

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

D-4-11-	
Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	32
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-WFQFN Exposed Pad
Supplier Device Package	48-HWQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f11agjdnb-40

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RL78/G1D CHAPTER 1 OUTLINE

1.2 List of Part Numbers

Figure 1-1. Part Number, Memory Size, and Package of RL78/G1D

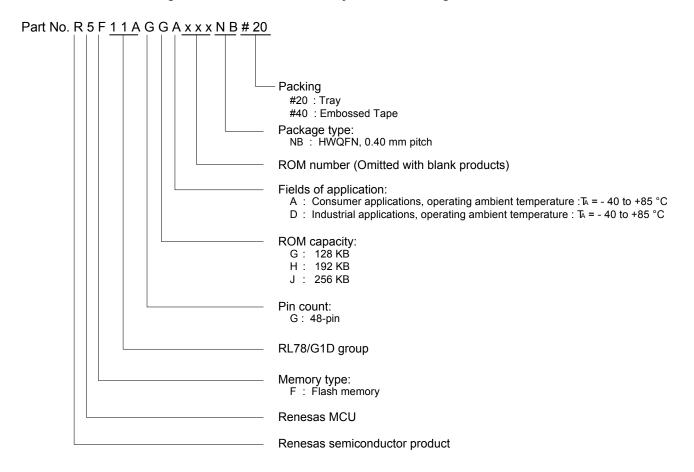


Table 1-1. List of Ordering Part Numbers

Pin count	Package	Fields of Application Note	Ordering Part Number	Code Flash Memory	Data Flash Memory
48 pins	Plastic WQFN (6 × 6)	А	R5F11AGGANB#20 R5F11AGGANB#40	128 KB	8 KB
		D	R5F11AGGDNB#20 R5F11AGGDNB#40		
		А	R5F11AGHANB#20 R5F11AGHANB#40	192 KB	8 KB
		D	R5F11AGHDNB#20 R5F11AGHDNB#40		
		А	R5F11AGJANB#20 R5F11AGJANB#40	256 KB	8 KB
		D	R5F11AGJDNB#20 R5F11AGJDNB#40		

Note For the fields of application, see Figure 1-1 Part Number, Memory Size, and Package of RL78/G1D.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

RL78/G1D CHAPTER 1 OUTLINE

1.6 Outline of Functions

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

(1/2)

	14	DEE44400	DEFATACLE	(1/2)					
	Item	R5F11AGG	R5F11AGH	R5F11AGJ					
Code flash me	emory	128 KB	192 KB	256 KB					
Data flash me	mory	8 KB	8 KB	8 KB					
RAM		12 KB	16 KB	20 KB ^{Note 1}					
Address space		1 MB							
System clock	(RF side)	32 MHz							
Main system	High-speed system	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK)							
clock	clock	HS (High-speed main) mode: 1 to 20 MHz (V_{DD} = 2.7 to 3.6 V),							
		HS (High-speed main) mode: 1							
		LS (Low-speed main) mode: 1 t							
		LV (Low-voltage main) mode: 1	· · · · · · · · · · · · · · · · · · ·						
	High-speed on-chip oscillator	HS (High-speed main) mode: 1 HS (High-speed main) mode: 1							
	Oscillator	LS (Low-speed main) mode: 1							
		LV (Low-voltage main) mode: 1							
Subsystem clo	ock	XT1 (Crystal) oscillation, Extern 32.768 kHz	nal main system clock input (EXC	CLKS)					
RF slow clock	External input	External clock input for RF bloc	k (EXSLK_RF) 32.768 kHz (TYP	P.)					
	On-chip Oscillator	32.768 kHz (TYP.)	· - / · · ·	•					
Low apped on		15 kHz (TYP.)							
-	-chip oscillator	(8-bit register × 8) × 4 banks							
General-purpo	ruction execution time	0.03125 µs (High-speed on-chip oscillation clock: f _{iH} = 32 MHz operation)							
Williminum misu	action execution time								
		0.05 μs (High-speed system clock: f _{MX} = 20 MHz operation) 30.5 μs (Subsystem clock: f _{SUB} = 32.768 kHz operation)							
Instruction oot			= 32.700 KHZ Operation)						
Instruction set		Data transfer (8/16 bits)Adder and subtractor/logical	operation (8/16 bits)						
		Multiplication (8 bits × 8 bits)							
	T	· · · ·	nanipulation (Set, reset, test, and	Boolean operation), etc.					
I/O port	Total	32 ^{Note 2}							
	CMOS I/O	20 ^{Note 2}							
	CMOS input	5 ^{Note 2}							
	CMOS output	1 ^{Note 2}							
	N-ch O.D. I/O (withstand voltage: 6 V)	2							
	GPIO (RF block)	4							
2.4 GHz RF tr	,	Supporting Bluetooth v4.1 Spec	ulation, TDMA/TDD frequency he	opping					
		Adaptivity (Only in slave operation)							
Timer	16-bit timer	8 channels							
	Watchdog timer	1 channel							
	Real-time clock (RTC)	1 channel							
	12-bit interval timer	1 channel							

