermometer sensor operating current	ITMPS Note 1				75.0		μA
LVD operating current	ILVI Note 1, 7				0.08		μA
Flash self-programming operating current	IFSP Notes 1, 9				2.50	12.20	mA
BGO current	IBGO Notes 1, 8				2.50	12.20	mA
SNOOZE operating current	Isnoz Note 1	ADC operation	The mode is performed Note 10		0.50	0.60	mA
			The A/D conversion operations are performed, Low voltage mode, $AV_{REFP} = V_{DD} = 3.0 V$		1.20	1.44	mA
		CSI/UART operation	1		0.70	0.84	mA


Notes 1. Current flowing to VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the XT1 oscillator). The value of the current value of the RL78 microcontroller is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. Also, add the value of IFIL in case of selecting low-speed on-chip oscillator. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- **4.** Current flowing only to the 12 bit interval timer (including the operating current of the low-speed on-chip oscillator). The current value of the MCU is the sum of IDD1 or IDD2 and IIT when fcLK = fsUB when the watchdog timer operates in STOP mode. When using low-speed on-chip oscillator, add IFIL.
- **5.** Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the MCU is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
- 6. Current flowing only to the A/D converter. The current value of MCU is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 7. Current flowing only to the LVD circuit. The current value of MCU is the sum of IDD1, IDD2 or IDD3 and ILVI when the LVD circuit is in operation.
- 8. Current flowing when operates rewriting to Data flash.
- 9. Current flowing when operates flash self-programming.
- **10.** Shift time to the SNOOZE mode is referred User's Manual: Hardware.


(**Remarks** are listed on the next page.)

TCY VS VDD (LS (low-speed main) mode)


TCY VS VDD (LV (low-voltage main) mode)

2.7 Peripheral Functions Characteristics

AC Timing Test Points

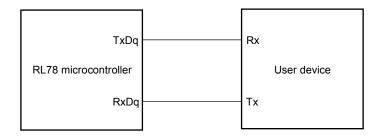
2.7.1 Serial array unit

(1) During communication at same potential (UART mode)

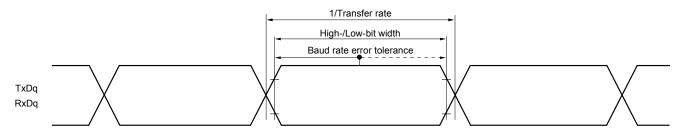
```
(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} = \text{V}_{DD_RF} = \text{AV}_{DD_RF} \le 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_RF} = \text{AV}_{SS_RF} = 0 \text{ V})
```

Parameter	Symbol		Conditions	HS (high-speed main) Mode	LS (low-speed main) Mode	LV (low-voltage main) Mode	Unit
				MAX.	MAX.	MAX.	
Transfer rate Note 1		$2.4 \text{ V} \leq \text{V}_{\text{DD}}$	≤ 3.6 V	f мск/6	f мск/6	f мск/6	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$	5.3	1.3	0.6	Mbps
		1.8 V ≤ V _{DD}	≤ 3.6 V	_	fмск/6	fмск/6	bps
	maxi		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$	_	1.3	0.6	Mbps
		1.6 V ≤ V _{DD}	≤ 3.6 V	_	_	fмск/6	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$	_	_	0.6	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.


2. Maximum operating frequency of CPU and peripheral hardware clock (fcLk) is following

HS (high-speed main) mode: $32 \text{ MHz} (2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V})$ $16 \text{ MHz} (2.4 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V})$ LS (low-speed main) mode: $8 \text{ MHz} (1.8 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V})$ LV (low-voltage main) mode: $4 \text{ MHz} (1.6 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V})$


Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks1. q: UART number (q = 0, 1), g: PIM and POM number (g = 0, 1)

fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00, 01))

(3) During communication at same potential (CSI mode) (Internal communication, supporting CSI21 only)

Parameter	Symbol	Conditions		HS (high main)	•	`	/-speed Mode	LV (low- main)	0	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tксү1 ≥	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	250		250		500		ns
		2/fclk	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	_		250		500		ns
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	_		_		500		ns

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \leq \text{V}_{DD} = \text{V}_{DD_{RF}} = \text{AV}_{DD_{RF}} \leq 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_{RF}} = \text{AV}_{SS_{RF}} = 0 \text{ V})$

Note Use the fclk more than 6.5 MHz and lower than 24 MHz.

