E·XFL

NXP USA Inc. - MKE16F256VLH16 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	168MHz
Connectivity	CANbus, FlexIO, I ² C, SPI, UART/USART
Peripherals	DMA, LVD, PWM, WDT
Number of I/O	58
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	68K x 8
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mke16f256vlh16

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

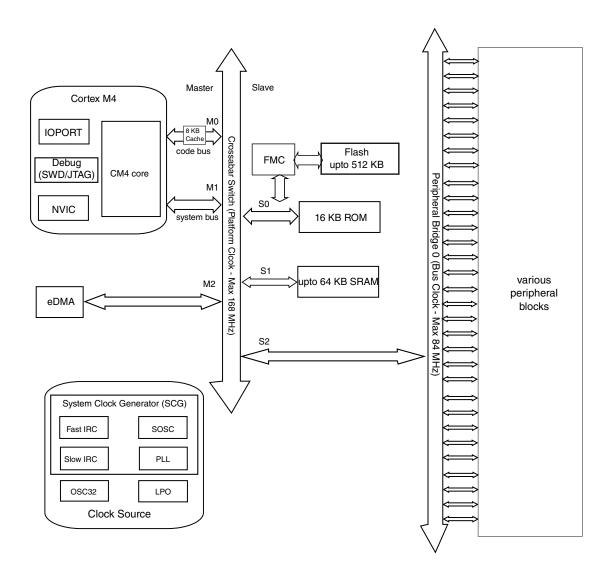


Figure 2. System diagram

The crossbar switch connects bus masters and slaves using a crossbar switch structure. This structure allows up to four bus masters to access different bus slaves simultaneously, while providing arbitration among the bus masters when they access the same slave.

2.1 System features

The following sections describe the high-level system features.

- Static operation in Normal Stop mode
- 16-word data buffer supported with multiple operation modes
- DMA support

2.2.5 CMP

There are three analog comparators on this device.

- Each CMP has its own independent 8-bit DAC.
- Each CMP supports up to 7 analog inputs from external pins.
- Each CMP is able to convert an internal reference from the bandgap.
- Each CMP supports internal reference from the on-chip 12-bit DAC out.
- Each CMP supports the round-robin sampling scheme. In summary, this allow the CMP to operate independently in VLPS and Stop modes, whilst being triggered periodically to sample up to 8 inputs. Only if an input changes state is a full wakeup generated.

The CMP has the following features:

- Inputs may range from rail to rail
- Programmable hysteresis control
- Selectable interrupt on rising-edge, falling-edge, or both rising and falling edges of the comparator output
- Selectable inversion on comparator output
- Capability to produce a wide range of outputs such as sampled, windowed, or digitally filtered
- External hysteresis can be used at the same time that the output filter is used for internal functions
- Two software selectable performance levels: Shorter propagation delay at the expense of higher power, and Low power with longer propagation delay
- DMA transfer support
- Functional in all power modes available on this MCU
- The window and filter functions are not available in STOP mode
- Integrated 8-bit DAC with selectable supply reference source and can be power down to conserve power

2.2.6 RTC

The RTC is an always powered-on block that remains active in all low power modes. The time counter within the RTC is clocked by a 32.768 kHz clock sourced from an external crystal using the oscillator, or clock directly from RTC_CLKIN pin.

2.2.9 LPTMR

The low-power timer (LPTMR) can be configured to operate as a time counter with optional prescaler, or as a pulse counter with optional glitch filter, across all power modes, including the low-leakage modes. It can also continue operating through most system reset events, allowing it to be used as a time of day counter.

The LPTMR module has the following features:

- 16-bit time counter or pulse counter with compare
 - Optional interrupt can generate asynchronous wakeup from any low-power mode
 - Hardware trigger output
 - Counter supports free-running mode or reset on compare
- Configurable clock source for prescaler/glitch filter
- Configurable input source for pulse counter

2.2.10 CRC

This device contains one cyclic redundancy check (CRC) module which can generate 16/32-bit CRC code for error detection.

The CRC module provides a programmable polynomial, WAS, and other parameters required to implement a 16-bit or 32-bit CRC standard.

