

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	32
Program Memory Size	192KB (192K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-WFQFN Exposed Pad
Supplier Device Package	48-HWQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f11aghanb-40

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RL78/G1D CHAPTER 1 OUTLINE

ROM, RAM capacities

Flash ROM	Data Flash	RAM	RL78/G1D
128 KB	8 KB	12 KB	R5F11AGG
192 KB	8 KB	16 KB	R5F11AGH
256 KB	8 KB	20 KB ^{Note}	R5F11AGJ

Note 19 KB when the self-programming function is used.

Caution P00, P02, P03, and P10 to P15 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.4.2 Input current

(TA = -40 to +85°C, 1.6 V \leq VDD = VDD_RF = AVDD_RF \leq 3.6 V, Vss = Vss_RF = AVss_RF = 0 V)

Items	Symbol	Condition	ns	MIN.	TYP.	MAX.	Unit
Input voltage, high	V _{IH1}	P00, P01, P02, P03, P10, P11, P12, P13, P14, P15, P16, P30, P40, P120, P130, P140, P147	Normal mode (I _{THL} = 1)	0.8Vpd		V _{DD}	V
	V _{IH2}	P01, P03, P10, P11, P13, P14, P15, P16	TTL mode 3.3 V ≤ V _{DD} ≤ 3.6 V	2.0		V _{DD}	V
			TTL mode 1.6 V ≤ V _{DD} < 3.3V	1.5		V _{DD}	V
	V _{IH3}	P20, P21, P22, P23		0.7V _{DD}		V _{DD}	V
	V _{IH4}	P60, P61		0.7V _{DD}		6.0	V
	V _{IH5}	P121, P122, P123, P124, P137,	RESET	0.8V _{DD}		V_{DD}	V
	VIHRF	GPIO0, GPIO1, GPIO2, GPIO3		0.85VDD_RF		V _{DD_RF}	V
Input voltage, low	VIL1	P00, P01, P02, P03, P10, P11, P12, P13, P14, P15, P16, P30, P40, P120, P140, P147	Normal mode (I _{THL} = 1)	0		0.2V _{DD}	V
	V _{IL2}	P01, P03, P10, P11, P13, P14, P15, P16	TTL mode 3.3 V ≤ V _{DD} ≤ 3.6 V	0		0.5	V
			TTL mode 1.6 V ≤ V _{DD} < 3.3V	0		0.32	V
	VIL3	P20, P21, P22, P23		0		0.3V _{DD}	V
	VIL4	P60, P61		0		0.3V _{DD}	V
	VIL5	P121, P122, P123, P124, P137,	RESET	0		0.2V _{DD}	V
	VILRF	GPIO0, GPIO1, GPIO2, GPIO3	·	0		0.1V _{DD_RF}	V

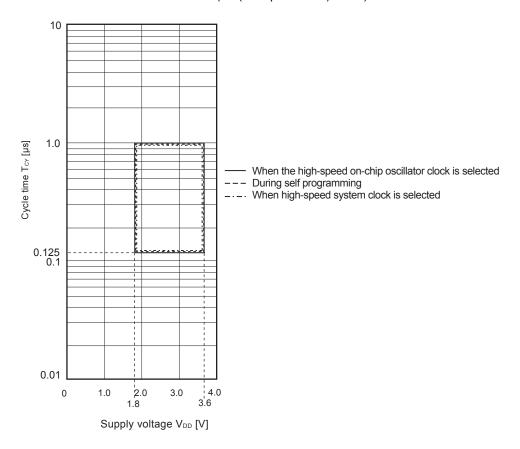
Caution The maximum value of V_{IH} of pins P00, P02, P03, and P10 to P15 is V_{DD}, even in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

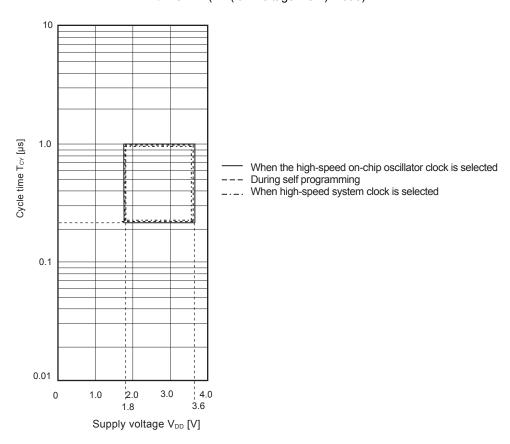
(3) Current for each peripheral circuit

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} = V_{DD_RF} = AV_{DD_RF} \le 3.6 \text{ V}, V_{SS} = V_{SS_RF} = AV_{SS_RF} = 0 \text{ V})$