Remark This specification is for CSI21 only.

(4) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, supporting CSI00 and CSI20)

Parameter	Symbol		Conditions		peed main) ode	•	/-speed Mode	`	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	t _{KCY1} ≥	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	125		500		1000		ns
		4/ fclк	$2.4~V \le V_{DD} \le 3.6~V$	250		500		1000		ns
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	_		500		1000		ns
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	_		Ι		1000		ns
SCKp high-/low- level width	tкнı, tк∟ı	2.7 V ≤ V _{DD} ≤	≤ 3.6 V	tксү1/2 – 18		tксү1/2 – 50		tксү1/2 - 50		ns
		2.4 V ≤ V _{DD} ≤	≤3.6 V	tксү1/2 – 38		tксү1/2 – 50		tксү1/2 - 50		ns
	1.8 V ≤ V _{DD} ≤	≤3.6 V	-		tксү1/2 – 50		tксү1/2 - 50		ns	
	$1.6 V \le V_{DD} \le 3.6 V$ –		-		tксү1/2 – 100		ns			
SIp setup time	tsik1	2.7 V ≤ V _{DD}	≤ 3.6 V	44		110		110		ns
(to SCKp↑) ^{Note 1}		2.4 V ≤ V _{DD}	≤ 3.6 V	75		110		110		ns
		1.8 V ≤ V _{DD}	≤ 3.6 V	_		110		110		ns
		1.6 V ≤ V _{DD}	≤ 3.6 V	_		Ι		220		ns
SIp hold time	t KSI1	2.7 V ≤ V _{DD}	≤ 3.6 V	19		19		19		ns
(from SCKp↑) ^{Note}		2.4 V ≤ V _{DD}	≤ 3.6 V	19		19		19		ns
		1.8 V ≤ V _{DD}	≤ 3.6 V	_		19		19		ns
		1.6 V ≤ V _{DD}	≤ 3.6 V	_		Ι		19		ns
Delay time from	tkso1	C = 30 pF	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		25		25		25	ns
SCKp↓ to SOp output ^{Note 2}		Note 3	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		25		25		25	ns
output			$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		-		25		25	ns
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		_		-		25	ns

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \leq \text{V}_{DD} = \text{V}_{DD_{RF}} = \text{AV}_{DD_{RF}} \leq 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_{RF}} = \text{AV}_{SS_{RF}} = 0 \text{ V})$

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

 When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- **3.** C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remarks 1.** p: CSI number (p = 00, 10), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 0, 1)
 - fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02, 11))

(6) During communication at same potential (simplified I^2C mode) (1/2)

