

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	32
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-WFQFN Exposed Pad
Supplier Device Package	48-HWQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f11aggdnb-20

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.3 Oscillator Characteristics

2.3.1 X1, XT1, XRF oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} = \text{V}_{DD_RF} = \text{AV}_{DD_RF} \le 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_RF} = \text{AV}_{SS_RF} = 0 \text{ V})$

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator	fx	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	1		20	MHz
frequency ^{Note 1}	requency ^{Note 1} Crystal resonator		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$	1		8	MHz
			$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 1.8 \text{ V}$	1		4	MHz
XT1 clock oscillation fre	quency ^{Note 1}	fхт		32	32.768	35	kHz
RF base clock oscillation	n frequency ^{Note 2}	fxrf			32		MHz
RF base clock oscillation frequency accuracy ^{Note 2}		fxrfp		-20		+20	ppm

Notes 1. Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time.

Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

- 2. This Oscillator characteristics is base clock for RF Transceiver.
- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user.

Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

2.3.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} = \text{V}_{DD_RF} = \text{AV}_{DD_RF} \le 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_RF} = \text{AV}_{SS_RF} = 0 \text{ V})$

Oscillators	Symbol	C	onditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency ^{Notes 1, 2}	fін			1		32	MHz
High-speed on-chip oscillator clock	fінр	–20 to +85°C	1.8 V ≤ V _{DD} ≤3.6 V	-1.5		+1.5.	%
frequency accuracy			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	-5.0		+5.0	%
		–40 to –20°C	$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	-2.5		+2.5.	%
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency Notes 3	f∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy	filp			-15		+15	%
On-chip oscillator clock frequency for the RF slow clock ^{Note 3}	filrf				32.768		kHz
On-chip oscillator clock frequency accuracy for the RF slow clock	filrfp			-0.025		0.025	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register.

2. This indicates the oscillator characteristics only. Refer to AC Characteristics for instruction execution time.

3. This indicates the oscillator characteristics only.

2.4 DC Characteristics

2.4.1 Output current

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \leq \text{V}_{DD} = \text{V}_{DD_{RF}} = \text{AV}_{DD_{RF}} \leq 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_{RF}} = \text{AV}_{SS_{RF}} = 0 \text{ V})$

Items	Symbol	Conditic	MIN.	TYP.	MAX.	Unit		
Output current, high ^{Note 1}	Іон1	P00, P01, P02, P03, P10, P11, P12, P13, P14, P15, P16, P30, P40, P120, P130, P140, P147	Per pin	$1.6 V \le V_{DD} \le 3.6 V$			-10.0 ^{Note 2}	mA
		P00, P01, P02, P03, P40, P120, P130,	Total Note 3	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$			-10.0	mA
		P140		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$			-5.0	mA
				$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$			-2.5	mA
		P10, P11, P12, P13, P14, P15, P16,	Total Note 3	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$			-19.0	mA
		P30, P147		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$			-10.0	mA
				1.6 V ≤ V _{DD} < 1.8 V			-5.0	mA
		Total of all pins ^{Note 3}		$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$			-135.0 ^{Note 4}	mA
	Іон2	P20, P21, P22, P23	Per pin	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$			-0.1 ^{Note 2}	mA
			Total Note 3	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$			-1.5	mA
	IOHRF	GPIO0, GPIO1, GPIO2, GPIO3	Per pin	$1.6 \text{ V} \le \text{V}_{\text{DD}_{RF}} \le 3.6 \text{ V}$			-2.0	mA
Output current, low ^{Note 1}	Iol1	P00, P01, P02, P03, P10, P11, P12, P13, P14, P15, P16, P30, P40, P120, P130, P140, P147	Per pin	1.6 V ≤ V _{DD} ≤ 3.6 V			20.0 Note 2	mA
		P60, P61	Per pin	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$			15.0 Note 2	mA
		P00, P01, P02, P03, P40, P120, P130,	Total Note 3	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$			15.0	mA
		P140		1.8 V ≤ V _{DD} < 2.7 V			9.0	mA
				$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$			4.5	mA
		P10, P11, P12, P13, P14, P15, P16,	Total Note 3	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$			35.0	mA
		P30, P60, P61, P147		1.8 V ≤ V _{DD} < 2.7 V			20.0	mA
				1.6 V ≤ V _{DD} < 1.8 V			10.0	mA
		Total of all pins ^{Note 3}		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$			150.0	mA
	IOL2	P20, P21, P22, P23	Per pin	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$			0.4 Note 2	mA
			Total Note 3	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$			5.0	mA
	IOLRF	GPIO0, GPIO1, GPIO2, GPIO3	Per pin	$1.6 \text{ V} \leq \text{V}_{\text{DD}_{\text{RF}}} \leq 3.6 \text{ V}$			2.0	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} pin to an output pin.

