

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	32
Program Memory Size	192KB (192K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-WFQFN Exposed Pad
Supplier Device Package	48-HWQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f11aghanb-20

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings (T_A = 25°C) (1/2)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	VDD	VDD	-0.5 to +6.5	V
	VDDRF1	Vdd_rf	-0.5 to +4.0	V
	VDDRF2	AVdd_rf	–0.5 to +4.0	V
	VDDRF3	DCLIN	–0.5 to +4.0	V
	VSSRF	Vss_rf, AVss_rf	-0.5 to +0.3	V
Input voltage	VI1	P00, P01, P02, P03, P10, P11, P12, P14, P15, P16, P20, P21, P22, P23, P30, P40, P120, P121, P122, P123, P124, P137, P140, P147, RESET	-0.3 to V _{DD} +0.3 ^{Note 1}	V
	V ₁₂	P60, P61	-0.3 to +6.5	V
	VIRF1	GPIO0, GPIO1, GPIO2, GPIO3	-0.3 to V _{DD_RF} +0.3 Note 2	V
	VIRF2	ANT	–0.5 to +1.4	V
Output voltage	Vo	P00, P01, P02, P03, P10, P11, P12, P14, P15, P16, P20, P21, P22, P23, P30, P40, P60, P61, P120, P130, P140, P147	-0.3 to V _{DD} +0.3 ^{Note 1}	V
	VORF	GPI00, GPI01, GPI02, GPI03, DCLOUT	-0.3 to V _{DD_RF} +0.3 ^{Note 2}	V
Analog input voltage	Vai	ANI0, ANI1, ANI2, ANI3, ANI16, ANI17, ANI18, ANI19	-0.3 to V_{DD}+0.3 and -0.3 to V_{REF(+)}+0.3 Notes 2, 4	V
REGC pin input voltage	VIREGC	REGC	–0.3 to +2.8 and –0.3 to V _{DD} +0.3 ^{Note 3}	V
IC pin input voltage	Viic	IC0, IC1	–0.5 to +0.3	V

Notes 1. Must be 6.5 V or lower.

- 2. Must be 4.0 V or lower.
- **3.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
- 4. Do not exceed AV_{REF(+)} + 0.3 V in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** $AV_{REF(+)}$: + side reference voltage of the A/D converter.
 - 3. Reference voltage is Vss.

2.4.3 Output voltage

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \leq \text{V}_{DD} = \text{V}_{DD_{RF}} = \text{AV}_{DD_{RF}} \leq 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_{RF}} = \text{AV}_{SS_{RF}} = 0 \text{ V})$

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Output	V _{OH1}	Iон = –2.0 mA	P00, P01, P02, P03, P10,	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	Vdd - 0.6			V
voltage,		Іон = –1.5 mA	P11, P12, P13, P14, P15,	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	Vdd - 0.5			V
high		Iон = –1.0 mA	P16, P30, P40, P120, P140, P147	$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	V _{DD} – 0.5			V
		Іон = –10 µ А	P130		Vdd - 0.3			V
Voh2 Vohr	Vон2	Іон = –100 µA	P20, P21, P22, P23		Vdd - 0.5			V
	VOHRF	Iон = –2.0 mA	GPIO0, GPIO1, GPIO2,	$2.7~V \leq V_{\text{DD}_\text{RF}} \leq 3.6~V$	$V_{\text{DD}_{\text{RF}}} - 0.3$			V
	$I_{OH} = -1.5 \text{ mA}$ GPIO3	$1.8 \text{ V} \leq \text{V}_{\text{DD}_{\text{RF}}} \leq 3.6 \text{ V}$	$V_{DD_{RF}} - 0.3$			V		
Output	Vol1	lo∟ = 3.0 mA	P00, P01, P02, P03, P10,	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$			0.6	V
voltage, low		lo∟ = 1.5 mA	P11, P12, P13, P14, P15,				0.4	V
		lo∟ = 0.6 mA	P16, P30, P40, P120, P130, P140 P147	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$			0.4	V
		lo∟ = 0.3 mA		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$			0.4	V
	Vol2	IoL = 400 μA	P20, P21, P22, P23				0.4	V
	VOLRF		GPIO0, GPIO1, GPIO2, GPIC	03			0.3	V

Caution P00, P02, P03, and P10 to P15 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.4.4 Input leakage current