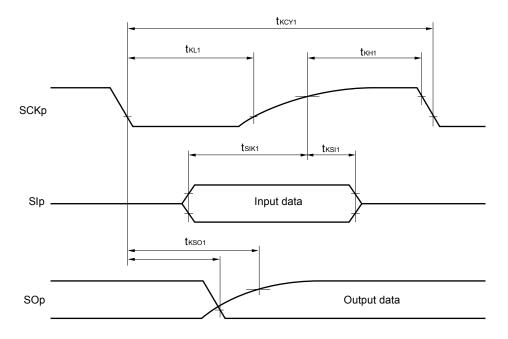
Parameter	Symbol	Conditions	、 U	h-speed Mode	`	v-speed Mode	``	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	f scL	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V},$		1000 Note 1		400		400 Note 1	kHz
		C_b = 50 pF, R_b = 2.7 k Ω		Note 1		Note 1		NOTE 1	
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V},$		400 Note 1		400 Note 1		400 Note 1	kHz
		C_b = 100 pF, R_b = 3 k Ω		Note 1		Note 1		Note 1	
		$1.8 V \le V_{DD} < 3.6 V$,		-		400 Note 1		400 Note 1	kHz
		C_b = 100 pF, R_b = 3 k Ω				Note 1		NOTE 1	
		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V},$		300 Note 1		300		300	kHz
		C_b = 100 pF, R_b = 5 k Ω		Note I		Note 1		Note 1	
		$1.8 V \le V_{DD} < 2.7 V$,		-		300 Note 1		300 Note 1	kHz
		C_b = 100 pF, R_b = 5 k Ω				Note 1		Note 1	
		$1.6 V \le V_{DD} < 1.8 V$,		-		-		250 Note 1	kHz
		C_b = 100 pF, R_b = 5 k Ω						Note 1	
Hold time when SCLr = "L"	tLOW	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V},$	475		1150		1150		ns
		C_b = 50 pF, R_b = 2.7 k Ω							
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V},$	1150		1150		1150		ns
		C_b = 100 pF, R_b = 3 k Ω							
		$1.8 V \le V_{DD} < 3.6 V$,	-		1150		1150		ns
		C_b = 100 pF, R_b = 3 k Ω							
		$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V},$	1550		1550		1550		ns
		C_b = 100 pF, R_b = 5 k Ω							
		$1.8 V \le V_{DD} < 2.7 V$,	-		1550		1550		ns
		C_b = 100 pF, R_b = 5 k Ω							
		$1.6 V \le V_{DD} < 1.8 V$,	-		-		1850		ns
		C_b = 100 pF, R_b = 5 k Ω							
Hold time when SCLr = "H"	tніgн	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V},$	475		1150		1150		ns
		C_b = 50 pF, R_b = 2.7 k Ω							
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V},$	1150		1150		1150		ns
		C_b = 100 pF, R_b = 3 k Ω							
		$1.8 V \le V_{DD} < 3.6 V$,	-		1150		1150		ns
		C_b = 100 pF, R_b = 3 k Ω							
		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V},$	1550		1550		1550		ns
		C_b = 100 pF, R_b = 5 k Ω							
		$1.8 V \le V_{DD} < 2.7 V$,	-		1550		1550		ns
		C_b = 100 pF, R_b = 5 k Ω							
		$1.6 V \le V_{DD} < 1.8 V$,	-		-		1850		ns
		C_b = 100 pF, R_b = 5 k Ω							

$(T_{\text{A}} = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \leq \text{V}_{\text{DD}} = \text{V}_{\text{DD}_{\text{RF}}} = \text{AV}_{\text{DD}_{\text{RF}}} \leq 3.6 \text{ V}, \text{V}_{\text{SS}} = \text{V}_{\text{SS}_{\text{RF}}} = \text{AV}_{\text{SS}_{\text{RF}}} = 0 \text{ V})$

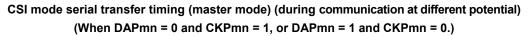
(Notes, Caution, and Remarks are listed on the page after the next page.)

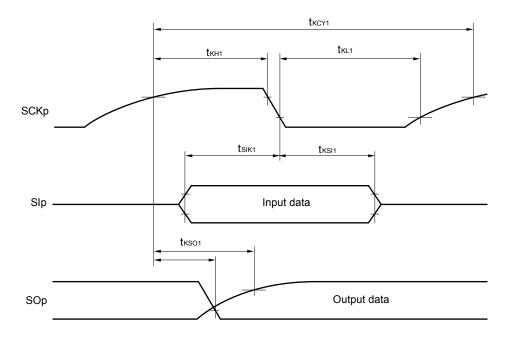
(8) Communication at different potential (2.5 V) (CSI mode) (master mode: SCKp... internal clock output, supporting CSI00 only)