- 2. However, do not exceed the total current value.
- **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$
- <Example> Where n = 50% and IoH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(50 \times 0.01) = -14.0$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

4. Product for industrial applications (R5F11AGGDNB, R5F11AGHDNB, R5F11AGJDNB) is –100.0 mA.

(Caution and Remark are listed on the next page.)

- **Notes 1.** Current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: 2.7 V ≤ V_{DD} ≤ 3.6 V@1 MHz to 32 MHz
 - 2.4 V \leq V_{DD} \leq 3.6 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $1.8 V \le V_{DD} \le 3.6 V@1 MHz$ to 8 MHz
 - LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}@1 \text{ MHz}$ to 4 MHz
 - 8. If operation of the subsystem clock when STOP mode, same as when HALT mode of subsystem clock operation.
 - 9. The upper value is for square-wave input and the lower is with an oscillator connected.

Remarks 1. fmx: High-speed system clock frequency (External main system clock frequency)

- 2. fin: High-speed on-chip oscillator clock frequency
- 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

(3) Current for each peripheral circuit

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \leq \text{V}_{DD} = \text{V}_{DD_{RF}} = \text{AV}_{DD_{RF}} \leq 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_{RF}} = \text{AV}_{SS_{RF}} = 0 \text{ V})$

Parameter	Symbol		Conditions				
Low-speed on-chip oscillator operating current	I _{FIL} Note 1				0.20		μA
Current when PCLBUZ0 and EXSLK_RF are connected together and MCU supplies RF slow clock to RF	I _{PCEX} Note 1				1.0		μA
RTC operating current	IRTC Notes 1, 2, 3				0.02		μA
12-bit interval timer operating current	lı⊤ ^{Notes 1, 2, 4}				0.02		μA
Watchdog timer operating current	WDT Notes 1, 2, 5	f⊩ is 15 kHz			0.22		μA
A/D converter operating current	ADC Notes 1, 6	When conversion at maximum speed	$AV_{REFP} = V_{DD} = 3.0 V$		0.5	0.7	mA
A/D converter reference voltage current	ADREF Note 1				75.0		μA
Thermometer sensor operating current	ITMPS Note 1				75.0		μA
LVD operating current	LVI Note 1, 7				0.08		μA
Flash self-programming operating current	FSP Notes 1, 9				2.50	12.20	mA
BGO current	IBGO Notes 1, 8				2.50	12.20	mA
SNOOZE operating current	ISNOZ Note 1	ADC operation	The mode is performed Note 10		0.50	0.60	mA
			The A/D conversion operations are performed, Low voltage mode, AV _{REFP} = V _{DD} = 3.0 V		1.20	1.44	mA
		CSI/UART operation			0.70	0.84	mA