(Notes are listed on the next page.)

2.4.3 Output voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} = V_{DD_RF} = AV_{DD_RF} \le 3.6 \text{ V}, V_{SS} = V_{SS_RF} = AV_{SS_RF} = 0 \text{ V})$

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Output	V _{OH1}	Iон = -2.0 mA	P00, P01, P02, P03, P10,	2.7 V ≤ V _{DD} ≤ 3.6 V	V _{DD} - 0.6			V
voltage,		Iон = -1.5 mA	P11, P12, P13, P14, P15,	1.8 V ≤ V _{DD} ≤ 3.6 V	V _{DD} - 0.5			٧
high		Iон = -1.0 mA	P16, P30, P40, P120, P140, P147	1.6 V ≤ V _{DD} ≤ 3.6 V	V _{DD} - 0.5			V
		Іон = –10 μА	P130		V _{DD} - 0.3			V
	V _{OH2}	Іон = –100 μА	P20, P21, P22, P23		V _{DD} - 0.5			V
	Vohre	Iон = -2.0 mA	GPIO0, GPIO1, GPIO2,	2.7 V ≤ V _{DD_RF} ≤ 3.6 V	V _{DD_RF} - 0.3			V
		Iон = -1.5 mA	GPIO3	1.8 V ≤ V _{DD_RF} ≤ 3.6 V	VDD_RF - 0.3			V
Output	V _{OL1}	IoL = 3.0 mA	P00, P01, P02, P03, P10,	2.7 V ≤ V _{DD} ≤ 3.6 V			0.6	V
voltage, low		IoL = 1.5 mA	P11, P12, P13, P14, P15,				0.4	V
		IoL = 0.6 mA	P16, P30, P40, P120, P130, P140, P147	1.8 V ≤ V _{DD} ≤ 3.6 V			0.4	V
		IoL = 0.3 mA	1 1 10,1 1 11	1.6 V ≤ V _{DD} ≤ 3.6 V			0.4	V
	V _{OL2}	Ιοι = 400 μΑ	P20, P21, P22, P23				0.4	V
	Volre		GPIO0, GPIO1, GPIO2, GPIO	03			0.3	V

Caution P00, P02, P03, and P10 to P15 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.4.4 Input leakage current

(TA = -40 to +85°C, 1.6 V \leq VDD = VDD_RF = AVDD_RF \leq 3.6 V, Vss = Vss_RF = AVss_RF = 0 V)

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішн1	VI = V _{DD}	P00, P01, P02, P03, P P15, P16, P30, P40, P P147			1	μΑ	
	ILIH2	VI = V _{DD}	P20, P21, P22, P23, P137, RESET				1	μΑ
	Ішнз	VI = V _{DD}	P121, P122, P123, In input port				1	μΑ
			P124 (EXCLK, In external clock input				1	μΑ
			EXCLKS) (XT1, XT2) In resonator connection				10	μΑ
	ILIHRE	VI = V _{DD_RF}	GPIO0, GPIO1, GPIO2	2, GPIO3			10	μΑ
Input leakage current, low	ILIL1	VI = V _{SS}	P00, P01, P02, P03, P P15, P16, P30, P40, P P147	10, P11, P12, P13, P14, 60, P61, P120, P140,			-1	μΑ
	ILIL2	VI = Vss	P20, P21, P22, P23, P	137, RESET			-1	μΑ
	ILIL3	VI = Vss	P121, P122, P123,	In input port	_		-1	μA
			P124 (EXCLK, In external clock input		_		-1	μA
			EXCLKS) (XT1, XT2) In resonator connection				-10	μΑ
	ILILRF	VI = V _{SS_RF}	GPIO0, GPIO1, GPIO2	2, GPIO3			-10	μΑ