Parameter	Symbol	Conditions	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	LV (low- main)	-voltage Mode	Unit			
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү1	$t_{KCY1} \ge 2/f_{CLK}$ 2.7 V $\le V_{DD} \le 3.6$ V 2.3 V $\le V_b \le 2.7$ V C _b = 20 pF, R _b = 2.7 kΩ	300		1150		1150		ns
SCKp high-level width	tкнı	2.7 V \leq V _{DD} \leq 3.6 V 2.3 V \leq V _b \leq 2.7 V C _b = 20 pF, R _b = 2.7 k Ω					tксү1/2 – 120		ns
SCKp low-level width	tĸ∟ı	2.7 V \leq V _{DD} \leq 3.6 V 2.3 V \leq V _b \leq 2.7 V C _b = 20 pF, R _b = 2.7 k Ω					tксү1/2 — 50		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsıĸı	2.7 V \leq V _{DD} \leq 3.6 V 2.3 V \leq V _b \leq 2.7 V C _b = 20 pF, R _b = 2.7 k Ω	121		479		479		ns
Slp hold time (from SCKp↑) ^{Note 1}	tksii	2.7 V \leq V _{DD} \leq 3.6 V 2.3 V \leq V _b \leq 2.7 V C _b = 20 pF, R _b = 2.7 k Ω	10		10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 1}	tkso1	2.7 V \leq V _{DD} \leq 3.6 V 2.3V \leq V _b \leq 2.7 V C _b = 20 pF, R _b = 2.7 kΩ		130		130		130	ns
SIp setup time (to SCKp↓) ^{Note 2}	tsiĸ1	2.7 V \leq V _{DD} \leq 3.6 V 2.3 V \leq V _b \leq 2.7 V C _b = 20 pF, R _b = 2.7 k Ω	33		110		110		ns
SIp hold time (from SCKp↓) ^{Note 2}	tksi1	2.7 V \leq V _{DD} \leq 3.6 V 2.3 V \leq V _b \leq 2.7 V C _b = 20 pF, R _b = 2.7 k Ω	10		10		10		ns
Delay time from SCKp↑ to SOp output ^{Note 2}	tkso1	2.7 V \leq V _{DD} \leq 3.6 V 2.3 V \leq V _b \leq 2.7 V C _b = 20 pF, R _b = 2.7 k Ω		10		10		10	ns


$(T_{\text{A}} = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \leq \text{V}_{\text{DD}} = \text{V}_{\text{DD}_{\text{RF}}} = \text{AV}_{\text{DD}_{\text{RF}}} \leq 3.6 \text{ V}, \text{V}_{\text{SS}} = \text{V}_{\text{SS}_{\text{RF}}} = \text{AV}_{\text{SS}_{\text{RF}}} = 0 \text{ V})$

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.


2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

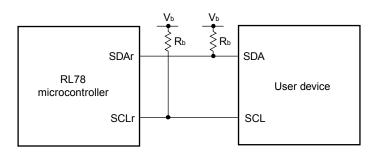

- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),
 g: PIM and POM number (g = 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

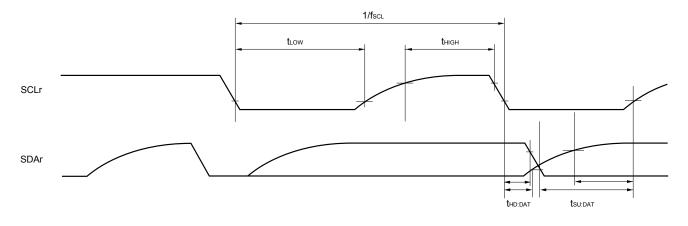
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remark** p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 1)