The CRC module has the following features:

- Hardware CRC generator circuit using a 16-bit or 32-bit programmable shift register
- Programmable initial seed value and polynomial
- Option to transpose input data or output data (the CRC result) bitwise or bytewise.
- Option for inversion of final CRC result
- 32-bit CPU register programming interface

2.2.11 LPUART

This product contains three Low-Power UART modules, and can work in Stop and VLPS modes. The module also supports 4× to 32× data oversampling rate to meet different applications.

The LPUART module has the following features:

• Programmable baud rates (13-bit modulo divider) with configurable oversampling ratio from 4× to 32×

Overview

Each FlexCAN module contains 16 message buffers. Each message buffer is 16 bytes.

The FlexCAN module has the following features:

- Flexible mailboxes of zero to eight bytes data length
- Each mailbox configurable as receive or transmit, all supporting standard and extended messages
- Individual Rx Mask registers per mailbox
- Full-featured Rx FIFO with storage capacity for up to six frames and automatic internal pointer handling with DMA support
- Transmission abort capability
- Programmable clock source to the CAN Protocol Interface, either peripheral clock or oscillator clock
- RAM not used by reception or transmission structures can be used as general purpose RAM space
- Listen-Only mode capability
- Programmable Loop-Back mode supporting self-test operation
- Programmable transmission priority scheme: lowest ID, lowest buffer number, or highest priority
- Time stamp based on 16-bit free-running timer
- Global network time, synchronized by a specific message
- Maskable interrupts
- Independence from the transmission medium (an external transceiver is assumed)
- Short latency time due to an arbitration scheme for high-priority messages
- Low power modes, with programmable wake up on bus activity
- Remote request frames may be handled automatically or by software
- CAN bit time settings and configuration bits can only be written in Freeze mode
- Tx mailbox status (Lowest priority buffer or empty buffer)
- Identifier Acceptance Filter Hit Indicator (IDHIT) register for received frames
- SYNCH bit available in Error in Status 1 register to inform that the module is synchronous with CAN bus
- CRC status for transmitted message
- Rx FIFO Global Mask register
- Selectable priority between mailboxes and Rx FIFO during matching process
- Powerful Rx FIFO ID filtering, capable of matching incoming IDs against either 128 extended, 256 standard, or 512 partial (8 bit) IDs, with up to 32 individual masking capability

4 Pinouts

4.1 KE1xF Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

NOTE

On this device, there are several special ADC channels which support hardware interleave between multiple ADCs. Taking ADC0_SE4 and ADC1_SE14 channels as an example, these two channels can work independently, but they can also be hardware interleaved. In the hardware interleaved mode, a signal on the pin PTB0 can be sampled by both ADC0 and ADC1. The interleaved mode is enabled by SIM_CHIPCTL[ADC_INTERLEAVE_EN] bits. For more information, see "ADC Hardware Interleaved Channels" in the ADC chapter of Reference Manual.

100 LQFP	64 LQFP	Pin Name	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
-	10	VREFL/ VSS	VREFL/ VSS	VREFL/ VSS							
1	-	PTE16	DISABLED		PTE16			FTM2_CH7		FXIO_D3	TRGMUX_ OUT7
2	-	PTE15	DISABLED		PTE15			FTM2_CH6		FXIO_D2	TRGMUX_ OUT6
3	1	PTD1	ADC2_SE1	ADC2_SE1	PTD1	FTM0_CH3	LPSPI1_SIN	FTM2_CH1		FXIO_D1	TRGMUX_ OUT2
4	2	PTD0	ADC2_SE0	ADC2_SE0	PTD0	FTM0_CH2	LPSPI1_SCK	FTM2_CH0		FXIO_D0	TRGMUX_ OUT1
5	3	PTE11	ADC2_SE13	ADC2_SE13	PTE11	PWT_IN1	LPTMR0_ ALT1	FTM2_CH5		FXIO_D5	TRGMUX_ OUT5
6	4	PTE10	ADC2_SE12	ADC2_SE12	PTE10	CLKOUT		FTM2_CH4		FXIO_D4	TRGMUX_ OUT4
7	_	PTE13	DISABLED		PTE13			FTM2_FLT0			
8	5	PTE5	DISABLED		PTE5	TCLK2	FTM2_QD_ PHA	FTM2_CH3	CAN0_TX	FXIO_D7	EWM_IN
9	6	PTE4	DISABLED		PTE4	BUSOUT	FTM2_QD_ PHB	FTM2_CH2	CAN0_RX	FXIO_D6	EWM_OUT_b