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.4.5 Resistance

(TA = -40 to +85°C, 1.6 V \leq VDD = VDD_RF = AVDD_RF \leq 3.6 V, Vss = Vss_RF = AVss_RF = 0 V)

Items	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
On-chip pll-up resistance	Ru	VI = V _{SS}	P00, P01, P02, P03, P10, P11, P12, P13, P14, P15, P16, P30, P40, P120, P140, P147 In input mode	10	20	100	kΩ

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

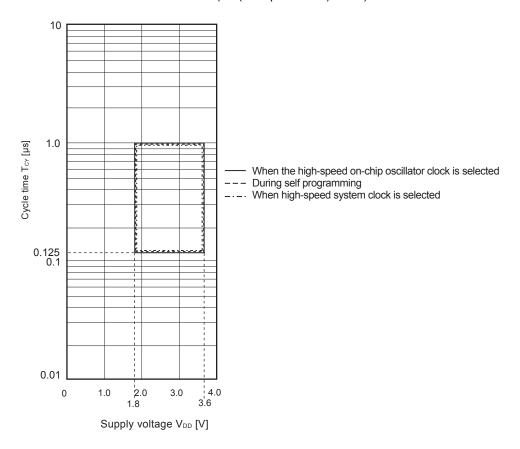
2.5 Current Consumption

The Current Consumption by the RL78/G1D is the total current including that for the MCU (current flowing into the VDD pin) and that for the RF unit (current flowing into the VDD_RF, AVDD_RF pins).

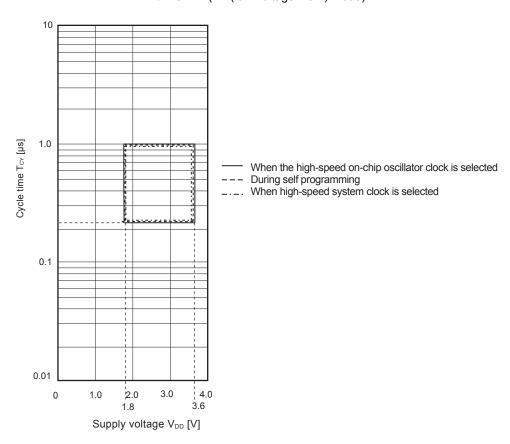
The characteristics of the MCU (current flowing into the V_{DD} pin) are given in 2.5.1 and the characteristics of the RF unit (current flowing into the V_{DD_RF}/AV_{DD_RF} pins) are given in 2.5.2

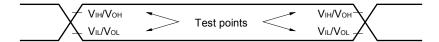
2.5.1 MCU

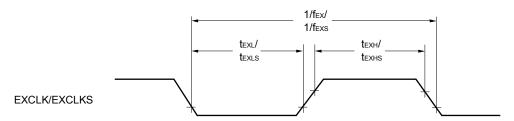
(1) Operating current

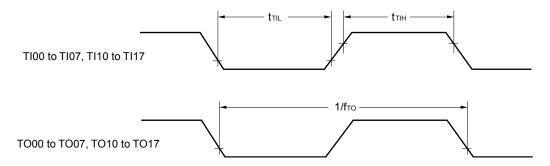

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} = V_{DD_RF} = AV_{DD_RF} \le 3.6 \text{ V}, V_{SS} = V_{SS_RF} = AV_{SS_RF} = 0 \text{ V})$