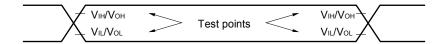
Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscillator operating current	FIL Note 1				0.20		μA
Current when PCLBUZ0 and EXSLK_RF are connected together and MCU supplies RF slow clock to RF	I _{PCEX} Note 1				1.0		μА
RTC operating current	IRTC Notes 1, 2, 3				0.02		μA
12-bit interval timer operating current	I _{IT} Notes 1, 2, 4				0.02		μΑ
Watchdog timer operating current	Notes 1, 2, 5	f∟ is 15 kHz			0.22		μΑ
A/D converter operating current	IADC Notes 1, 6	When conversion at maximum speed	AV _{REFP} = V _{DD} = 3.0 V		0.5	0.7	mA
A/D converter reference voltage current	ADREF Note 1				75.0		μA
Thermometer sensor operating current	I _{TMPS} Note 1				75.0		μΑ
LVD operating current	I _{LVI} Note 1, 7				0.08		μΑ
Flash self-programming operating current	IFSP Notes 1, 9				2.50	12.20	mA
BGO current	IBGO Notes 1, 8				2.50	12.20	mA
SNOOZE operating current	I _{SNOZ} Note 1	ADC operation	The mode is performed Note 10		0.50	0.60	mA
			The A/D conversion operations are performed, Low voltage mode, AVREFP = VDD = 3.0 V		1.20	1.44	mA
		CSI/UART operation	1		0.70	0.84	mA


Notes 1. Current flowing to VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the XT1 oscillator). The value of the current value of the RL78 microcontroller is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. Also, add the value of IFIL in case of selecting low-speed on-chip oscillator. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- **4.** Current flowing only to the 12 bit interval timer (including the operating current of the low-speed on-chip oscillator). The current value of the MCU is the sum of IDD1 or IDD2 and IIT when fCLK = fSUB when the watchdog timer operates in STOP mode. When using low-speed on-chip oscillator, add IFIL.
- **5.** Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the MCU is the sum of lob1, lob2 or lob3 and lwbT when the watchdog timer is in operation.
- **6.** Current flowing only to the A/D converter. The current value of MCU is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 7. Current flowing only to the LVD circuit. The current value of MCU is the sum of IDD1, IDD2 or IDD3 and ILVI when the LVD circuit is in operation.
- 8. Current flowing when operates rewriting to Data flash.
- 9. Current flowing when operates flash self-programming.
- 10. Shift time to the SNOOZE mode is referred User's Manual: Hardware.


(Remarks are listed on the next page.)

Tcy vs Vdd (LS (low-speed main) mode)



Tcy vs Vdd (LV (low-voltage main) mode)

2.7 Peripheral Functions Characteristics

AC Timing Test Points

2.7.1 Serial array unit

(1) During communication at same potential (UART mode)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} = V_{DD_RF} = AV_{DD_RF} \le 3.6 \text{ V}, V_{SS} = V_{SS_RF} = AV_{SS_RF} = 0 \text{ V})$

Parameter	Symbol		Conditions	HS (high-speed main) Mode MAX.	LS (low-speed main) Mode MAX.	LV (low-voltage main) Mode MAX.	Unit
Transfer rate Note 1		2.4 V ≤ V _{DD}	≤ 3.6 V	fмск/6	fмск/6	fмск/6	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$	5.3	1.3	0.6	Mbps
		1.8 V ≤ V _{DD}	≤ 3.6 V	_	fмск/6	fмск/6	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$	-	1.3	0.6	Mbps
		1.6 V ≤ V _{DD}	≤ 3.6 V	-	_	fмск/6	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note 2	-	F	0.6	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. Maximum operating frequency of CPU and peripheral hardware clock (fclk) is following

HS (high-speed main) mode: $32 \text{ MHz} (2.7 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V})$