Parameter	Symbol	Conditions	HS (higl main)	h-speed Mode		oeed main) ode	LV (low main)	-	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp high-/low-level width	tкн2, tкL2	$2.7 V \le V_{DD} \le 3.6 V$ $2.3 V \le V_b \le 2.7 V$	tксү2/2 — 18		tксү2/2 — 50		tксү2/2 — 50		ns
		$2.4 V \le V_{DD} < 3.3 V$ $1.6 V \le V_b \le 2.0 V$	tксү2/2 — 50		tксү2/2 — 50		tксү2/2 — 50		ns
		$1.8 V \le V_{DD} < 3.3 V$ $1.6 V \le V_b \le 2.0 V^{Note 2}$	_		tксү2/2 — 50		tксү2/2 — 50		ns
SIp setup time (to SCKp↑) ^{Note 3}	tsik2	$2.7 V \le V_{DD} \le 3.6 V$ $2.3 V \le V_b \le 4.0 V$	1/f _{мск} + 20		1/f _{мск} + 30		1/fмск + 30		ns
		$2.4 V \le V_{DD} < 3.3 V$ $1.6 V \le V_b \le 2.0 V$	1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
		$1.8 V \le V_{DD} < 3.3 V$ $1.6 V \le V_b \le 2.0 V^{Note 2}$	-		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) ^{Note 3}	tksi2	$2.7 V \le V_{DD} \le 3.6 V$ $2.3 V \le V_b \le 4.0 V$	1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
		$2.4 V \le V_{DD} < 3.3 V$ $1.6 V \le V_b \le 2.0 V$	1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} {<} 3.3 \ V \\ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{\text{Note 2}} \end{array}$	-		1/f _{мск} + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp output ^{Note 4}	tkso2	$\begin{array}{l} 2.7 \ V \leq V_{DD} < 3.6 \ V \\ 2.3 \ V \leq V_b \leq 2.7 \ V \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		2/fмск + 214		2/fмск + 573		2/fмск + 573	ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V \\ 1.6 \ V \leq V_b \leq 2.0 \ V \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V \\ 1.6 \ V \leq V_{b} \leq 2.0 \ V^{Note \ 2} \\ C_{b} = 30 \ pF, \ R_{b} = 5.5 \ k\Omega \end{array}$		_		2/fмск + 573		2/fмск + 573	ns

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} = \text{V}_{DD_RF} = \text{AV}_{DD_RF} \le 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_RF} = \text{AV}_{SS_RF} = 0 \text{ V})$


(2/2)

Notes 1. Transfer rate in the SNOOZE mode : MAX. 1 Mbps


- **2.** Use it with $V_{DD} \ge V_b$.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

Simplified I²C mode connection diagram (during communication at different potential)

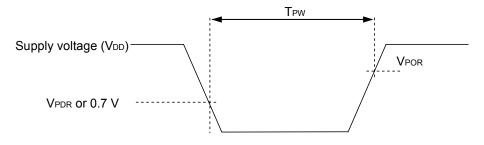
Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - **2.** r: IIC number (r = 00, 10), g: PIM, POM number (g = 0, 1)
 - 3. fmck: Serial array unit operation clock frequency

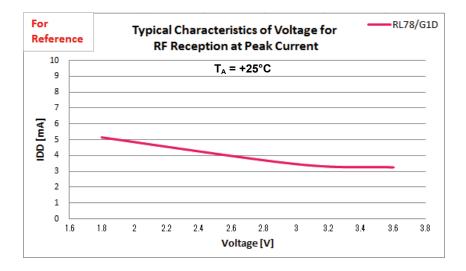
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02))

2.8.2 Temperature sensor and internal reference voltage characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} = \text{V}_{DD_{RF}} = \text{AV}_{DD_{RF}} \le 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_{RF}} = \text{AV}_{SS_{RF}} = 0 \text{ V}, \text{HS (high-speed main) mode)}$