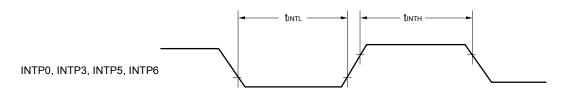
Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Operating	I _{DD1}	HS (high-	Basic operation	f _{IH} = 32 MHz Note 2	V _{DD} = 3.0 V		2.3		mA
current Note 1		speed main) mode ^{Note 5}	Normal operation	f _{IH} = 32 MHz Note 2	V _{DD} = 3.0 V		5.2	8.5	mA
		mode		f _{IH} = 24 MHz Note 2	V _{DD} = 3.0 V		4.1	6.6	mA
				f _{IH} = 16 MHz Note 2	V _{DD} = 3.0 V		3.0	4.7	mA
		LS(low-speed	Normal operation	f _{IH} = 8 MHz Note 2	V _{DD} = 3.0 V		1.3	2.1	mA
		main) mode			V _{DD} = 2.0 V		1.3	2.1	mA
		LV (low-	Normal operation	f _{IH} = 4 MHz Note 2	V _{DD} = 3.0 V		1.3	1.8	mA
		voltage main) mode Note 5			V _{DD} = 2.0 V		1.3	1.8	mA
		HS (high-	Normal operation	f _{MX} = 20 MHz Note 3	V _{DD} = 3.0 V Note 6		3.4	5.5	mA
		speed main)					3.6	5.7	mA
	mode ^{Note 5}	mode		f _{MX} = 10 MHz Note 3	V _{DD} = 3.0 V Note 6		2.1	3.2	mA
							2.1	3.2	mA
			eed Normal operation	f _{MX} = 8 MHz Note 3	V _{DD} = 3.0 V Note 6		1.2	2.0	mA
		main) mode					1.2	2.0	mA
					V _{DD} = 2.0 V Note 6		1.2	2.0	mA
							1.2	2.0	mA
		Subsystem	Normal operation	f _{SUB} = 32.768 kHz Note 4	$T_A = -40^{\circ}C^{\text{Note 6}}$		4.8	5.9	μΑ
		clock operation					4.9	6.0	μΑ
		operation			T _A = +25°C Note 6		4.9	5.9	μΑ
							5.0	6.0	μΑ
					T _A = +50°C Note 6		5.0	7.6	μΑ
							5.1	7.7	μΑ
				T _A = +70°C Note 6		5.2	9.3	μA	
							5.3	9.4	μA
					$T_A = +85^{\circ}C^{\text{Note 6}}$		5.7	13.3	μA
							5.8	13.4	μA

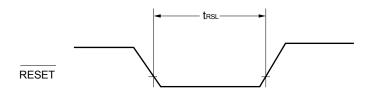

(Notes and Remarks are listed on the next page.)


Tcy vs Vdd (LS (low-speed main) mode)


Tcy vs Vdd (LV (low-voltage main) mode)


AC Timing Test Points


External System Clock Timing


TI/TO Timing

Interrupt Request Input Timing

RESET Input Timing

(3) During communication at same potential (CSI mode) (Internal communication, supporting CSI21 only)

(TA = -40 to +85°C, 1.6 V \leq VDD = VDD_RF = AVDD_RF \leq 3.6 V, Vss = Vss_RF = AVss_RF = 0 V)

Parameter	Symbol	(Conditions	HS (high main)	•	`	/-speed Mode	LV (low- main)	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t _{KCY1}	tkcY1 ≥	2.4 V ≤ V _{DD} ≤ 3.6 V	250		250		500		ns
		2/fclk ^{Note}	2/f _{CLK} Note 1.8 V ≤ V _{DD} ≤ 3.6 V			250		500		ns
			1.6 V ≤ V _{DD} ≤ 3.6 V	_		1		500		ns

Note Use the fclk more than 6.5 MHz and lower than 24 MHz.

Remark This specification is for CSI21 only.

(6) During communication at same potential (simplified I^2C mode) (1/2)

(TA = -40 to +85°C, 1.6 V \leq VDD = VDD_RF = AVDD_RF \leq 3.6 V, Vss = Vss_RF = AVss_RF = 0 V)