(T _A = -40 to +85°C	, 1.6 V ≤ V _{DD} =	$V_{DD_{RF}} = AV_{DD_{RF}} \le 3$.6 V, Vss = Vss_rf =	= AVss_rf = 0 V)
--------------------------------	-----------------------------	------------------------------------	----------------------	------------------

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішні	VI = V _{DD}	P00, P01, P02, P03, P P15, P16, P30, P40, P P147	10, P11, P12, P13, P14, 60, P61, P120, P140,			1	μA
	ILIH2	VI = V _{DD}	P20, P21, P22, P23, P137, RESET				1	μA
	Іцнз	VI = V _{DD}	P121, P122, P123,	In input port			1	μA
			P124 (EXCLK,	In external clock input			1	μA
_			In resonator connection			10	μA	
	ILIHRF	VI = V _{DD_RF}	GPIO0, GPIO1, GPIO2, GPIO3				10	μA
Input leakage current, low	Ilil1	VI = Vss	P00, P01, P02, P03, P P15, P16, P30, P40, P P147	10, P11, P12, P13, P14, 60, P61, P120, P140,			-1	μA
	ILIL2	VI = Vss	P20, P21, P22, P23, P	137, RESET			-1	μA
	Ilil3	VI = Vss	P121, P122, P123,	In input port			-1	μA
	P124 (EXCLK, In	In external clock input			-1	μA		
	EXCLKS) (XT1, XT2		EXCLKS) (X11, X12)	In resonator connection			-10	μA
	ILILRF	VI = Vss_rf	GPIO0, GPIO1, GPIO2	2, GPIO3			-10	μA

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.4.5 Resistance

Items	Symbol	Conditions			TYP.	MAX.	Unit
On-chip pll-up resistance	Ru	VI = Vss	P00, P01, P02, P03, P10, P11, P12, P13, P14, P15, P16, P30, P40, P120, P140, P147	10	20	100	kΩ
			In input mode				

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(2) Standby current

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \leq \text{V}_{DD} = \text{V}_{DD_{RF}} = \text{AV}_{DD_{RF}} \leq 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_{RF}} = \text{AV}_{SS_{RF}} = 0 \text{ V})$

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
HALT	IDD2	HS (high-speed	f⊪ = 32 MHz ^{Note 4}	V _{DD} = 3.0 V		0.62	1.86	mA
current		main) mode ^{Note 7}	f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 3.0 V		0.50	1.45	mA
			f⊪ = 16 MHz ^{Note 4}	V _{DD} = 3.0 V		0.44	1.11	mA
		LS (low-speed main)	f⊪ = 8 MHz ^{Note 4}	V _{DD} = 3.0 V		290	620	μA
		mode Note 7		V _{DD} = 2.0 V		290	620	μA
		LV (low-voltage	f⊪ = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		440	680	μA
		main) mode ^{Note 7}		V _{DD} = 2.0 V		440	680	μA
		HS (high-speed main) mode ^{Note 7}	f _{MX} = 20 MHz ^{Note 3}	V_{DD} = 3.0 V ^{Note 9}		0.31	1.08	mA
						0.48	1.28	mA
			f _{MX} = 10 MHz ^{Note 3}	V _{DD} = 3.0 V ^{Note 9}		0.21	0.63	mA
						0.28	0.71	mA
		LS (low-speed main)	f _{MX} = 8 MHz ^{Note 3}	V_{DD} = 3.0 V ^{Note 9}		110	360	μA
	mode ^{Note 7}				160	420	μA	
			V _{DD} = 2.0 V ^{Note 9}		110	360	μA	
						160	420	μA
		Subsystem clock	f _{SUB} = 32.768kHz ^{Note 5}	T _A = -40°C ^{Note 9}		0.28	0.61	μA
		operation				0.47	0.80	μA
				T _A = +25°C ^{Note 9}		0.34	0.61	μA
						0.53	0.80	μA
				$T_A = +50^{\circ}C^{\text{Note 9}}$		0.41	2.30	μA
						0.60	2.49	μA
				$T_A = +70^{\circ}C^{\text{ Note 9}}$		0.64	4.03	μA
						0.83	4.22	μA
				$T_A = +85^{\circ}C^{\text{ Note 9}}$		1.09	8.04	μA
						1.28	8.23	μA
STOP	Ірдз	Ta = -40°C				0.19	0.52	μA
current Note 6, 8		TA = +25°C		0.25	0.52	μA		
		TA = +50°C				0.32	2.21	μA
		TA = +70°C				0.55	3.94	μA
		TA = +85°C				1.00	7.95	μA

(Notes and Remarks are listed on the next page.)