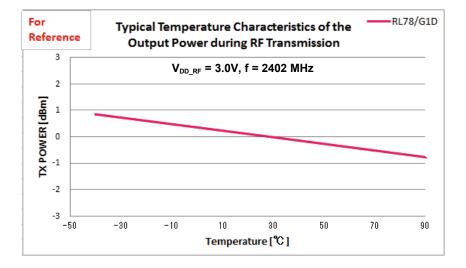

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	Fvtmps	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

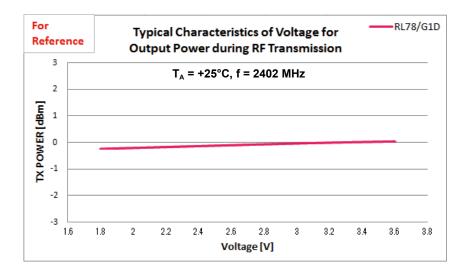
2.8.3 POR circuit characteristics

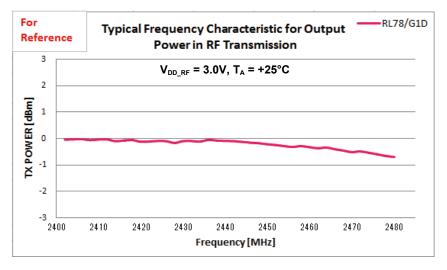

(T_A = -40 to +85°C, Vss = Vss_rF = AVss_rF = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Rise time	1.47	1.51	1.55	V
	VPDR	Fall time	1.46	1.50	1.54	V
Minimum pulse width ^{Note}	Tpw	Other than STOP/SUB_RUN/SUB_HALT	300			μs

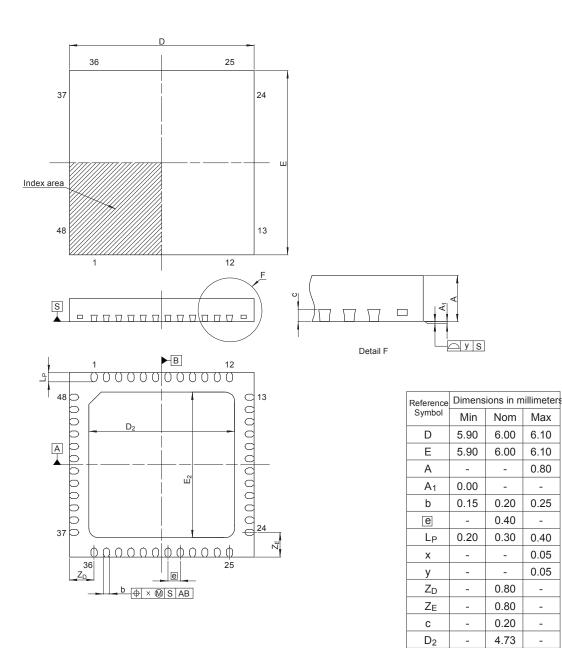
Note This is the time required for the POR circuit to execute a reset operation when V_{DD} falls below V_{PDR}. When the main system clock (f_{MAIN}) has been stopped by setting bit 0 (HIOSTOP) and bit 7 (MSTOP) of the clock operation status control register (CSC) or when the microcontroller enters STOP mode, this is the time required for the POR circuit to execute a reset operation between when V_{DD} falls below 0.7 V and when V_{DD} rises to V_{POR} or higher.






(3) RF Output Power during Transmission

Unless specified otherwise, the measurement is performed by our evaluation board. Current consumption is not including MCU unit.



3. PACKAGE DRAWINGS

3.1 48-pin plastic WQFN (6 × 6)

JEITA Package Code	RENESAS Code	Previous Code	MASS (Typ) [g]
P-HWQFN48-6x6-0.40	PWQN0048LB-A	-	0.07

Unit: mm

© 2015 Renesas Electronics Corporation. All rights reserved.

 E_2

-

4.73

Max

6.10

6.10

0.80

_

0.25

_

0.40

0.05

0.05

_

-

-

_

-