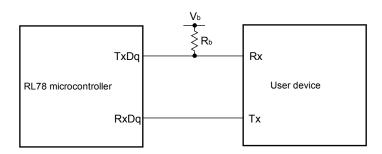
Parameter	Symbol	Conditions	` `	h-speed Mode	`	v-speed Mode	,	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$		1000 Note 1		400 Note 1		400 Note 1	kHz
		$2.4 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$		400 Note 1		400 Note 1		400 Note 1	kHz
		$1.8 \text{ V} ≤ \text{V}_{DD} < 3.6 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 3 \text{ k}Ω$		-		400 Note 1		400 Note 1	kHz
		$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$		300 Note 1		300 Note 1		300 Note 1	kHz
		$1.8 \text{ V} ≤ \text{V}_{DD} < 2.7 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}Ω$		-		300 Note 1		300 Note 1	kHz
		$1.6 \text{ V} \le \text{V}_{DD} < 1.8 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$		-		-		250 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	475		1150		1150		ns
		2.4 V ≤ V _{DD} ≤ 3.6 V, $C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	1150		1150		1150		ns
		$1.8 \text{ V} \le \text{V}_{DD} < 3.6 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	-		1150		1150		ns
		$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$	1550		1550		1550		ns
		1.8 V ≤ V _{DD} < 2.7 V, $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$	-		1550		1550		ns
		$1.6 \text{ V} \le \text{V}_{DD} < 1.8 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$	-		-		1850		ns
Hold time when SCLr = "H"	t HIGH	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	475		1150		1150		ns
		$2.4 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	1150		1150		1150		ns
		$1.8 \text{ V} \le \text{V}_{DD} < 3.6 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	-		1150		1150		ns
		$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$	1550		1550		1550		ns
		$1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$	-		1550		1550		ns
		$1.6 \text{ V} \le \text{V}_{DD} < 1.8 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$	-		-		1850		ns

(Notes, Caution, and Remarks are listed on the page after the next page.)

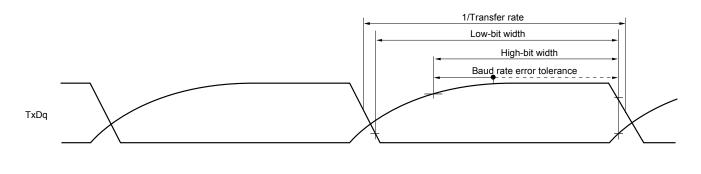
Maximum transfer rate = $1/{-Cb \times Rb \times ln (1 - 1.5/Vb)} \times 3 [bps]$ Baud rate error (theoretical value) =

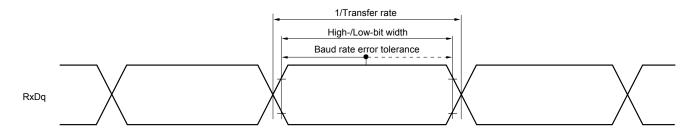
 $(1/transfer\ rate \times 2 - \{-Cb \times Rb \times ln\ (1 - 1.5/Vb)\} / (1/transfer\ rate) \times number\ of\ transferred\ bits)$

Note 7. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.


Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VH and VIL, see the DC characteristics with TTL input buffer selected.

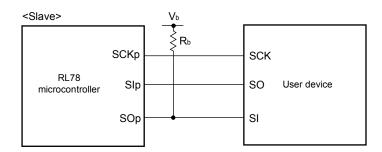
 $\textbf{Remarks 1.} \quad R_b[\Omega] : Communication line (TxDq) \ pull-up \ resistance,$


C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage


- 2. q: UART number (q = 0, 1), g: PIM and POM numbers (g = 0, 1)
- fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00 to 03))

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)



Remarks1. $R_b[\Omega]$: Communication line (TxDq) pull-up resistance, $V_b[V]$: Communication line voltage

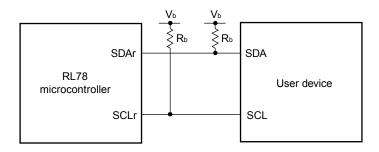
2. q: UART number (q = 0, 1), g: PIM and POM number (g = 0, 1)

CSI mode connection diagram (during communication at different potential)

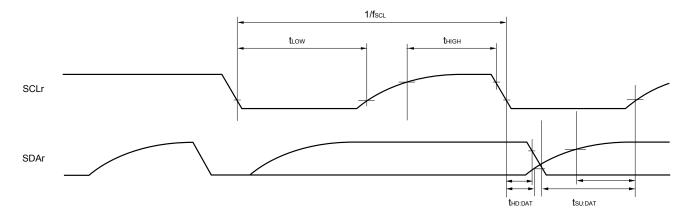
- Remarks 1. $R_b[\Omega]$:Communication line (SOp) pull-up resistance, $C_b[F]$: Communication line (SOp) load capacitance, $V_b[V]$: Communication line voltage
 - 2. p: CSI number (p = 00, 20), m: Unit number, n: Channel number (mn = 00, 10), g: PIM and POM number (g = 0, 1)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00, 10))