Notes 1. Current flowing to VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the XT1 oscillator). The value of the current value of the RL78 microcontroller is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. Also, add the value of IFIL in case of selecting low-speed on-chip oscillator. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- **4.** Current flowing only to the 12 bit interval timer (including the operating current of the low-speed on-chip oscillator). The current value of the MCU is the sum of IDD1 or IDD2 and IIT when fcLK = fsUB when the watchdog timer operates in STOP mode. When using low-speed on-chip oscillator, add IFIL.
- **5.** Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the MCU is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
- 6. Current flowing only to the A/D converter. The current value of MCU is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 7. Current flowing only to the LVD circuit. The current value of MCU is the sum of IDD1, IDD2 or IDD3 and ILVI when the LVD circuit is in operation.
- 8. Current flowing when operates rewriting to Data flash.
- **9.** Current flowing when operates flash self-programming.
- **10.** Shift time to the SNOOZE mode is referred User's Manual: Hardware.

(**Remarks** are listed on the next page.)

Items	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Interrupt input high-level width, low-level width	tinth, tintl	INTP0, INTP3, INTP5, INTP6	1			μs
External PA control output High- level width	t pahrf	TXSELH_RF	283			μs
External PA control output low- level width	t PALRF	TXSELL_RF	283			μs
RESET low-level width	trsl	RESET	10			μs
RESET_RF internal pin low- level width	t RSTLRF	RESET_RF internal pin	31			μs

(T _A = -40 to +85°C	, 1.6 V ≤ V _{DD} =	VDD_RF = AVDD_F	RF ≤ 3.6 V, Vss =	= Vss_rf = AVss_rf	= 0 V) (2/2)
--------------------------------	-----------------------------	-----------------	-------------------	--------------------	--------------

Minimum Instruction Execution Time during Main System Clock Operation

TCY VS VDD (HS (high-speed main) mode)

TCY VS VDD (LS (low-speed main) mode)

TCY VS VDD (LV (low-voltage main) mode)

AC Timing Test Points

External System Clock Timing

TI/TO Timing

Interrupt Request Input Timing

RESET Input Timing

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, supporting CSI00 only)

$(T_A = -40 \text{ to } +85^\circ \text{C}, 1)$	2.7 V ≤ V _{DD} =	VDD_RF = AVDD_I	rf ≤ 3.6 V, Vss =	Vss_rf = AVss_rf = 0 V
---	---------------------------	-----------------	-------------------	------------------------

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkCY1	tkcy1 ≥ 2/fclk	83.3		250		500		ns
SCKp high-/low-level width	tкн1, tк∟1		tксү1/2 — 10		tксү1/2 — 50		tксү1/2 — 50		ns
SIp setup time (to SCKp↑) Note 1	tsıĸı		33		110		110		ns
SIp hold time (from SCKp↑) Note 1	tksii		10		10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 2}	tkso1	C = 20 pF ^{Note 3}		10		10		10	ns

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

3. C is the load capacitance of the SCKp and SOp output lines.

Cautions Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. This specification is valid only when CSI00's peripheral I/O redirect function is not used.

p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),
g: PIM and POM numbers (g = 1)

 fmcκ: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 20), m: Unit number (m = 0, 1),
 - n: Channel number (n = 0), g: PIM and POM numbers (g = 1)
 - fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00, 10))

CSI mode connection diagram (during communication at same potential)

(9) Communication at different potential (1.8 V, 2.5 V) (CSI mode: master mode, SCKp... internal clock output)

