

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	32
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-WFQFN Exposed Pad
Supplier Device Package	48-HWQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f11agganb-40

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 List of Part Numbers

Figure 1-1.	Part Number,	Memory Size	, and Package	of RL78/G1D
-------------	--------------	-------------	---------------	-------------

Table 1-1.	. List of Ordering Part Nu	mbers
------------	----------------------------	-------

Pin count	Package	Fields of Application ^{Note}	Ordering Part Number	Code Flash Memory	Data Flash Memory
48 pins	Plastic WQFN (6 × 6)	A	R5F11AGGANB#20 R5F11AGGANB#40	128 KB	8 KB
		D	R5F11AGGDNB#20 R5F11AGGDNB#40		
		A	R5F11AGHANB#20 R5F11AGHANB#40	192 KB	8 KB
		D	R5F11AGHDNB#20 R5F11AGHDNB#40		
		A	R5F11AGJANB#20 R5F11AGJANB#40	256 KB	8 KB
		D	R5F11AGJDNB#20 R5F11AGJDNB#40		

Note For the fields of application, see Figure 1-1 Part Number, Memory Size, and Package of RL78/G1D.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3 Pin Configuration (Top View)

<R> • 48-pin plastic WQFN (6 × 6 mm, 0.4 mm pitch)

Cautions 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 $\mu\text{F}).$

- 2. Connect the metal pad (GND1) on the back of the package that has the same potential as AVss_RF.
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR)..

1.5 Block Diagram

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

Parameter	Symbols		Conditions	Ratings	Unit
Output current,	Іон1	Per pin	(This is applicable to all pins listed below.)	-40	mA
high		Total of all pins	P00, P01, P02, P03, P40, P120, P130, P140	-70	mA
		–170mA	P10, P11, P12, P13, P14, P15, P16, P30, P147	-100	mA
	Іон2	Per pin	(This is applicable to all pins listed below.)	-0.5	mA
		Total of all pins	P20, P21, P22, P23	-2	mA
	IOHMRF	Per pin	GPIO0, GPIO1, GPIO2, GPIO3	-17	mA
Output current,	IOL1	Per pin	(This is applicable to all pins listed below.)	40	mA
low		Total of all pins	P00, P01, P02, P03, P40, P120, P130, P140	70	mA
		170mA	P10, P11, P12, P13, P14, P15, P16, P30, P60, P61, P147	100	mA
	IOL2	Per pin	(This is applicable to all pins listed below.)	1	mA
		Total of all pins	P20, P21, P22, P23	5	mA
	Iolrf	Per pin	GPIO0, GPIO1, GPIO2, GPIO3	17	mA
Operating	TA	In normal operation	mode	-40 to +85	°C
ambient temperature		In flash memory pro	gramming mode	-40 to +85	°C
Storage temperature	Tstg			-65 to +150	°C

Absolute Maximum Ratings (T_A = 25°C) (2/2)

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** $AV_{REF(+)}$: + side reference voltage of the A/D converter.
 - 3. Reference voltage is Vss.

2.2 Operating Voltage

TA 40 to +85°C			$V_{00} = A V_{00} = 0$	n
(IA 40 LO +05 C	, vdd — vdd_R⊢ —	AVDD_RF, VSS -	VSS_RF - AVSS_RF - U V	1

Clu	ock generator	Flash operation mode	Operation voltage	CPU operation clocks (fcLK) ^{Note 1}
Main system clock	High-speed on-chip oscillator	HS (high-speed main) mode	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	1 MHz to 32 MHz
(fmain)	(fін)		$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	1 MHz to 16 MHz
		LS (low-speed main) mode	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	1 MHz to 8 MHz
		LV (low-voltage main) mode Note 2	$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	1 MHz to 4 MHz
	X1 clock oscillator (fx)	HS (high-speed main) mode	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	1 MHz to 20 MHz
		LS (low-speed main) mode	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	1 MHz to 8 MHz
		LV (low-voltage main) mode Note 2	$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	1 MHz to 4 MHz
	External main system clock	HS (high-speed main) mode	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	1 MHz to 20 MHz
	(fex)		$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	1 MHz to 16 MHz
		LS (low-speed main) mode	$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	1 MHz to 8 MHz
		LV (low-voltage main) mode ^{Note 2}	$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	1 MHz to 4 MHz
Subsystem clock	XT1 clock oscillator (fxr)	_	$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	32.768 kHz
(fsub)	External subsystem clock (f _{EXT})	_	$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	32.768 kHz