16 MHz (2.4 V \leq V_{DD} \leq 3.6 V)

LS (low-speed main) mode: 8 MHz (1.8 V \leq V_{DD} \leq 3.6 V) LV (low-voltage main) mode: 4 MHz (1.6 V \leq V_{DD} \leq 3.6 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(3) During communication at same potential (CSI mode) (Internal communication, supporting CSI21 only)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} = V_{DD_RF} = AV_{DD_RF} \le 3.6 \text{ V}, V_{SS} = V_{SS_RF} = AV_{SS_RF} = 0 \text{ V})$

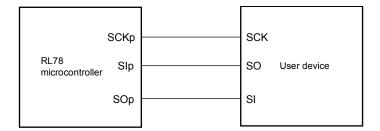
Parameter	Symbol	Conditions		HS (high main)	•	`	/-speed Mode	LV (low- main)	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t _{KCY1}	tkcY1 ≥	2.4 V ≤ V _{DD} ≤ 3.6 V	250		250		500		ns
		2/fclk ^{Note}	2/f _{CLK} Note 1.8 V ≤ V _{DD} ≤ 3.6 V			250		500		ns
			1.6 V ≤ V _{DD} ≤ 3.6 V	_		1		500		ns

Note Use the fclk more than 6.5 MHz and lower than 24 MHz.

Remark This specification is for CSI21 only.

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. p: CSI number (p = 00, 20), m: Unit number (m = 0, 1),


n: Channel number (n = 0), g: PIM and POM numbers (g = 1)

2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).

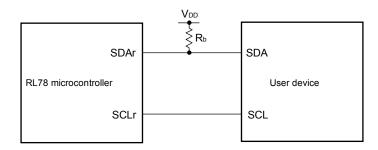
m: Unit number, n: Channel number (mn = 00, 10))

CSI mode connection diagram (during communication at same potential)

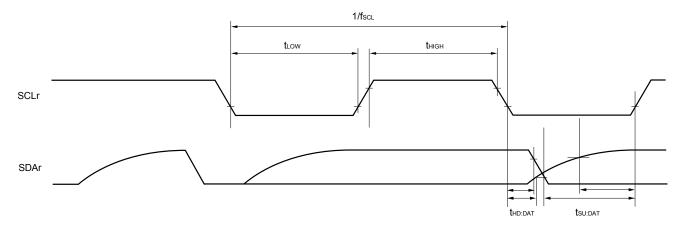
(6) During communication at same potential (simplified I²C mode) (2/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} = V_{DD_RF} = AV_{DD_RF} \le 3.6 \text{ V}, V_{SS} = V_{SS_RF} = AV_{SS_RF} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high	h-speed Mode	,	/-speed Mode	`	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	1/f _{MCK} + 85 Note2		1/fmck + 145 Note2		1/f _{MCK} + 145 Note2		ns
		2.4 V ≤ V _{DD} ≤ 3.6 V, C _b = 100 pF, R _b = 3 kΩ	1/f _{MCK} + 145 Note2		1/fmck + 145 Note2		1/f _{MCK} + 145 Note2		ns
		1.8 V ≤ V _{DD} < 3.6 V, C _b = 100 pF, R _b = 3 kΩ	-		1/fmck + 145 Note2		1/f _{MCK} + 145 Note2		ns
		2.4 V ≤ V _{DD} < 2.7 V, C _b = 100 pF, R _b = 5 kΩ	1/fmck + 230 Note2		1/fmck + 230 Note2		1/fmck + 230 Note2		ns
		1.8 V ≤ V _{DD} < 2.7 V, C _b = 100 pF, R _b = 5 kΩ	-		1/fmck + 230 Note2		1/fmck + 230 Note2		ns
		1.6 V \leq V _{DD} $<$ 1.8 V, C _b = 100 pF, R _b = 5 kΩ	-		-		1/f _{MCK} + 290 Note2		ns
Data hold time (transmission)	thd:dat	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	0	305	0	305	0	305	ns
		2.4 V \leq V _{DD} \leq 3.6 V, C _b = 100 pF, R _b = 3 kΩ	0	355	0	355	0	355	ns
		1.8 V \leq V _{DD} $<$ 3.6 V, C _b = 100 pF, R _b = 3 kΩ	-	-	0	355	0	355	ns
		2.4 V \leq V _{DD} $<$ 2.7 V, C _b = 100 pF, R _b = 5 kΩ	0	405	0	405	0	405	ns
		1.8 V \leq V _{DD} $<$ 2.7 V, C _b = 100 pF, R _b = 5 kΩ	_	_	0	405	0	405	ns
		$1.6 \text{ V} \le \text{V}_{DD} < 1.8 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$	-	-	-	-	0	405	ns


Notes 1. The value must also be fmck/4 or lower.