Parameter	Symbol		Conditions	HS (hig main)	h-speed Mode	LS (low main)	/-speed Mode	LV (low main)	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tксү1 ≥ 4/fc∟к	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V \\ 2.3 \ V \leq V_b \leq 2.7 \ V \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	500		1150		1150		ns
			$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V \\ 1.6 \ V \leq V_b \leq 2.0 \ V \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	1150		1150		1150		ns
			$\begin{split} 1.8 \ V &\leq V_{DD} < 3.3 \ V \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 3}} \\ C_b &= 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$	-		1150		1150		ns
SCKp high-level width Note 1	t кн1	2.7 V ≤ V _{DD} C _b = 30 pF,	$\leq 3.6 \text{ V}, 2.3 \text{ V} \leq \text{V}_{b} \leq 2.7 \text{ V}$ R _b = 2.7 kΩ	tксү1/2- 170		tксү1/2- 170		tксү1/2- 170		ns
		2.4 V ≤ V _{DD} C _b = 30 pF,	< 3.3 V, 1.6 V \le V _b ≤ 2.0 V R _b = 5.5 kΩ	tксү1/2- 458		tксү1/2- 458		tксү1/2- 458		ns
		1.8 V ≤ V _{DD} ³ C _b = 30 pF,	< 3.3 V, 1.6 V ≤ V _b ≤ 2.0 V ^{Note} R _b = 5.5 kΩ	-		tксү1/2 — 458		tксү1/2 — 458		ns
SCKp low-level width Note 1	t ĸ∟1	2.7 V ≤ V _{DD} C _b = 30 pF,	$\leq 3.6 \text{ V}, 2.3 \text{ V} \leq \text{V}_{b} \leq 2.7 \text{ V}$ R _b = 2.7 k Ω	tксү1/2 – 18		tксү1/2 – 50		tксү1/2 – 50		ns
		$2.4 V \leq V_{DD}$ $C_{b} = 30 \text{ pF},$	< 3.3 V, 1.6 V ≤ V _b ≤ 2.0 V R _b = 5.5 kΩ	tксү1/2 – 50		tксү1/2 – 50		tксү1/2 – 50		ns
		1.8 V ≤ V _{DD} C _b = 30 pF,	< 3.3 V, 1.6 V ≤ V _b ≤ 2.0 V ^{Note 3} R _b = 5.5 kΩ	-		tксү1/2 – 50		tксү1/2 – 50		ns
	tsıkı	$2.7 V \le V_{DD}$ $C_b = 30 \text{ pF},$	≤ 3.6 V, 2.3 V ≤ V₀ ≤ 2.7 V R₀ = 2.7 kΩ	177		479		479		ns
		$2.4 V \le V_{DD}$ $C_b = 30 \text{ pF},$	< 3.3 V, 1.6 V ≤ V₅ ≤ 2.0 V R₅ = 5.5 kΩ	479		479		479		ns
		1.8 V ≤ V _{DD} C _b = 30 pF,	< 3.3 V, 1.6 V ≤ V _b ≤ 2.0 V ^{Note 3} R _b = 5.5 kΩ	-		479		479		ns
SIp hold time (from SCKp↑) Note 1, 2	tksi1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \\ C_{b} = 30 \ pF, \end{array}$	$\leq 3.6 \text{ V}, 2.3 \text{ V} \leq \text{V}_{b} \leq 2.7 \text{ V}$ R _b = 2.7 kΩ	19		19		19		ns
		$2.4 V \leq V_{DD}$ $C_{b} = 30 \text{ pF},$	< 3.3 V, 1.6 V ≤ V _b ≤ 2.0 V R _b = 5.5 kΩ	19		19		19		ns
		$1.8 V \le V_{DD}$ $C_b = 30 \text{ pF},$	< 3.3 V, 1.6 V \leq V _b \leq 2.0 V ^{Note 3} R _b = 5.5 kΩ	-		19		19		ns

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} = \text{V}_{DD_RF} = A\text{V}_{DD_RF} \le 3.6 \text{ V}, \text{ V}_{SS} = \text{V}_{SS_RF} = A\text{V}_{SS_RF} = 0 \text{ V})$

(1/2)

Notes 1. Supporting CSI00 and CSI20.

- 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
- **3.** Use it with $V_{DD} \ge V_b$.

(Caution are listed on the next page.)