Notes 1. Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time.Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

2. This mode is prohibited to use in case of using DC-DC converter.

2.4 DC Characteristics

2.4.1 Output current

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \leq \text{V}_{DD} = \text{V}_{DD_{RF}} = \text{AV}_{DD_{RF}} \leq 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_{RF}} = \text{AV}_{SS_{RF}} = 0 \text{ V})$

Items	Symbol	Conditic	ons		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	P00, P01, P02, P03, P10, P11, P12, P13, P14, P15, P16, P30, P40, P120, P130, P140, P147	Per pin	$1.6 V \le V_{DD} \le 3.6 V$			-10.0 ^{Note 2}	mA
		P00, P01, P02, P03, P40, P120, P130,	Total Note 3	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$			-10.0	mA
		P140		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$			-5.0	mA
				$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$			-2.5	mA
		P10, P11, P12, P13, P14, P15, P16,	Total Note 3	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$			-19.0	mA
		P30, P147		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$			-10.0	mA
				1.6 V ≤ V _{DD} < 1.8 V			-5.0	mA
		Total of all pins ^{Note 3}		$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$			-135.0 ^{Note 4}	mA
	Іон2	P20, P21, P22, P23	Per pin	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$			-0.1 ^{Note 2}	mA
			Total Note 3	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$			-1.5	mA
	IOHRF	GPIO0, GPIO1, GPIO2, GPIO3	Per pin	$1.6 \text{ V} \le \text{V}_{\text{DD}_{RF}} \le 3.6 \text{ V}$			-2.0	mA
Output current, low ^{Note 1}	Iol1	P00, P01, P02, P03, P10, P11, P12, P13, P14, P15, P16, P30, P40, P120, P130, P140, P147	Per pin	1.6 V ≤ V _{DD} ≤ 3.6 V			20.0 Note 2	mA
		P60, P61	Per pin	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$			15.0 Note 2	mA
		P00, P01, P02, P03, P40, P120, P130,	Total Note 3	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$			15.0	mA
		P140		1.8 V ≤ V _{DD} < 2.7 V			9.0	mA
				$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$			4.5	mA
		P10, P11, P12, P13, P14, P15, P16,	Total Note 3	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$			35.0	mA
		P30, P60, P61, P147		1.8 V ≤ V _{DD} < 2.7 V			20.0	mA
				1.6 V ≤ V _{DD} < 1.8 V			10.0	mA
		Total of all pins ^{Note 3}		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$			150.0	mA
	Iol2	P20, P21, P22, P23	Per pin	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$			0.4 Note 2	mA
			Total Note 3	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$			5.0	mA
	IOLRF	GPIO0, GPIO1, GPIO2, GPIO3	Per pin	$1.6 \text{ V} \leq \text{V}_{\text{DD}_{\text{RF}}} \leq 3.6 \text{ V}$			2.0	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} pin to an output pin.

- 2. However, do not exceed the total current value.
- **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$
- <Example> Where n = 50% and IoH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(50 \times 0.01) = -14.0$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

4. Product for industrial applications (R5F11AGGDNB, R5F11AGHDNB, R5F11AGJDNB) is –100.0 mA.

(Caution and Remark are listed on the next page.)

Items	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Interrupt input high-level width, low-level width	tinth, tintl	INTP0, INTP3, INTP5, INTP6	1			μs
External PA control output High- level width	t pahrf	TXSELH_RF	283			μs
External PA control output low- level width	t PALRF	TXSELL_RF	283			μs
RESET low-level width	trsl	RESET	10			μs
RESET_RF internal pin low- level width	t RSTLRF	RESET_RF internal pin	31			μs

(T _A = -40 to +85°C	, 1.6 V ≤ V _{DD} =	VDD_RF = AVDD_F	RF ≤ 3.6 V, Vss =	= Vss_rf = AVss_rf	= 0 V) (2/2)
--------------------------------	-----------------------------	-----------------	-------------------	--------------------	--------------