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).


(Remarks are listed on the next page.)

^{2.} Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

Remarks 1. R_b[Ω]:Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance

- 2. r: IIC number (r = 00, 20), g: PIM number (g =1), h: POM number (h = 1)
- 3. fmck: Serial array unit operation clock frequency (Operation clockw to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0), mn = 00, 02)

(7) Communication at different potential (1.8 V, 2.5 V) (UART mode)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \leq \text{V}_{DD} = \text{V}_{DD}_{RF} = \text{AV}_{DD}_{RF} \leq 3.6 \text{ V}, \text{Vss} = \text{Vss}_{RF} = \text{AVss}_{RF} = 0 \text{ V})$

Parameter	Symbol			Conditions	HS (high-speed main) Mode	LS (low-speed main) Mode	LV (low-voltage main) Mode	Unit
					MAX.	MAX.	MAX.	
Transfer		Reception	2.7 V	\leq V _{DD} \leq 3.6 V, 2.3 V \leq V _b \leq 2.7 V	fмск/6 Note 1	fмск/6 Note 1	fmck/6 Note 1	bps
rate				Theoretical value of the maximum transfer rate fmck = fclk Note 3	5.3	1.3	0.6	Mbps
			2.4 V	≤ V _{DD} ≤ 3.3 V, 1.6 V ≤ V _b ≤ 2.0 V	fмск/6 Note 1	fmck/6 Note 1	fмск/6 Note 1	bps
				Theoretical value of the maximum transfer rate fmck = fclk Note 3	2.6	1.3	0.6	Mbps
			1.8 V	≤ V _{DD} < 3.3 V, 1.6 V ≤ V _b ≤ 2.0 V	-	fmck/6 Notes 1, 2	fmck/6 Notes 1, 2	bps
				Theoretical value of the maximum transfer rate fmck = fclk Note 3	-	1.3	1.3	Mbps
		Transmission	2.7 V	≤ V _{DD} ≤ 3.6 V, 2.3 V ≤ V _b ≤ 2.7 V	Note 4	Note 4	Note 4	bps
				Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V}$	1.2 Note 5	1.2 Note 5	1.2 Note 5	Mbps
			2.4 V	≤ V _{DD} < 3.3 V, 1.6 V ≤ V _b ≤ 2.0 V	Notes 2, 6	Notes 2, 6	Notes 2, 6	bps
				Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$	0.43	0.43	0.43	Mbps
			1.8 V	≤ V _{DD} < 3.3 V, 1.6 V ≤ V _b ≤ 2.0 V	-	Notes 2, 6	Notes 2, 6	bps
				Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$	_	0.43 Notes 7	0.43 Notes 7	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. Use it with $V_{DD} \ge V_b$.

3. Maximum operating frequency of CPU and peripheral hardware clock (fclk) is following

HS (high-speed main) mode: 32 MHz (2.7 V ≤ V_{DD} ≤ 3.6 V)

16 MHz (2.4 V \leq V_{DD} \leq 3.6 V)

LS (low-speed main) mode: 8 MHz (1.8 V \leq V_{DD} \leq 3.6 V) LV (low-voltage main) mode: 4 MHz (1.8 V \leq V_{DD} \leq 3.6 V)

4. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V ≤ V_{DD} ≤ 3.6 V and 2.3 V ≤ Vb ≤ 2.7 V

Maximum transfer rate = $1/{-Cb \times Rb \times ln (1 - 2.0/Vb)} \times 3 [bps]$

Baud rate error (theoretical value) =

 $(1/transfer\ rate \times 2 - \{-Cb \times Rb \times ln\ (1 - 2.0/Vb)\} / (1/transfer\ rate) \times number\ of\ transferred\ bits)$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **5.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.
- **6.** The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8V ≤ V_{DD} < 3.3 V and 1.6 V ≤ V_D ≤ 2.0 V