Parameter	Symbol	Conditions	HS (higl main)	n-speed Mode	LS (low-sp Mo	eed main) de	LV (low- main)	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp high-/low-level width	tкн2, tк∟2	$2.7 V \le V_{DD} \le 3.6 V$ $2.3 V \le V_b \le 2.7 V$	tксү2/2 — 18		tксү2/2 — 50		tксү2/2 — 50		ns
		$2.4 V \le V_{DD} < 3.3 V$ $1.6 V \le V_b \le 2.0 V$	tксү2/2 — 50		tксү2/2 — 50		tксү2/2 — 50		ns
		$1.8 V \le V_{DD} < 3.3 V$ $1.6 V \le V_b \le 2.0 V^{Note 2}$	-		tксү2/2 — 50		tксү2/2 — 50		ns
SIp setup time (to SCKp↑) ^{Note 3}	tsık2	$2.7 V \le V_{DD} \le 3.6 V$ $2.3 V \le V_b \le 4.0 V$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$2.4 V \le V_{DD} < 3.3 V$ $1.6 V \le V_b \le 2.0 V$	1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
		$1.8 V \le V_{DD} < 3.3 V$ $1.6 V \le V_b \le 2.0 V^{Note 2}$	-		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) ^{Note 3}	tksi2	$2.7 V \le V_{DD} \le 3.6 V$ $2.3 V \le V_b \le 4.0 V$	1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
		$2.4 V \le V_{DD} < 3.3 V$ $1.6 V \le V_b \le 2.0 V$	1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
		$1.8 V \le V_{DD} < 3.3 V$ $1.6 V \le V_b \le 2.0 V^{Note 2}$	-		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp output ^{Note 4}	tĸso2	$\begin{array}{l} 2.7 \ V \leq V_{DD} < 3.6 \ V \\ 2.3 \ V \leq V_b \leq 2.7 \ V \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		2/fмск + 214		2/fмск + 573		2/fмск + 573	ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V \\ 1.6 \ V \leq V_b \leq 2.0 \ V \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns
				-		2/fмск + 573		2/fмск + 573	ns

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{\text{DD}} = \text{V}_{\text{DD}_{\text{RF}}} = \text{AV}_{\text{DD}_{\text{RF}}} \le 3.6 \text{ V}, \text{V}_{\text{SS}} = \text{V}_{\text{SS}_{\text{RF}}} = \text{AV}_{\text{SS}_{\text{RF}}} = 0 \text{ V})$

(2/2)

Notes 1. Transfer rate in the SNOOZE mode : MAX. 1 Mbps

- **2.** Use it with $V_{DD} \ge V_b$.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(11) Communication at different potential (1.8 V, 2.5 V) (simplified I²C mode)

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \leq \text{V}_{\text{DD}} = \text{V}_{\text{DD}_{\text{RF}}} = \text{AV}_{\text{DD}_{\text{RF}}} \leq 3.6 \text{ V}, \text{V}_{\text{SS}} = \text{V}_{\text{SS}_{\text{RF}}} = \text{AV}_{\text{SS}_{\text{RF}}} = 0 \text{ V})$

(1/2)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V \\ 2.3 \ V \leq V_b \leq 2.7 \ V \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		1000 Note 1		300 Note 5		300 Note 5	kHz
		$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V \\ 2.3 \ V \leq V_b \leq 2.7 \ V \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		400 Note 1		300 Note 5		300 Note 5	kHz
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V \\ 1.6 \ V \leq V_b \leq 2.0 \ V \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$		300 Note 1		300 Note 1		300 Note 1	kHz
		$\begin{split} 1.8 \ V &\leq V_{DD} < 3.3 \ V \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}} \\ C_b &= 100 \ \text{pF}, \ R_b = 5.5 \ \text{k}\Omega \end{split}$		-		300 Note 1		300 Note 1	kHz
Hold time when SCLr = "L"	t∟ow	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V \\ 2.3 \ V \leq V_b \leq 2.7 \ V \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	475		1550		1550		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V \\ 2.3 \ V \leq V_b \leq 2.7 \ V \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1150		1550		1550		ns
		$2.4 V \le V_{DD} < 3.3 V$ $1.6 V \le V_b \le 2.0 V$ $C_b = 100 \text{ pF}, R_b = 5.5 \text{ k}\Omega$	1150		1550		1550		ns
			_		1550		1550		ns
Hold time when SCLr = "H"	tніgн	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V \\ 2.3 \ V \leq V_b \leq 2.7 \ V \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	200		610		610		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V \\ 2.3 \ V \leq V_b \leq 2.7 \ V \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	600		610		610		ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V \\ 1.6 \ V \leq V_b \leq 2.0 \ V \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	610		610		610		ns
		$ \begin{split} & 1.8 \ V \leq V_{DD} < 3.3 \ V \\ & 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}} \\ & C_b = 100 \ \text{pF}, \ R_b = 5.5 \ \text{k}\Omega \end{split} $	_		610		610		ns