(TA = -40 to +85°C, 1.8 V \leq VDD = VDD_RF = AVDD_RF \leq 3.6 V, Vss = Vss_RF = AVss_RF = 0 V)

(2/2)


Parameter	Symbol	Conditions	HS (high	h-speed Mode	· `	/-speed Mode	LV (low- main)	•	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	1/f _{MCK} + 135 Note 3		1/fмск + 190 Note 3		1/fмск + 190 Note 3		ns
		2.7 V \leq V _{DD} \leq 3.6 V 2.3 V \leq V _b \leq 2.7 V C _b = 100 pF, R _b = 2.7 k Ω	1/f _{MCK} + 190 Note 3		1/fmck + 190 Note 3		1/fmck + 190 Note 3		ns
		2.4 V \leq V _{DD} $<$ 3.3 V 1.6 V \leq V _b \leq 2.0 V C _b = 100 pF, R _b = 5.5 k Ω	1/f _{MCK} + 190 Note 3		1/fмск + 190 Note 3		1/fмск + 190 Note 3		ns
		1.8 V \leq V _{DD} $<$ 3.3 V 1.6 V \leq V _D \leq 2.0 V ^{Note 2} C _b = 100 pF, R _b = 5.5 k Ω	-		1/fмск + 190 Note 3		1/fмск + 190 Note 3		ns
Data hold time (transmission)	thd:DAT	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	O Note 4	305	O Note 4	305	O Note 4	305	ns
		2.7 V \leq V _{DD} \leq 3.6 V 2.3 V \leq V _b \leq 2.7 V C _b = 100 pF, R _b = 2.7 k Ω	O Note 4	355	O Note 4	355	O Note 4	355	ns
		2.4 V \leq V _{DD} $<$ 3.3 V 1.6 V \leq V _b \leq 2.0 V C _b = 100 pF, R _b = 5.5 k Ω	O Note 4	405	O Note 4	405	O Note 4	405	ns
		1.8 V \leq V _{DD} $<$ 3.3 V 1.6 V \leq V _b \leq 2.0 V ^{Note 2} C _b = 100 pF, R _b = 5.5 k Ω	-	-	O Note 4	405	O Note 4	405	ns

Notes 1. The value must also be fmck/4 or lower.


- 2. Use it with $V_{DD} \ge V_b$.
- 3. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

Remarks 1. R_b[Ω]:Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage

- **2.** r: IIC number (r = 00, 10), g: PIM, POM number (g = 0, 1)
- 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02))

- Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.
 - 2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows. Standard mode: $C_b = 400 \text{ pF}$, $R_b = 2.7 \text{ k}\Omega$

(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), conversion target : ANI0 to ANI3, ANI16 to ANI19, Internal reference voltage, Temperature sensor output voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} = V_{DD_RF} = AV_{DD_RF} \le 3.6 \text{ V}, V_{SS} = V_{SS_RF} = AV_{SS_RF} = 0 \text{ V}, Reference voltage (+) = V_{DD}, Reference voltage (-) = V_{SS})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	1.8 V ≤ V _{DD} ≤ 3.6 V		1.2	±7.0	LSB
			1.6 V ≤ V _{DD} ≤ 3.6 V Note 3		1.2	±10.5	LSB
Conversion time	Tcony	10-bit resolution	2.7 V ≤ V _{DD} ≤ 3.6 V	3.1875		39	μs
		conversion	1.8 V ≤ V _{DD} ≤ 3.6 V	17		39	μs
		target : ANI0 to ANI3, ANI16 to ANI19	1.6 V ≤ V _{DD} ≤ 3.6 V	57		95	μs
		10-bit resolution conversion target : Internal reference voltage, Temperature	2.7 V ≤ V _{DD} ≤ 3.6 V	3.5635		39	μs
		sensor output voltage (HS (high- speed main) Mode)	2.7 V ≤ V _{DD} ≤ 3.6 V	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	1.8 V ≤ V _{DD} ≤ 3.6 V			±0.60	%FSR
			1.6 V ≤ V _{DD} ≤ 3.6 V Note 3			±0.85	%FSR
Full-scale error Notes 1, 2	Ers	10-bit resolution	1.8 V ≤ V _{DD} ≤ 3.6 V			±0.60	%FSR
			1.6 V ≤ V _{DD} ≤ 3.6 V Note 3			±0.85	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	1.8 V ≤ V _{DD} ≤ 3.6 V			±4.0	LSB
			1.6 V ≤ V _{DD} ≤ 3.6 V Note 3			±6.5	LSB
Differential linearity error Note	DLE	10-bit resolution	1.8 V ≤ V _{DD} ≤ 3.6 V			±2.0	LSB
1			1.6 V ≤ V _{DD} ≤ 3.6 V ^{Note 3}			±2.5	LSB
Analog input voltage	Vain	ANI0 to ANI3, ANI	16 to ANI19	0		V _{DD}	V
		Select internal refe 2.4 V ≤ V _{DD} ≤ 3.6 \	erence voltage /, HS (high-speed main) mode		V _{BGR} Note 4		V
			e sensor output voltage /, HS (high-speed main) mode	١	/ _{TMPS25} Note	4	V