(8) Communication at different potential (2.5 V) (CSI mode) (master mode: SCKp... internal clock output, supporting CSI00 only)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \leq V_{DD} = V_{DD}_{RF} = AV_{DD}_{RF} \leq 3.6 \text{ V}, V_{SS} = V_{SS}_{RF} = AV_{SS}_{RF} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high	•	LS (low main)	•	LV (low- main)		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү1	$t_{KCY1} \ge 2/f_{CLK}$ $2.7 \ V \le V_{DD} \le 3.6 \ V$ $2.3 \ V \le V_b \le 2.7 \ V$ $C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega$	300		1150		1150		ns
SCKp high-level width	tкн1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$ $C_{b} = 20 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	tkcy1/2 – 120		tксу1/2 — 120		tксү1/2 — 120		ns
SCKp low-level width	t _{KL1}	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$ $C_b = 20 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	tксу1/2 — 10		tксу1/2 — 50		tксү1/2 — 50		ns
SIp setup time (to SCKp↑) Note 1	tsıkı	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$ $C_b = 20 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	121		479		479		ns
SIp hold time (from SCKp↑) Note 1	tksi1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$ $C_{b} = 20 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	10		10		10		ns
Delay time from SCKp↓ to SOp output Note 1	tkso1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ $2.3 \text{V} \le \text{V}_{b} \le 2.7 \text{ V}$ $C_b = 20 \text{ pF}, R_b = 2.7 \text{ k}\Omega$		130		130		130	ns
SIp setup time (to SCKp↓) Note 2	tsıĸı	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$ $C_{b} = 20 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	33		110		110		ns
SIp hold time (from SCKp↓) Note 2	tksi1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$ $C_{b} = 20 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	10		10		10		ns
Delay time from SCKp↑ to SOp output Note 2	tkso1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$ $C_{b} = 20 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$		10		10		10	ns

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

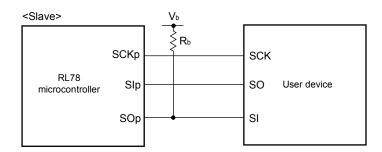
Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),
 g: PIM and POM number (g = 1)
 - fmcx: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} = V_{DD_RF} = AV_{DD_RF} \le 3.6 \text{ V}, V_{SS} = V_{SS_RF} = AV_{SS_RF} = 0 \text{ V})$

(2/2)

Parameter	Symbol	Conditions		h-speed Mode	, ,	peed main) ode		-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Delay time from SCKp↓ to SOp output Note 1, 3	tkso1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ $2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V}$ $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$		195		195		195	ns
		$2.4 \text{ V} \leq \text{V}_{DD} < 3.3 \text{ V}$ $1.6 \text{ V} \leq \text{V}_{b} \leq 2.0 \text{ V}$ $C_{b} = 30 \text{ pF}, R_{b} = 5.5 \text{ k}\Omega$		483		483		483	ns
		$\begin{aligned} &1.8 \text{ V} \leq \text{V}_{DD} < 3.3 \text{ V} \\ &1.6 \text{ V} \leq \text{V}_{b} \leq 2.0 \text{ V}^{\text{Note 5}} \\ &C_{b} = 30 \text{ pF}, R_{b} = 5.5 \text{ k}\Omega \end{aligned}$		_		483		483	ns
SIp setup time (to SCKp↓) Note 2, 4	tsıkı	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ $2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V}$ $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	44		110		110		ns
		$2.4 \text{ V} \leq \text{V}_{DD} < 3.3 \text{ V} \\ 1.6 \text{ V} \leq \text{V}_{b} \leq 2.0 \text{ V} \\ C_{b} = 30 \text{ pF}, \text{ R}_{b} = 5.5 \text{ k}\Omega$	110		110		110		ns
		$\begin{aligned} 1.8 \ V &\leq V_{DD} < 3.3 \ V \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 5}} \\ C_b &= 30 \ \text{pF}, \ R_b = 5.5 \ \text{k}\Omega \end{aligned}$	-		110		110		ns
SIp hold time (from SCKp↓) Note 2, 4	tksi1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ $2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V}$ $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	19		19		19		ns
		$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V}$ $1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V}$ $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$	19		19		19		ns
		$\begin{aligned} &1.8 \text{ V} \leq \text{V}_{DD} < 3.3 \text{ V} \\ &1.6 \text{ V} \leq \text{V}_{b} \leq 2.0 \text{ V}^{\text{Note 5}} \\ &C_{b} = 30 \text{ pF}, \text{ R}_{b} = 5.5 \text{ k}\Omega \end{aligned}$	ı		19		19		ns
Delay time from SCKp↑ to SOp output Note 2, 4	tkso1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ $2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V}$ $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$		25		25		25	ns
		$2.4 \ V \le V_{DD} < 3.3 \ V$ $1.6 \ V \le V_b \le 2.0 \ V$ $C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega$		25		25		25	ns
		$\begin{aligned} &1.8 \text{ V} \leq \text{V}_{DD} < 3.3 \text{ V} \\ &1.6 \text{ V} \leq \text{V}_{b} \leq 2.0 \text{ V}^{\text{Note 5}} \\ &C_{b} = 30 \text{ pF}, R_{b} = 5.5 \text{ k}\Omega \end{aligned}$		_		25		25	ns