(Note, Caution and Remarks are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - 2. r: IIC number (r = 00, 10), g: PIM, POM number (g = 0, 1)
 - 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02))

2.7.2 Serial interface IICA

(1) I^2C standard mode

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \leq \text{V}_{DD} = \text{V}_{DD_{RF}} = \text{AV}_{DD_{RF}} \leq 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_{RF}} = \text{AV}_{SS_{RF}} = 0 \text{ V})$

Parameter	Symbol	Conditions H		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Standard	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	0	100	0	100	0	100	kHz
		mode: $f_{CLK} \ge 1 \text{ MHz}$	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	0	100	0	100	0	100	kHz
			$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	-	-	0	100	0	100	kHz
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		-		-	0	100	kHz
Setup time of restart	tsu:sta	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.0$	6 V	4.7		4.7		4.7		μs
condition		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.0$	6 V	4.7		4.7		4.7		μs
		$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 3.0$	6 V	-	_	4.7		4.7		μs
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.0$	6 V	-	-		-	4.7		μs
Hold time ^{Note 1}	thd:sta	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.0$	6 V	4.0		4.0		4.0		μs
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.0$	6 V	4.0		4.0		4.0		μs
		1.8 V ≤ V _{DD} ≤ 3.6 V		-	_	4.0		4.0		μs
		$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 3.0$	1.6 V ≤ V _{DD} ≤ 3.6 V		_		-	4.0		μs
Hold time when SCLA0 =	t LOW	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.0$	6 V	4.7		4.7		4.7		μs
"L"		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.0$	4.7		4.7		4.7		μs	
		$1.8 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$		_		4.7		4.7		μs
		$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 3.0$	$1.6 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$		_		-			μs
Hold time when SCLA0 =	t high	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		4.0		4.0		4.0		μs
"H"		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.0$	6 V	4.0		4.0		4.0		μs
		$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 3.0$	6 V	-	-	4.0		4.0		μs
		$1.6 V \le V_{DD} \le 3.0$	6 V	-	-	-	-	4.0		μs
Data setup time	tsu:dat	$2.7 V \leq V_{DD} \leq 3.0$	6 V	250		250		250		ns
(reception)		$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$		250		250		250		ns
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		_		250		250		ns
		$1.6 V \le V_{DD} \le 3.6 V$		-		-		250		ns
Data hold time	thd:dat	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.0$	6 V	0	3.45	0	3.45	0	3.45	μs
(transmission) ^{Note 2}		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.0$	6 V	0	3.45	0	3.45	0	3.45	μs
		$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 3.0$	6 V	-	-	0	3.45	0	3.45	μs
		$1.6 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$		-	_	_		0	3.45	μs
Setup time of stop	tsu:sto	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.0$	6 V	4.0		4.0		4.0		μs
condition		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.0$	6 V	4.0		4.0		4.0		μs
		$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 3.0$	6 V		-	4.0		4.0		μs
		$1.6 V \le V_{DD} \le 3.0$	6 V		-		-	4.0		μs
Bus-free time	t BUF	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.0$	6 V	4.7		4.7		4.7		μs
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.0$	6 V	4.7		4.7		4.7		μs
		$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 3.0$	6 V		-	4.7		4.7		μs
		$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$		_		_		4.7		μs

(Notes, Caution and Remark are listed on the next page.)