- Notes 1. Excludes quantization error (±1/2 LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - 3. When the the conversion time is set to 57 μ s (min.) and 95 μ s (max.).
 - 4. Refer to 2.8.2 Temperature sensor and internal reference voltage characteristics

<R>

LVD Detection Voltage of Interrupt & Reset Mode

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} = V_{DD_RF} = AV_{DD_RF} \le 3.6 \text{ V}, V_{SS} = V_{SS_RF} = AV_{SS_RF} = 0 \text{ V})$

Parameter	Symbol		Со	nditions	MIN.	TYP.	MAX.	Unit
Interrupt and	V _{LVDA0}	VPOC2, V	POC1, VPOC0 = 0, 0, 0, fallir	ng reset voltage	1.60	1.63	1.66	V
reset mode	V _{LVDA1}		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
				Falling interrupt voltage	1.70	1.73	1.77	V
	V _{LVDA2}		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
				Falling interrupt voltage	1.8	1.84	1.87	V
	V _{LVDA3}		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	V _{LVDB0}	VPOC2, V	POC1, VPOC0 = 0, 0, 1, fallir	ng reset voltage	1.80	1.84	1.87	V
	V _{LVDB1}		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	V _{LVDB2}		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
				Falling interrupt voltage	2.00	2.04	2.08	V
	V _{LVDB3}		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	V _{LVDC0}	VPOC2, V	/POC1, VPOC0 = 0, 1, 0, fal	ling reset voltage	2.40	2.45	2.50	V
	V _{LVDC1}		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	V _{LVDC2}		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	V _L VDD0	VPOC2, V	/POC1, VPOC0 = 0, 1, 1, fal	ling reset voltage	2.70	2.75	2.81	V
	V _{LVDD1}		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	V _{LVDD2}		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V

2.8.5 Supply voltage rise time

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{SS} = V_{SS_RF} = AV_{SS_RF} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
V _{DD} rise slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 2.6 AC Characteristics.

2.9 RF Transceiver Characteristics

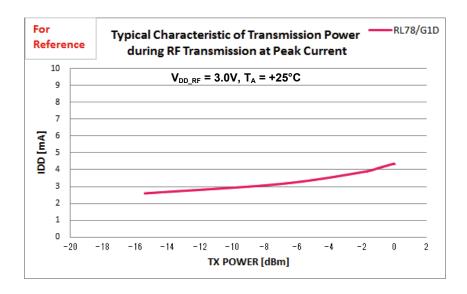
2.9.1 RF transmission characteristics

Unless specified otherwise, the measurement is performed by our evaluation board.

 $(T_A = +25^{\circ}C, V_{DD} = V_{DD_RF} = AV_{DD_RF} = 3.0 \text{ V}, f = 2440 \text{ MHz}, V_{SS} = V_{SS_RF} = AV_{SS_RF} = 0 \text{ V})$