Notes 1. Supporting CSI00 and CSI20.

- 2. Supporting CSI00 only.
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
- 4. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 5. Use it with $V_{DD} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

CSI mode connection diagram (during communication at different potential)

- Remarks 1. $R_b[\Omega]$:Communication line (SOp) pull-up resistance, $C_b[F]$: Communication line (SOp) load capacitance, $V_b[V]$: Communication line voltage
 - 2. p: CSI number (p = 00, 20), m: Unit number, n: Channel number (mn = 00, 10), g: PIM and POM number (g = 0, 1)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00, 10))

2.7.2 Serial interface IICA

(1) I²C standard mode

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \leq \text{V}_{DD} = \text{V}_{DD}_{RF} = \text{AV}_{DD}_{RF} \leq 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS}_{RF} = \text{AV}_{SS}_{RF} = 0 \text{ V})$

Parameter	Symbol	Co	onditions	, ,	h-speed		v-speed Mode	,	-voltage Mode	Unit
				MIN.	Mode MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Standard	2.7 V ≤ V _{DD} ≤ 3.6 V	0	100	0	100	0	100	kHz
OCEAO GIOCK Trequency	ISCL	mode:	2.4 V ≤ V _{DD} ≤ 3.6 V	0	100	0	100	0	100	kHz
		fc∟k≥ 1 MHz	1.8 V ≤ V _{DD} ≤ 3.6 V		_ 100	0	100	0	100	kHz
						U	100	0		
Catua time of restart	4	2.7 V ≤ V _{DD} ≤ 3.6	1.6 V ≤ V _{DD} ≤ 3.6 V	4.7	_	4.7	<u> </u>	4.7	100	kHz
Setup time of restart condition	t su:sta	$2.4 \text{ V} \leq \text{VDD} \leq 3.6$ $2.4 \text{ V} \leq \text{VDD} \leq 3.6$		4.7		4.7				μs
			-	4.7		4.7		4.7		μs
		1.8 V ≤ V _{DD} ≤ 3.6			_	4.7		4.7		μs
Note 1		1.6 V ≤ V _{DD} ≤ 3.6		10	_	4.0	- 	4.7		μs
Hold time ^{Note 1}	thd:sta	2.7 V ≤ V _{DD} ≤ 3.6		4.0		4.0		4.0		μs
		2.4 V ≤ V _{DD} ≤ 3.6		4.0		4.0		4.0		μs
		1.8 V ≤ V _{DD} ≤ 3.6			_	4.0		4.0		μs
		1.6 V ≤ V _{DD} ≤ 3.6			_	-	- I	4.0		μs
Hold time when SCLA0 = "L"	tLOW	2.7 V ≤ V _{DD} ≤ 3.6		4.7		4.7		4.7		μs
_		2.4 V ≤ V _{DD} ≤ 3.6		4.7		4.7		4.7		μs
		1.8 V ≤ V _{DD} ≤ 3.6			_	4.7		4.7		μs
		1.6 V ≤ V _{DD} ≤ 3.6		-	<u> </u>		- 	4.7		μs
Hold time when SCLA0 = "H"	t HIGH	2.7 V ≤ V _{DD} ≤ 3.6		4.0		4.0		4.0		μs
		2.4 V ≤ V _{DD} ≤ 3.6		4.0		4.0		4.0		μs
		1.8 V ≤ V _{DD} ≤ 3.6			_	4.0		4.0		μs
		1.6 V ≤ V _{DD} ≤ 3.6			<u> </u>		- I	4.0		μs
Data setup time (reception)	tsu:dat	2.7 V ≤ V _{DD} ≤ 3.0		250		250		250		ns
(redeption)		2.4 V ≤ V _{DD} ≤ 3.6		250		250		250		ns
		1.8 V ≤ V _{DD} ≤ 3.6			_	250		250		ns
		1.6 V ≤ V _{DD} ≤ 3.6	-		_		- I .	250		ns
Data hold time (transmission) ^{Note 2}	thd:dat	2.7 V ≤ V _{DD} ≤ 3.6		0	3.45	0	3.45	0	3.45	μs
(transmission)		2.4 V ≤ V _{DD} ≤ 3.6		0	3.45	0	3.45	0	3.45	μs
		1.8 V ≤ V _{DD} ≤ 3.6			_	0	3.45	0	3.45	μs
		1.6 V ≤ V _{DD} ≤ 3.6			-	-	- I	0	3.45	μs
Setup time of stop condition	tsu:sto	2.7 V ≤ V _{DD} ≤ 3.6		4.0		4.0		4.0		μs
Condition		2.4 V ≤ V _{DD} ≤ 3.6		4.0		4.0		4.0		μs
		1.8 V ≤ V _{DD} ≤ 3.6	-		_	4.0		4.0		μs
		1.6 V ≤ V _{DD} ≤ 3.6			_	-	- I	4.0		μs
Bus-free time	t BUF	2.7 V ≤ V _{DD} ≤ 3.6		4.7		4.7		4.7		μs
		2.4 V ≤ V _{DD} ≤ 3.6	6 V	4.7		4.7		4.7		μs
		1.8 V ≤ V _{DD} ≤ 3.6			_	4.7		4.7		μs
		1.6 V ≤ V _{DD} ≤ 3.6	6 V		_	-	_	4.7		μs