(3) Current for each peripheral circuit

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \leq \text{V}_{DD} = \text{V}_{DD_{RF}} = \text{AV}_{DD_{RF}} \leq 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_{RF}} = \text{AV}_{SS_{RF}} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscillator operating current	I _{FIL} Note 1				0.20		μA
Current when PCLBUZ0 and EXSLK_RF are connected together and MCU supplies RF slow clock to RF	I _{PCEX} Note 1				1.0		μA
RTC operating current	IRTC Notes 1, 2, 3				0.02		μA
12-bit interval timer operating current	lı⊤ ^{Notes 1, 2, 4}				0.02		μA
Watchdog timer operating current	WDT Notes 1, 2, 5	f⊩ is 15 kHz			0.22		μA
A/D converter operating current	ADC Notes 1, 6	When conversion at maximum speed	$AV_{REFP} = V_{DD} = 3.0 V$		0.5	0.7	mA
A/D converter reference voltage current	ADREF Note 1				75.0		μA
Thermometer sensor operating current	ITMPS Note 1				75.0		μA
LVD operating current	LVI Note 1, 7				0.08		μA
Flash self-programming operating current	FSP Notes 1, 9				2.50	12.20	mA
BGO current	IBGO Notes 1, 8				2.50	12.20	mA
SNOOZE operating current	ISNOZ Note 1	ADC operation	The mode is performed Note 10		0.50	0.60	mA
			The A/D conversion operations are performed, Low voltage mode, AV _{REFP} = V _{DD} = 3.0 V		1.20	1.44	mA
	CSI/UART operation			0.70	0.84	mA	

Notes 1. Current flowing to VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the XT1 oscillator). The value of the current value of the RL78 microcontroller is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. Also, add the value of IFIL in case of selecting low-speed on-chip oscillator. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- **4.** Current flowing only to the 12 bit interval timer (including the operating current of the low-speed on-chip oscillator). The current value of the MCU is the sum of IDD1 or IDD2 and IIT when fcLK = fsUB when the watchdog timer operates in STOP mode. When using low-speed on-chip oscillator, add IFIL.
- **5.** Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the MCU is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
- 6. Current flowing only to the A/D converter. The current value of MCU is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 7. Current flowing only to the LVD circuit. The current value of MCU is the sum of IDD1, IDD2 or IDD3 and ILVI when the LVD circuit is in operation.
- 8. Current flowing when operates rewriting to Data flash.
- **9.** Current flowing when operates flash self-programming.
- **10.** Shift time to the SNOOZE mode is referred User's Manual: Hardware.

(**Remarks** are listed on the next page.)

AC Timing Test Points

External System Clock Timing

TI/TO Timing

Interrupt Request Input Timing

RESET Input Timing

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks1. q: UART number (q = 0, 1), g: PIM and POM number (g = 0, 1)

fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00, 01))

(3) During communication at same potential (CSI mode) (Internal communication, supporting CSI21 only)

Parameter	Symbol	Conditions		HS (high main)	n-speed Mode	LS (low main)	/-speed Mode	LV (low- main)	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tĸcyı ≥ 2/fc∟ĸ ^{Note}	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	250		250		500		ns
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	-		250		500		ns
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	_		-		500		ns

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \leq \text{V}_{DD} = \text{V}_{DD_{RF}} = \text{AV}_{DD_{RF}} \leq 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_{RF}} = \text{AV}_{SS_{RF}} = 0 \text{ V})$

Note Use the fclk more than 6.5 MHz and lower than 24 MHz.

Remark This specification is for CSI21 only.