Minimum Instruction Execution Time during Main System Clock Operation

TCY VS VDD (HS (high-speed main) mode)

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks1. q: UART number (q = 0, 1), g: PIM and POM number (g = 0, 1)

fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00, 01))

(4) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, supporting CSI00 and CSI20)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkCY1	t ксү1 ≥	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	125		500		1000		ns
		4/ fclк	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	250		500		1000		ns
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	_		500		1000		ns
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	_		-		1000		ns
SCKp high-/low- level width	tкнı, tк∟ı	2.7 V ≤ V _{DD} ≤	≤ 3.6 V	tксү1/2 – 18		tксү1/2 – 50		tксү1/2 - 50		ns
		2.4 V ≤ V _{DD} ≤	≤3.6 V	tксү1/2 — 38		tксү1/2 - 50		tксү1/2 - 50		ns
		1.8 V ≤ V _{DD} ≤	≤3.6 V	_		tксү1/2 – 50		tксү1/2 - 50		ns
		1.6 V ≤ V _{DD} ≤	≤ 3.6 V	-		Ι		tксү1/2 – 100		ns
SIp setup time	tsik1	2.7 V ≤ V _{DD}	≤ 3.6 V	44		110		110		ns
(to SCKp↑) Note 1		$2.4 \text{ V} \leq \text{V}_{\text{DD}}$	≤ 3.6 V	75		110		110		ns
		1.8 V ≤ V _{DD}	≤ 3.6 V	-		110		110		ns
		1.6 V ≤ V _{DD}	≤ 3.6 V	-		-		220		ns
SIp hold time	tksi1	2.7 V ≤ V _{DD}	≤ 3.6 V	19		19		19		ns
(from SCKp↑) Note		2.4 V ≤ V _{DD}	≤ 3.6 V	19		19		19		ns
		1.8 V ≤ V _{DD}	≤ 3.6 V	-		19		19		ns
		1.6 V ≤ V _{DD}	≤ 3.6 V	-		-		19		ns
Delay time from	tkso1	C = 30 pF	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		25		25		25	ns
SCKp↓ to SOp		NOTE 3	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		25		25		25	ns
σαιραί			$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		-		25		25	ns
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		-		_		25	ns

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \leq \text{V}_{DD} = \text{V}_{DD_{RF}} = \text{AV}_{DD_{RF}} \leq 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_{RF}} = \text{AV}_{SS_{RF}} = 0 \text{ V})$

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

 When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

3. C is the load capacitance of the SCKp and SOp output lines.

- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remarks 1.** p: CSI number (p = 00, 10), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 0, 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02, 11))

(8) Communication at different potential (2.5 V) (CSI mode) (master mode: SCKp... internal clock output, supporting CSI00 only)

Parameter	Symbol	Conditions	HS (high main)	h-speed Mode	LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү1	t _{KCY1} ≥ 2/f _{CLK} 2.7 V ≤ V _{DD} ≤ 3.6 V 2.3 V ≤ V _b ≤ 2.7 V C _b = 20 pF, R _b = 2.7 kΩ	300		1150		1150		ns
SCKp high-level width	tкнı	$2.7 V \le V_{DD} \le 3.6 V$ $2.3 V \le V_b \le 2.7 V$ $C_b = 20 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$	tксү1/2 – 120		tксү1/2 – 120		tксү1/2 — 120		ns
SCKp low-level width	tĸ∟1	$2.7 V \le V_{DD} \le 3.6 V$ $2.3 V \le V_b \le 2.7 V$ $C_b = 20 pF, R_b = 2.7 k\Omega$	tксү1/2 – 10		tксү1/2 – 50		tkcy1/2 – 50		ns
Slp setup time (to SCKp↑) ^{Note 1}	tsik1	2.7 V \leq V _{DD} \leq 3.6 V 2.3 V \leq V _b \leq 2.7 V C _b = 20 pF, R _b = 2.7 kΩ	121		479		479		ns
SIp hold time (from SCKp↑) ^{Note 1}	tksii	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V \\ \\ 2.3 \ V \leq V_b \leq 2.7 \ V \\ \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	10		10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 1}	tkso1	$2.7 V \le V_{DD} \le 3.6 V$ $2.3V \le V_b \le 2.7 V$ $C_b = 20 \text{ pF}, R_b = 2.7 \text{ k}\Omega$		130		130		130	ns
Slp setup time (to SCKp↓) ^{Note 2}	tsik1	2.7 V \leq V _{DD} \leq 3.6 V 2.3 V \leq V _b \leq 2.7 V C _b = 20 pF, R _b = 2.7 kΩ	33		110		110		ns
SIp hold time (from SCKp↓) ^{Note 2}	tksi1	2.7 V \leq V _{DD} \leq 3.6 V 2.3 V \leq V _b \leq 2.7 V C _b = 20 pF, R _b = 2.7 kΩ	10		10		10		ns
Delay time from SCKp↑ to SOp output ^{Note 2}	tkso1	2.7 $V \le V_{DD} \le 3.6 V$ 2.3 $V \le V_b \le 2.7 V$ $C_b = 20 \text{ pF}$, $R_b = 2.7 \text{ k}\Omega$		10		10		10	ns