(Notes, Caution and Remark are listed on the next page.)

- Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.
 - 2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows. Standard mode: $C_b = 400 \text{ pF}$, $R_b = 2.7 \text{ k}\Omega$

(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target : ANI16 to ANI19

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \ 1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{V}_{\text{DD}} = \text{V}_{\text{DD}}_{\text{RF}} = \text{AV}_{\text{DD}}_{\text{RF}} \leq 3.6 \text{ V}, \ \text{V}_{\text{SS}} = \text{V}_{\text{SS}}_{\text{RF}} = \text{AV}_{\text{SS}}_{\text{RF}} = 0 \text{ V}, \ \text{Reference voltage} = 0 \text{ V}$

(+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	(Conditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 3.6 V		1.2	±5.0	LSB
		AV _{REFP} = V _{DD} Note 3	1.6 V ≤ AV _{REFP} ≤ 3.6 V Note 4		1.2	±8.5	LSB
Conversion time	Tcony	10-bit resolution	2.7 V ≤ V _{DD} ≤ 3.6 V	3.1875		39	μs
			1.8 V ≤ V _{DD} ≤ 3.6 V	17		39	μs
			1.6 V ≤ AV _{REFP} ≤ 3.6 V	57		95	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 3.6 V			±0.35	%FSR
		AV _{REFP} = V _{DD} Note 3	1.6 V ≤ AV _{REFP} ≤ 3.6 V Note 4			±0.60	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 3.6 V			±0.35	%FSR
		AV _{REFP} = V _{DD} Note 3	1.6 V ≤ AV _{REFP} ≤ 3.6 V Note 4			±0.60	%FSR
Integral linearity errorNote 1	ILE	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 3.6 V			±3.5	LSB
		AV _{REFP} = V _{DD} Note 3	1.6 V ≤ AV _{REFP} ≤ 3.6 V Note 4			±6.0	LSB
Differential linearity error Note	DLE	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 3.6 V			±2.0	LSB
1		AV _{REFP} = V _{DD} Note 3	1.6 V ≤ AV _{REFP} ≤ 3.6 V Note 4			±2.5	LSB
Analog input voltage	VAIN			0		AVREFP	V
						and V _{DD}	