(4) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, supporting CSI00 and CSI20)

Parameter	Symbol	Conditions		HS (high-s Mo	peed main) ode	LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkCY1	t ксү1 ≥	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	125		500		1000		ns
		4/ fclк	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	250		500		1000		ns
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	_		500		1000		ns
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	_		-		1000		ns
SCKp high-/low- level width	tкнı, tк∟ı	2.7 V ≤ V _{DD} ≤	≤ 3.6 V	tксү1/2 – 18		tксү1/2 – 50		tксү1/2 - 50		ns
		$2.4 V \le V_{DD} \le 3.6 V$		tксү1/2 — 38		tксү1/2 - 50		tксү1/2 - 50		ns
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		_		tксү1/2 – 50		tксү1/2 - 50		ns
	1		$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$			Ι		tксү1/2 – 100		ns
SIp setup time	tsik1	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		44		110		110		ns
(to SCKp↑) Note 1		$2.4 \text{ V} \leq \text{V}_{\text{DD}}$	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$			110		110		ns
		1.8 V ≤ V _{DD}	≤ 3.6 V	-		110		110		ns
		1.6 V ≤ V _{DD}	≤ 3.6 V	-		-		220		ns
SIp hold time	tksi1	2.7 V ≤ V _{DD}	≤ 3.6 V	19		19		19		ns
(from SCKp↑) Note		2.4 V ≤ V _{DD}	≤ 3.6 V	19		19		19		ns
		1.8 V ≤ V _{DD}	≤ 3.6 V	-		19		19		ns
		1.6 V ≤ V _{DD}	≤ 3.6 V	-		-		19		ns
Delay time from	tkso1	C = 30 pF	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		25		25		25	ns
SCKp↓ to SOp		Note 3	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		25		25		25	ns
σαιράι			$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		-		25		25	ns
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		-		_		25	ns

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \leq \text{V}_{DD} = \text{V}_{DD_{RF}} = \text{AV}_{DD_{RF}} \leq 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_{RF}} = \text{AV}_{SS_{RF}} = 0 \text{ V})$

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

 When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

3. C is the load capacitance of the SCKp and SOp output lines.

- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remarks 1.** p: CSI number (p = 00, 10), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 0, 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02, 11))

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 20), m: Unit number (m = 0, 1),
 - n: Channel number (n = 0), g: PIM and POM numbers (g = 1)
 - fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00, 10))

CSI mode connection diagram (during communication at same potential)

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

Remarks 1. R_b[Ω]:Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance

2. r: IIC number (r = 00, 20), g: PIM number (g =1), h: POM number (h = 1)

fMCK: Serial array unit operation clock frequency
 (Operation clockw to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0), mn = 00, 02)

Parameter	Symbol	Conditions	HS (hig main)	h-speed Mode	LS (low-sp Mo	oeed main) ode	LV (low main)	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Delay time from SCKp↓ to SOp output ^{Note 1, 3}	tkso1	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V \\ 2.3 \; V \leq V_b \leq 2.7 \; V \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		195		195		195	ns
		$2.4 V \le V_{DD} < 3.3 V$ $1.6 V \le V_b \le 2.0 V$ $C_b = 30 pF, R_b = 5.5 k\Omega$		483		483		483	ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 5}} \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$		_		483		483	ns
Slp setup time (to SCKp↓) ^{Note 2, 4}	tsik1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V \\ 2.3 \ V \leq V_b \leq 2.7 \ V \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	44		110		110		ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V \\ 1.6 \ V \leq V_b \leq 2.0 \ V \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	110		110		110		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 5}} \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	-		110		110		ns
SIp hold time (from SCKp↓) ^{Note 2, 4}	tksi1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V \\ 2.3 \ V \leq V_b \leq 2.7 \ V \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	19		19		19		ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V \\ 1.6 \ V \leq V_b \leq 2.0 \ V \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	19		19		19		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 5}} \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	-		19		19		ns
Delay time from SCKp↑ to SOp output ^{Note 2, 4}	tĸso1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V \\ 2.3 \ V \leq V_b \leq 2.7 \ V \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		25		25		25	ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V \\ 1.6 \ V \leq V_b \leq 2.0 \ V \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$		25		25		25	ns
				_		25		25	ns

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \leq \text{V}_{DD} = \text{V}_{DD_RF} = \text{AV}_{DD_RF} \leq 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_RF} = \text{AV}_{SS_RF} = 0 \text{ V})$

(2/2)

Notes 1. Supporting CSI00 and CSI20.