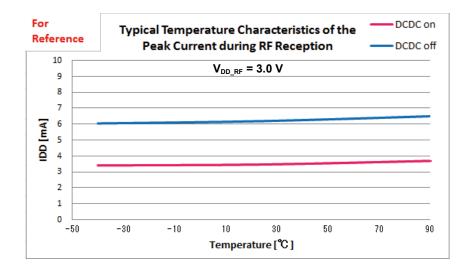
Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
RF frequency range	RFcf			2402		2480	MHz
Data rate	RFDATA				1		Mbps
Maximum transmitted	RFPOWER	RF output pin	RF low power mode	-18	-15	-12	dBm
output power			RF normal mode	-3	0	3	dBm
			RF high performance mode	-3	0	3	dBm
Transmitted output power setting	RFTXPOW	0, -1, -2, -7, -10, -15 dBm		-15		0	dBm
Spurious radiation	RFTXSP	30 to 88 MHz			-76	-55	dBm
		88 to 216 MHz			-76	-52	dBm
		216 to 960 MHz			-74	-49	dBm
		960 to 1000 MHz			-74	-30	dBm
		1 to 12.75 GHz			-42	-41	dBm
		1.8 to 1.9 GHz			-73	-47	dBm
		5.15 to 5.3 GHz			-71	-47	dBm
Harmonics	RFTXHC1	2 nd Harmonics			-52	-41	dBm
	RF _{TXHC2}	3 rd Harmonics			-51	-41	dBm
Frequency tolerance	RFTXFERR			-30		+30	ppm
Impedance	RF _{Z1}				50+j0		Ω

Caution Install EMI countermeasures as required to prevent EMI effects of the RF transmission characteristics.



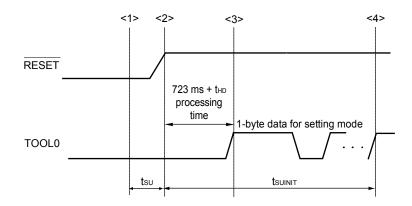
2.9.2 RF reception characteristics

Unless specified otherwise, the measurement is performed by our evaluation board.


 $(T_A = +25^{\circ}C, V_{DD} = V_{DD_RF} = AV_{DD_RF} = 3.0 \text{ V}, f = 2440 \text{ MHz}, V_{SS} = V_{SS_RF} = AV_{SS_RF} = 0 \text{ V})$

Parameter	Symbol		MIN.	TYP.	MAX.	Unit	
RF input frequency	RFRXFRIN			2402		2480	MHz
Maximum input level RF _{LEVL} PER ≤ 30.8% RF input pin	RFLEVL		RF low power mode	-10	0	-	dBm
			RF normal mode	-10	1	-	dBm
	RF high performance mode	-10	1	-	dBm		
Receiver sensitivity	ceiver sensitivity RFsTY PER ≤ 30.8%	RF low power mode	-	-60	-50	dBm	
		RF normal mode	-	-90	-70	dBm	
			RF high performance mode	-	-92	-70	dBm
Secondary radiation RF _{RXSP}		30 MHz to 1 GHz	-	-72	-57	dBm/ 100 kHz	
		1 GHz to 12 GHz	-	-57	-54	dBm/ 100 kHz	
Common channel rejection ratio	RFccr	PER ≤ 30.8%, Prf = –67dBm		-21	-12	-	dB
,	PER ≤ 30.8%	±1 MHz	-15	-5	-	dB	
		Prf = -67 dBm	±2 MHz	17	29	-	dB
		±3 MHz	27	34	-	dB	
Blocking RFBLK	RFBLK	PER ≤ 30.8% Prf = −67 dBm	30 MHz - 2000 MHz	-30	-13	-	dB
			2000 MHz to 2399 MHz	-35	-30	-	dBm
			2484 MHz to 3000 MHz	-35	-30	-	dBm
			> 3000 MHz	-30	-17	-	dBm
Frequency tolerance	RFRXFERR	PER ≤ 30.8%	-250		+250	kHz	
RSSI accuracy	RFRSSIS	T _A = +25°C, -70	-4	0	4	dB	

(2) Peak Current during RF Reception


Unless specified otherwise, the measurement is performed by our evaluation board. Current consumption is not including MCU unit.

2.13 Timing of Entry to Flash Memory Programming Modes

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \leq \text{Vdd} = \text{Vdd}_{RF} = \text{AVdd}_{RF} \leq 3.6 \text{ V}, \text{Vss} = \text{Vss}_{RF} = \text{AVss}_{RF} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.		100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	t su	POR and LVD reset must be released before the external reset is released.	10		μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must be released before the external reset is released.	1		ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.

tsu: Time to release the external reset after the TOOL0 pin is set to the low level

thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)