$(T_{\text{A}} = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \leq \text{V}_{\text{DD}} = \text{V}_{\text{DD}_{\text{RF}}} = \text{AV}_{\text{DD}_{\text{RF}}} \leq 3.6 \text{ V}, \text{V}_{\text{SS}} = \text{V}_{\text{SS}_{\text{RF}}} = \text{AV}_{\text{SS}_{\text{RF}}} = 0 \text{ V})$

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),
 g: PIM and POM number (g = 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

(9) Communication at different potential (1.8 V, 2.5 V) (CSI mode: master mode, SCKp... internal clock output)

Parameter	Symbol		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit		
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
SCKp cycle time	tkcy1	tксү1 ≥ 4/fc∟к	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V \\ 2.3 \ V \leq V_b \leq 2.7 \ V \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	500		1150		1150		ns	
			$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V \\ 1.6 \ V \leq V_b \leq 2.0 \ V \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	1150		1150		1150		ns	
			$\begin{split} 1.8 \ V &\leq V_{DD} < 3.3 \ V \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 3}} \\ C_b &= 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$	-		1150		1150		ns	
SCKp high-level width Note 1	t кн1	$ t_{\text{KH1}} \qquad 2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}, 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V} \\ C_{\text{b}} = 30 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega $		tксү1/2- 170		tксү1/2- 170		tксү1/2- 170		ns	
		2.4 V ≤ V _{DD} C _b = 30 pF,	< 3.3 V, 1.6 V \le V _b ≤ 2.0 V R _b = 5.5 kΩ	tксү1/2- 458		tксү1/2- 458		tксү1/2- 458		ns	
$1.8 \vee \le 3$ C _b = 30		1.8 V ≤ V _{DD} ³ C _b = 30 pF,	1.8 V ≤ V _{DD} < 3.3 V, 1.6 V ≤ V _b ≤ 2.0 V ^{Note} ³ C _b = 30 pF, R _b = 5.5 kΩ			tксү1/2 — 458		tксү1/2 — 458		ns	
$\begin{array}{c} \text{SCKp low-level} \\ \text{width}^{\text{Note 1}} \end{array} \begin{array}{c} \text{tkl1} \\ \\ \hline \\ \text{C}_{b} = 30 \\ \hline \\ 2.4 \ \text{V} \leq \\ C_{b} = 30 \end{array}$		2.7 V ≤ V _{DD} C _b = 30 pF,	$\leq 3.6 \text{ V}, 2.3 \text{ V} \leq \text{V}_{b} \leq 2.7 \text{ V}$ R _b = 2.7 k Ω	tксү1/2 – 18		tксү1/2 – 50		tксү1/2 – 50		ns	
		$2.4 V \le V_{DD}$ $C_b = 30 \text{ pF},$	< 3.3 V, 1.6 V ≤ V _b ≤ 2.0 V R _b = 5.5 kΩ	tксү1/2 – 50		tксү1/2 – 50		tксү1/2 – 50		ns	
		1.8 V ≤ V _{DD} C _b = 30 pF,	< 3.3 V, 1.6 V ≤ V _b ≤ 2.0 V ^{Note 3} R _b = 5.5 kΩ	-		tксү1/2 – 50		tксү1/2 – 50		ns	
	tsıkı	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		177		479		479		ns	
			$2.4 V \le V_{DD}$ $C_b = 30 \text{ pF},$	< 3.3 V, 1.6 V ≤ V₅ ≤ 2.0 V R₅ = 5.5 kΩ	479		479		479		ns
		1.8 V ≤ V _{DD} C _b = 30 pF,	< 3.3 V, 1.6 V ≤ V _b ≤ 2.0 V ^{Note 3} R _b = 5.5 kΩ	-		479		479		ns	
SIp hold time (from SCKp↑) Note 1, 2	$ \begin{array}{c c} \text{Did time} \\ \text{SCKp} \uparrow) \end{array} \begin{array}{c} t_{\text{KSI1}} & 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \ 2.3 \ \text{V} \leq \text{V}_{\text{b}} \leq 2.7 \ \text{V} \\ C_{\text{b}} = 30 \ \text{pF}, \ R_{\text{b}} = 2.7 \ \text{k}\Omega \end{array} $		19		19		19		ns		
		$2.4 V \le V_{DD}$ $C_b = 30 \text{ pF},$	< 3.3 V, 1.6 V ≤ V _b ≤ 2.0 V R _b = 5.5 kΩ	19		19		19		ns	
		$1.8 V \le V_{DD}$ $C_b = 30 \text{ pF},$	< 3.3 V, 1.6 V \leq V _b \leq 2.0 V ^{Note 3} R _b = 5.5 kΩ	-		19		19		ns	