- 2. Supporting CSI00 only.
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
- 4. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **5.** Use it with $V_{DD} \ge V_b$.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VH and VL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

(10) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Conditions H		HS (higl main)	h-speed Mode	LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1	t ксү2	$2.7 V \le V_{DD} \le 3.6 V$ $2.3 V \le V_b \le 2.7 V$	24 MHz < fмск	20/ fмск		-		-		ns
			20 MHz < fмск ≤ 24 MHz	16/ fмск		-		-		ns
			16 MHz < fмск ≤ 20 MHz	14/ fмск		-		_		ns
			8 MHz < f _{мск} ≤ 16 MHz	12/ fмск		-		-		ns
			4 MHz < f _{мск} ≤ 8 MHz	8/fмск		16/ fмск		-		ns
			fмск ≤ 4MHz	6/fмск		10/ fмск		10/ fмск		ns
		$2.4 V \le V_{DD} < 3.3 V$ $1.6 V \le V_b \le 2.0 V$	24 MHz < fмск	48/ fмск		_		-		ns
			20 MHz < fмск ≤ 24 MHz	36/ fмск		_		-		ns
			16 MHz < fмск ≤ 20 MHz	32/ fмск		_		-		ns
			8 MHz < f _{мск} ≤ 16 MHz	26/ fмск		-		-		ns
			4 MHz < f _{мск} ≤ 8 MHz	16/ fмск		16/ fмск		-		ns
			fмск ≤ 4MHz	10/ fмск		10/ fмск		10/ fмск		ns
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V}$	24 MHz < fмск	-		-		-		ns
		1.6 V ≤ V _b ≤ 2.0 V Note 2	20 MHz < fмск ≤ 24 MHz	-		-		-		ns
			16 MHz < fмск ≤ 20 MHz	-		-		-		ns
			8 MHz < fмск ≤ 16 MHz	-		-		-		ns
			4 MHz < fмск ≤ 8 MHz	-		16/ fмск		-		ns
			fмск ≤ 4MHz	-		10/ fмск		10/ fмск		ns

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} = \text{V}_{DD_RF} = A\text{V}_{DD_RF} \le 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_RF} = A\text{V}_{SS_RF} = 0 \text{ V})$

(1/2)

(Notes and $\ensuremath{\text{Caution}}$ are listed on the next page.)

Parameter	Symbol	Conditions HS (high-speed main) Mode LS (low-speed main) LV (low-volta main) Mode		-voltage Mode	Unit				
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp high-/low-level width	tкн2, tкL2	$2.7 V \le V_{DD} \le 3.6 V$ $2.3 V \le V_b \le 2.7 V$	tксү2/2 — 18		tксү2/2 — 50		tксү2/2 — 50		ns
		$2.4 V \le V_{DD} < 3.3 V$ $1.6 V \le V_b \le 2.0 V$	tксү2/2 — 50		tксү2/2 — 50		tксү2/2 — 50		ns
		$1.8 V \le V_{DD} < 3.3 V$ $1.6 V \le V_b \le 2.0 V^{Note 2}$	-		tксү2/2 — 50		tксү2/2 — 50		ns
SIp setup time (to SCKp↑) ^{Note 3}	tsik2	$2.7 V \le V_{DD} \le 3.6 V$ $2.3 V \le V_b \le 4.0 V$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$2.4 V \le V_{DD} < 3.3 V$ $1.6 V \le V_b \le 2.0 V$	1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
		$1.8 V \le V_{DD} < 3.3 V$ $1.6 V \le V_b \le 2.0 V^{Note 2}$	-		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) ^{Note 3}	tksı2	$2.7 V \le V_{DD} \le 3.6 V$ $2.3 V \le V_b \le 4.0 V$	1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
		$2.4 V \le V_{DD} < 3.3 V$ $1.6 V \le V_b \le 2.0 V$	1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
		$1.8 V \le V_{DD} < 3.3 V$ $1.6 V \le V_b \le 2.0 V^{Note 2}$	-		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp output ^{Note 4}	tkso2	$\begin{array}{l} 2.7 \ V \leq V_{DD} < 3.6 \ V \\ 2.3 \ V \leq V_b \leq 2.7 \ V \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		2/fмск + 214		2/fмск + 573		2/f _{мск} + 573	ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V \\ 1.6 \ V \leq V_b \leq 2.0 \ V \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$		2/fмск + 573		2/f _{мск} + 573		2/f _{мск} + 573	ns
		$\begin{array}{l} 1.8 \; V \leq V_{DD} < 3.3 \; V \\ 1.6 \; V \leq V_b \leq 2.0 \; V^{\text{Note 2}} \\ C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$		-		2/fмск + 573		2/fмск + 573	ns