(2) I²C fast mode

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} = \text{V}_{DD_{RF}} = \text{AV}_{DD_{RF}} \le 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_{RF}} = \text{AV}_{SS_{RF}} = 0 \text{ V})$

Parameter	Symbol	Conditions H		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Fast mode:	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	0	400	0	400	0	400	kHz
		fc∟к ≥ 3.5 MHz	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	0	400	0	400	0	400	kHz
			$1.8 V \le V_{DD} \le 3.6 V$	-	_	0	400	0	400	kHz
Setup time of restart	tsu:sta	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6$	V	0.6		0.6		0.6		μs
condition		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6$	V	0.6		0.6		0.6		μs
		$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 3.6$	V	-	_	0.6		0.6		μs
Hold time ^{Note 1}	thd:sta	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6$	$1.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$			0.6		0.6		μs
		$2.4 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$		0.6		0.6		0.6		μs
		$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$		_		0.6		0.6		μs
Hold time when SCLA0 =	t LOW	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		1.3		1.3		1.3		μs
"L"		$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$		1.3		1.3		1.3		μs
		$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$		-	_	1.3		1.3		μs
Hold time when SCLA0 =	t high	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$		0.6		0.6		0.6		μs
"H"		$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$		0.6		0.6		0.6		μs
		$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$		-	_	0.6		0.6		μs
Data setup time	tsu:dat	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		100		100		100		μs
(reception)		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		100		100		100		μs
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		-	_	100		100		μs
Data hold time	thd:dat	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		0	0.9	0	0.9	0	0.9	μs
(transmission) ^{Note 2}		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		0	0.9	0	0.9	0	0.9	μs
		$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 3.6$	V	-		0	0.9	0	0.9	μs
Setup time of stop	tsu:sto	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6$	V	0.6		0.6		0.6		μs
condition		$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$		0.6		0.6		0.6		μs
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		-	_	0.6		0.6		μs
Bus-free time	t BUF	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6$	V	1.3		1.3		1.3		μs
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6$	V	1.3		1.3		1.3		μs
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		-	_	1.3		1.3		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- RemarkThe maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up
resistor) at that time in each mode are as follows.
Fast mode:Cb = 320 pF, Rb = 1.1 k\Omega

(3) I^2C fast mode plus

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \leq \text{V}_{DD} = \text{V}_{DD_{RF}} = \text{AV}_{DD_{RF}} \leq 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_{RF}} = \text{AV}_{SS_{RF}} = 0 \text{ V})$

Parameter	Symbol	Cor	nditions	HS (hig main)	h-speed Mode	LS (low main)	v-speed Mode	LV (low main)	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Fast mode plus: f _{CLK} ≥ 10 MHz	$2.7~V \le V_{\text{DD}} \le 3.6~V$	0	1000	-	-		-	kHz
Setup time of restart condition	t su:sta	$2.7 \text{ V} \leq V_{\text{DD}} \leq 3.6$	V	0.26		-			-	
Hold time ^{Note 1}	thd:sta	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6$	V	0.26		-	_		_	μs
Hold time when SCLA0 = "L"	t LOW	$2.7 V \le V_{DD} \le 3.6 V$ 0.5 –		_		-		μs		
Hold time when SCLA0 = "H"	tніgн	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6$	V	0.26		-			_	μs
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6$	V	50		-	-		-	μs
Data hold time (transmission) ^{Note 2}	t hd:dat	$2.7 V \le V_{DD} \le 3.6 V$ 0 0.45 -			_	μs				
Setup time of stop condition	tsu:sto	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6$	V	0.26		-	_		_	
Bus-free time	t BUF	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6$	V	0.5		-	_		_	μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows. Fast mode plus: $C_b = 120 \text{ pF}$, $R_b = 1.1 \text{ k}\Omega$