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} = \text{V}_{DD_RF} = A\text{V}_{DD_RF} \le 3.6 \text{ V}, \text{ V}_{SS} = \text{V}_{SS_RF} = A\text{V}_{SS_RF} = 0 \text{ V})$

(1/2)

Notes 1. Supporting CSI00 and CSI20.

- 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
- **3.** Use it with $V_{DD} \ge V_b$.

(Caution are listed on the next page.)

Parameter	Parameter Symbol Conditions HS (hi mair		HS (hig main)	h-speed Mode	LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Delay time from SCKp↓ to SOp output ^{Note 1, 3}	tkso1	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V \\ 2.3 \; V \leq V_b \leq 2.7 \; V \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		195		195		195	ns
		$2.4 V \le V_{DD} < 3.3 V$ $1.6 V \le V_b \le 2.0 V$ $C_b = 30 pF, R_b = 5.5 k\Omega$		483		483		483	ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 5}} \\ C_b = 30 \ \text{pF}, \ R_b = 5.5 \ \text{k}\Omega \end{array}$		_		483		483	ns
Slp setup time (to SCKp↓) ^{Note 2, 4}	tsik1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V \\ 2.3 \ V \leq V_b \leq 2.7 \ V \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	44		110		110		ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V \\ 1.6 \ V \leq V_b \leq 2.0 \ V \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	110		110		110		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 5}} \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	-		110		110		ns
Slp hold time (from SCKp↓) ^{Note 2, 4}	tĸsıı	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V \\ 2.3 \ V \leq V_b \leq 2.7 \ V \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	19		19		19		ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V \\ 1.6 \ V \leq V_b \leq 2.0 \ V \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	19		19		19		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 5}} \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	-		19		19		ns
Delay time from SCKp↑ to SOp output ^{Note 2, 4}	tkso1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V \\ 2.3 \ V \leq V_b \leq 2.7 \ V \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		25		25		25	ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V \\ 1.6 \ V \leq V_b \leq 2.0 \ V \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$		25		25		25	ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 5}} \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$		_		25		25	ns

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \leq \text{V}_{DD} = \text{V}_{DD_RF} = \text{AV}_{DD_RF} \leq 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_RF} = \text{AV}_{SS_RF} = 0 \text{ V})$

(2/2)

Notes 1. Supporting CSI00 and CSI20.