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{\text{DD}} = \text{V}_{\text{DD}_{\text{RF}}} = \text{AV}_{\text{DD}_{\text{RF}}} \le 3.6 \text{ V}, \text{V}_{\text{SS}} = \text{V}_{\text{SS}_{\text{RF}}} = \text{AV}_{\text{SS}_{\text{RF}}} = 0 \text{ V})$

(2/2)

Notes 1. Transfer rate in the SNOOZE mode : MAX. 1 Mbps

- **2.** Use it with $V_{DD} \ge V_b$.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

- Remarks 1.
 Rb[Ω]:Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance,

 Vb[V]: Communication line voltage
 - p: CSI number (p = 00, 20), m: Unit number, n: Channel number (mn = 00, 10), g: PIM and POM number (g = 0, 1)
 - fmcκ: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00, 10))

Parameter	Symbol	ol Conditions		nbol Conditions HS (high-speed main) Mode		n-speed Mode	LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.			
Data setup time (reception)	tsu:dat	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V \\ 2.3 \ V \leq V_b \leq 2.7 \ V \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/f _{МСК} + 135 ^{Note 3}		1/fмск + 190 Note 3		1/fмск + 190 Note 3		ns		
		$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V \\ 2.3 \ V \leq V_b \leq 2.7 \ V \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/f _{МСК} + 190 ^{Note 3}		1/fмск + 190 Note 3		1/fмск + 190 Note 3		ns		
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V \\ 1.6 \ V \leq V_b \leq 2.0 \ V \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	1/f _{МСК} + 190 ^{Note 3}		1/fмск + 190 Note 3		1/fмск + 190 Note 3		ns		
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}} \\ C_b = 100 \ \text{pF}, \ R_b = 5.5 \ \text{k}\Omega \end{array}$	-		1/fмск + 190 Note 3		1/fмск + 190 Note 3		ns		
Data hold time (transmission)	thd:dat	2.7 V \leq V _{DD} \leq 3.6 V 2.3 V \leq V _b \leq 2.7 V C _b = 50 pF, R _b = 2.7 k Ω	0 ^{Note 4}	305	0 ^{Note 4}	305	0 ^{Note 4}	305	ns		
		$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V \\ 2.3 \ V \leq V_b \leq 2.7 \ V \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	0 Note 4	355	0 Note 4	355	0 Note 4	355	ns		
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V \\ 1.6 \ V \leq V_b \leq 2.0 \ V \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	0 Note 4	405	0 ^{Note 4}	405	0 ^{Note 4}	405	ns		
			-	_	0 Note 4	405	0 Note 4	405	ns		

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} = \text{V}_{DD_RF} = \text{AV}_{DD_RF} \le 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_RF} = \text{AV}_{SS_RF} = 0 \text{ V})$

(2/2)

Notes 1. The value must also be $f_{MCK}/4$ or lower.

2. Use it with $V_{DD} \ge V_b$.

3. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (V_{DD} tolerance) mode for the SDAr pin and the N-ch open drain output (V_{DD} tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(2) I²C fast mode

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} = \text{V}_{DD_{RF}} = \text{AV}_{DD_{RF}} \le 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_{RF}} = \text{AV}_{SS_{RF}} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Fast mode:	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	0	400	0	400	0	400	kHz
		fc∟к ≥ 3.5 MHz	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	0	400	0	400	0	400	kHz
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	-	_	0	400	0	400	kHz
Setup time of restart	tsu:sta	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$		0.6		0.6		0.6		μs
condition		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6$	V	0.6		0.6		0.6		μs
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6$	V	-	_	0.6		0.6		μs
Hold time ^{Note 1}	thd:sta	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6$	V	0.6		0.6		0.6		μs
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		0.6		0.6		0.6		μs
		$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$		_		0.6		0.6		μs
Hold time when SCLA0 =	t∟ow	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		1.3		1.3		1.3		μs
"L"		$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$		1.3		1.3		1.3		μs
		$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$		-	_	1.3		1.3		μs
Hold time when SCLA0 = "H"	tніgн	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		0.6		0.6		0.6		μs
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		0.6		0.6		0.6		μs
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		-	_	0.6		0.6		μs
Data setup time	tsu:dat	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		100		100		100		μs
(reception)		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		100		100		100		μs
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		-	_	100		100		μs
Data hold time	thd:dat	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		0	0.9	0	0.9	0	0.9	μs
(transmission) ^{Note 2}		$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$		0	0.9	0	0.9	0	0.9	μs
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6$	V	-	_	0	0.9	0	0.9	μs
Setup time of stop	tsu:sto	$2.7 \text{ V} \leq V_{\text{DD}} \leq 3.6$	V	0.6		0.6		0.6		μs
condition		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6$	V	0.6		0.6		0.6		μs
		$1.8 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$		-	_	0.6		0.6		μs
Bus-free time	t BUF	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6$	V	1.3		1.3		1.3		μs
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6$	V	1.3		1.3		1.3		μs
		$1.8 V \le V_{DD} \le 3.6 V$		-	_	1.3		1.3		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- RemarkThe maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up
resistor) at that time in each mode are as follows.
Fast mode:Cb = 320 pF, Rb = 1.1 k\Omega