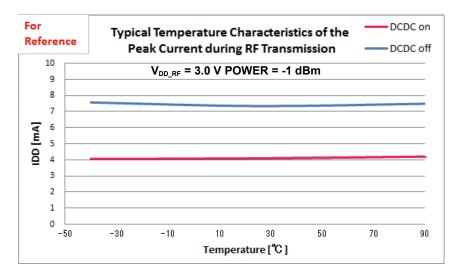
- **Notes 1.** Excludes quantization error $(\pm 1/2 LSB)$.
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - **3.** When AVREFP < VDD, MAX. value is following.

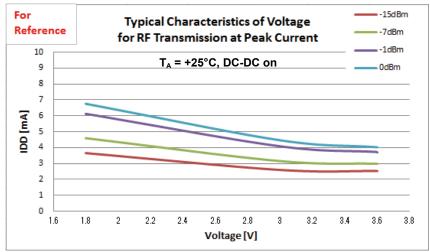
Overall error: ± 4 LSB is added to the MAX. value of AVREFP = VDD. Zero-scale error / Full-scale error: ± 0.2 %FSR is added to the MAX. value of AVREFP = VDD. Integral linearity error / Differential linearity error: ± 2 LSB is added to the MAX. value n of AVREFP = VDD.

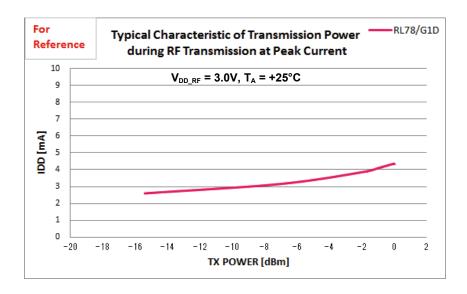
4. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).

2.8.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

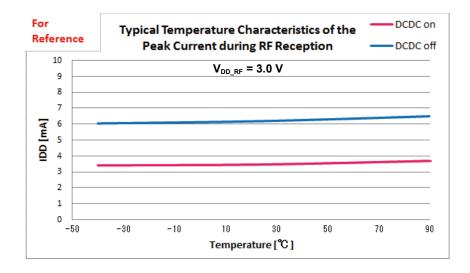

(TA = -40 to +85°C, VPDR \leq VDD = VDD_RF = AVDD_RF \leq 3.6 V, Vss = Vss_RF = AVss_RF = 0 V)


Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VLVIZ VLVIZ VLVIZ VLVIZ VLVIZ VLVIZ VLVIZ VLVIZ VLVIZ	V _{LVI2}	Power supply rise time	3.07	3.13	3.19	V
			Power supply fall time	3	3.06	3.12	V
		V LVI3	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.9	2.96	3.02	V
		V _{LVI4}	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.8	2.86	2.91	V
		V _{LVI5}	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.7	2.75	2.81	V
		V _{LVI6}	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.6	2.65	2.7	V
		V _{LVI7}	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.5	2.55	2.6	V
		V _{LVI8}	Power supply rise time	2.45	2.5	2.55	V
			Power supply fall time	2.4	2.45	2.5	V
		V _{LVI9}	Power supply rise time	2.05	2.09	2.13	V
			Power supply fall time	2	2.04	2.08	V
		V _{LVI10}	Power supply rise time	1.94	1.98	2.02	V
			Power supply fall time	1.9	1.94	1.98	V
		V _{LVI11}	Power supply rise time	1.84	1.88	1.91	V
			Power supply fall time	1.8	1.84	1.87	V
		V _{LVI12}	Power supply rise time	1.74	1.77	1.81	V
			Power supply fall time	1.7	1.73	1.77	V
		V _{LVI13}	Power supply rise time	1.64	1.67	1.7	V
			Power supply fall time	1.6	1.63	1.66	V
Minimum pulse width		TLW		300			μs
Detection delay time						300	μs


2.9.3 Performance mapping for typical RF (Reference)

(1) Peak Current during RF Transmission

Unless specified otherwise, the measurement is performed by our evaluation board. Current consumption is not including MCU unit.



(2) Peak Current during RF Reception

Unless specified otherwise, the measurement is performed by our evaluation board. Current consumption is not including MCU unit.

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE: Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.