- 2. Supporting CSI00 only.
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
- 4. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **5.** Use it with $V_{DD} \ge V_b$.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VH and VL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

CSI mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 1)
 - **3.** fMCK : Operation clock frequency of the serial array unit (Operation clock to be set by the CKSmn bit of the serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remark** p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 1)

- **Notes 1.** The first clock pulse is generated after this period when the start/restart condition is detected.
 - 2. The maximum value (MAX.) of the is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows. Standard mode: $C_b = 400 \text{ pF}$, $R_b = 2.7 \text{ k}\Omega$

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), conversion target : ANI0 to ANI3, ANI16 to ANI19

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} = \text{V}_{DD_{RF}} = \text{AV}_{DD_{RF}} \le 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_{RF}} = \text{AV}_{SS_{RF}} = 0 \text{ V}, \text{Reference voltage (+)} = \text{V}_{BGR}$ Note ³, Reference voltage (-) = AV_{REFM} ^{Note 4} = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES				8		bit
Conversion time	Tcony	8-bit resolution	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$			±1.0	LSB
Analog input voltage	VAIN			0		VBGR Note 3	V

Notes 1. Excludes quantization error $(\pm 1/2 \text{ LSB})$.

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. Refer to 2.8.2 Temperature sensor and internal reference voltage characteristics.

4. When reference voltage (-) = Vss, MAX. value is following.

Zero-scale error:±0.35 %FSR is added to the MAX. value of reference voltage (–) = AVREFM.Integral linearity error:±0.5 LSB is added to the MAX. value of reference voltage (–) = AVREFM.Differential linearity error:±0.2 LSB is added to the MAX. value of reference voltage (–) = AVREFM.

LVD Detection Voltage of Interrupt & Reset Mode

$(T_{\text{A}} = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \leq \text{V}_{\text{DD}} = \text{V}_{\text{DD}_{\text{RF}}} = \text{AV}_{\text{DD}_{\text{RF}}} \leq 3.6 \text{ V}, \text{V}_{\text{SS}} = \text{V}_{\text{SS}_{\text{RF}}} = \text{AV}_{\text{SS}_{\text{RF}}} = 0 \text{ V})$

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
Interrupt and	VLVDA0	VPOC2, VPOC1, VPOC0 = 0, 0, 0, falling	g reset voltage	1.60	1.63	1.66	V
reset mode	VLVDA1	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
			Falling interrupt voltage	1.70	1.73	1.77	V
	VLVDA2	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
			Falling interrupt voltage	1.8	1.84	1.87	V
	V LVDA3	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
			Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDB0	VPOC2, VPOC1, VPOC0 = 0, 0, 1, falling	g reset voltage	1.80	1.84	1.87	V
	VLVDB1	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
			Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB2	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
			Falling interrupt voltage	2.00	2.04	2.08	V
	VLVDB3	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
			Falling interrupt voltage	3.00	3.06	3.12	V
	VLVDC0	VPOC2, VPOC1, VPOC0 = 0, 1, 0, fall	2.40	2.45	2.50	V	
	VLVDC1	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
			Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
			Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDD0	VPOC2, VPOC1, VPOC0 = 0, 1, 1, fall	ing reset voltage	2.70	2.75	2.81	V
	VLVDD1	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
			Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
			Falling interrupt voltage	2.90	2.96	3.02	V

2.8.5 Supply voltage rise time

(T_A = -40 to +85°C, Vss = Vss_RF = AVss_RF = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VDD rise slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 2.6 AC Characteristics.

Revision History

RL78/G1D Data Sheet

			Description				
Rev.	Date	Page	Summary				
1.00	Apr 24, 2015	-	First Edition issued				
1.10	Sep 25, 2015	p.1	Change of description in 1.1 Features				
		p.7, 9	Change of 1.6 Outline of Functions				
		p.14	Change of description in 2.3.2 On-chip oscillator characteristics				
		p.19	Change of description in 2.5. Current Consumption				
		p.23	Addition of specification to 2.5.1(3) Current for each peripheral circuit				
		p.65	Change of description in 2.9.1 RF transmission characteristics				
		p.66	Change of description in 2.9.2 RF reception characteristics				
		p.67 to 71	Change of description in 30.9.3 Performance mapping for typical RF (Reference)				
1.20	Dec 16, 2016	p.4	Change of pin name in 1.3 Pin Configuration (Top View)				
		p.58	Change of pin names in 2.8 Analog Characteristics (1)				
		p.60	Change of pin name in 2.8 Analog Characteristics (3)				

All trademarks and registered trademarks are the property of their respective owners.

Bluetooth is a trademark of Bluetooth SIG, Inc. U.S.A.

EEPROM is a trademark of Renesas Electronics Corporation.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.