IICA serial transfer timing

Remark n = 0

2.8.2 Temperature sensor and internal reference voltage characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} = \text{V}_{DD_{RF}} = \text{AV}_{DD_{RF}} \le 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_{RF}} = \text{AV}_{SS_{RF}} = 0 \text{ V}, \text{HS (high-speed main) mode)}$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	Fvtmps	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tамр		5			μs

2.8.3 POR circuit characteristics

(T_A = -40 to +85°C, Vss = Vss_rF = AVss_rF = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Rise time	1.47	1.51	1.55	V
	VPDR	Fall time	1.46	1.50	1.54	V
Minimum pulse width ^{Note}	Tpw	Other than STOP/SUB_RUN/SUB_HALT	300			μs

Note This is the time required for the POR circuit to execute a reset operation when V_{DD} falls below V_{PDR}. When the main system clock (f_{MAIN}) has been stopped by setting bit 0 (HIOSTOP) and bit 7 (MSTOP) of the clock operation status control register (CSC) or when the microcontroller enters STOP mode, this is the time required for the POR circuit to execute a reset operation between when V_{DD} falls below 0.7 V and when V_{DD} rises to V_{POR} or higher.

2.9.2 RF reception characteristics

Unless specified otherwise, the measurement is performed by our evaluation board.

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
RF input frequency	RFrxfrin			2402		2480	MHz
Maximum input level	RFLEVL	PER ≤ 30.8%	RF low power mode	-10	0	-	dBm
		RF input pin	RF normal mode	-10	1	-	dBm
			RF high performance mode	-10	1	-	dBm
Receiver sensitivity	RFsty	PER ≤ 30.8%	RF low power mode	-	-60	-50	dBm
			RF normal mode	-	-90	-70	dBm
			RF high performance mode	-	-92	-70	dBm
Secondary radiation	RFRXSP		30 MHz to 1 GHz	-	-72	-57	dBm/
							100 kHz
			1 GHz to 12 GHz	-	-57	-54	dBm/
							100 kHz
Common channel rejection ratio	RFCCR	PER ≤ 30.8%, Pri	f = –67dBm	-21	-12	-	dB
Adjacent channel	RFADCR	PER ≤ 30.8%	±1 MHz	-15	-5	-	dB
rejection ratio		Prf =67 dBm	±2 MHz	17	29	-	dB
			±3 MHz	27	34	-	dB
Blocking	RFblk	PER ≤ 30.8%	30 MHz - 2000 MHz	-30	-13	-	dB
		Prf =67 dBm	2000 MHz to 2399 MHz	-35	-30	-	dBm
			2484 MHz to 3000 MHz	-35	-30	-	dBm
			> 3000 MHz	-30	-17	-	dBm
Frequency tolerance	RFrxferr	PER ≤ 30.8%		-250		+250	kHz
RSSI accuracy	RFRSSIS	T _A = +25°C, -70 d	dBm ≤ Prf ≤ –10 dBm	-4	0	4	dB

(3) RF Output Power during Transmission

Unless specified otherwise, the measurement is performed by our evaluation board. Current consumption is not including MCU unit.

2.13 Timing of Entry to Flash Memory Programming Modes

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \leq \text{V}_{DD} = \text{V}_{DD_{RF}} = \text{AV}_{DD_{RF}} \leq 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_{RF}} = \text{AV}_{SS_{RF}} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	t suinit	POR and LVD reset must be released before the external reset is released.		100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	t su	POR and LVD reset must be released before the external reset is released.	10		μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must be released before the external reset is released.	1		ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
 - tsu: Time to release the external reset after the TOOL0 pin is set to the low level
 - t_{HD}: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