2.8.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

 $(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, \text{V}_{PDR} \leq \text{V}_{DD} = \text{V}_{DD_{RF}} = \text{AV}_{DD_{RF}} \leq 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS_{RF}} = \text{AV}_{SS_{RF}} = 0 \text{ V})$

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage	VLVI2	Power supply rise time	3.07	3.13	3.19	V
voltage			Power supply fall time	3	3.06	3.12	V
		VLVI3	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.9	2.96	3.02	V
		VLVI4	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.8	2.86	2.91	V
		VLVI5	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.7	2.75	2.81	V
		VLVI6	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.6	2.65	2.7	V
		VLVI7	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.5	2.55	2.6	V
		Vlvi8	Power supply rise time	2.45	2.5	2.55	V
			Power supply fall time	2.4	2.45	2.5	V
		VLV19	Power supply rise time	2.05	2.09	2.13	V
			Power supply fall time	2	2.04	2.08	V
		VLVI10	Power supply rise time	1.94	1.98	2.02	V
			Power supply fall time	1.9	1.94	1.98	V
		VLVI11	Power supply rise time	1.84	1.88	1.91	V
			Power supply fall time	1.8	1.84	1.87	V
		VLVI12	Power supply rise time	1.74	1.77	1.81	V
			Power supply fall time	1.7	1.73	1.77	V
		VLVI13	Power supply rise time	1.64	1.67	1.7	V
			Power supply fall time	1.6	1.63	1.66	V
Minimum puls	se width	Tlw		300			μs
Detection del	ay time					300	μs

2.9.2 RF reception characteristics

Unless specified otherwise, the measurement is performed by our evaluation board.

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
RF input frequency	RFrxfrin			2402		2480	MHz
Maximum input level	RFLEVL	PER ≤ 30.8%	RF low power mode	-10	0	-	dBm
		RF input pin	RF normal mode	-10	1	-	dBm
			RF high performance mode	-10	1	-	dBm
Receiver sensitivity	RFsty	PER ≤ 30.8%	RF low power mode	-	-60	-50	dBm
			RF normal mode	-	-90	-70	dBm
			RF high performance mode	-	-92	-70	dBm
Secondary radiation	RFRXSP		30 MHz to 1 GHz	-	-72	-57	dBm/
							100 kHz
			1 GHz to 12 GHz	-	-57	-54	dBm/
							100 kHz
Common channel rejection ratio	RFCCR	PER ≤ 30.8%, Pri	f = –67dBm	-21	-12	-	dB
Adjacent channel	RFADCR	PER ≤ 30.8%	±1 MHz	-15	-5	-	dB
rejection ratio		Prf =67 dBm	±2 MHz	17	29	-	dB
			±3 MHz	27	34	-	dB
Blocking	RFblk	PER ≤ 30.8%	30 MHz - 2000 MHz	-30	-13	-	dB
		Prf =67 dBm	2000 MHz to 2399 MHz	-35	-30	-	dBm
			2484 MHz to 3000 MHz	-35	-30	-	dBm
			> 3000 MHz	-30	-17	-	dBm
Frequency tolerance	RFrxferr	PER ≤ 30.8%		-250		+250	kHz
RSSI accuracy	RFRSSIS	T _A = +25°C, -70 d	dBm ≤ Prf ≤ –10 dBm	-4	0	4	dB

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.