100 LQFP	64 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
10	7	VDD	VDD	VDD							
11	8	VDDA	VDDA	VDDA							
12	9	VREFH	VREFH	VREFH							
13	_	VREFL	VREFL	VREFL							
14	_	VSS	VSS	VSS							
15	11	PTB7	EXTAL	EXTAL	PTB7	LPI2C0_SCL					
16	12	PTB6	XTAL	XTAL	PTB6	LPI2C0_SDA					
17	_	PTE14	ACMP2_IN3	ACMP2_IN3	PTE14	FTM0_FLT1		FTM2_FLT1			
18	13	PTE3	DISABLED		PTE3	FTM0_FLT0	LPUART2_ RTS	FTM2_FLT0		TRGMUX_IN6	ACMP2_OUT
19	_	PTE12	DISABLED		PTE12	FTM0_FLT3	LPUART2_TX				
20	_	PTD17	DISABLED		PTD17	FTM0_FLT2	LPUART2_RX				
21	14	PTD16	ACMP2_IN0	ACMP2_IN0	PTD16	FTM0_CH1					
22	15	PTD15	ACMP2_IN1	ACMP2_IN1	PTD15	FTM0_CH0					
23	16	PTE9	ACMP2_IN2/ DAC0_OUT	ACMP2_IN2/ DAC0_OUT	PTE9	FTM0_CH7	LPUART2_ CTS				
24	_	PTD14	DISABLED		PTD14	FTM2_CH5					CLKOUT
25	_	PTD13	DISABLED		PTD13	FTM2_CH4					RTC_CLKOUT
26	17	PTE8	ACMP0_IN3	ACMP0_IN3	PTE8	FTM0_CH6					
27	18	PTB5	DISABLED		PTB5	FTM0_CH5	LPSPI0_PCS1			TRGMUX_IN0	ACMP1_OUT
28	19	PTB4	ACMP1_IN2	ACMP1_IN2	PTB4	FTM0_CH4	LPSPI0_SOUT			TRGMUX_IN1	
29	20	PTC3	ADC0_SE11/ ACMP0_IN4/ EXTAL32	ADC0_SE11/ ACMP0_IN4/ EXTAL32	PTC3	FTM0_CH3	CAN0_TX				
30	21	PTC2	ADC0_SE10/ ACMP0_IN5/ XTAL32	ADC0_SE10/ ACMP0_IN5/ XTAL32	PTC2	FTM0_CH2	CAN0_RX				
31	22	PTD7	DISABLED		PTD7	LPUART2_TX		FTM2_FLT3			
32	23	PTD6	DISABLED		PTD6	LPUART2_RX		FTM2_FLT2			
33	24	PTD5	DISABLED		PTD5	FTM2_CH3	LPTMR0_ ALT2	FTM2_FLT1	PWT_IN2	TRGMUX_IN7	
34	_	PTD12	DISABLED		PTD12	FTM2_CH2	LPI2C1_HREQ			LPUART2_ RTS	
35	—	PTD11	DISABLED		PTD11	FTM2_CH1	FTM2_QD_ PHA			LPUART2_ CTS	
36	—	PTD10	DISABLED		PTD10	FTM2_CH0	FTM2_QD_ PHB				
37	—	VSS	VSS	VSS							
38	-	VDD	VDD	VDD							
39	25	PTC1	ADC0_SE9/ ACMP1_IN3	ADC0_SE9/ ACMP1_IN3	PTC1	FTM0_CH1				FTM1_CH7	
40	26	PTC0	ADC0_SE8/ ACMP1_IN4	ADC0_SE8/ ACMP1_IN4	PTC0	FTM0_CH0				FTM1_CH6	

100 LQFP	64 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
73	48	PTA2	ADC1_SE0	ADC1_SE0	PTA2	FTM3_CH0	LPI2C0_SDA	EWM_OUT_b		LPUART0_RX	
74	-	PTB11	ADC2_SE8	ADC2_SE8	PTB11	FTM3_CH3	LPI2C0_HREQ				
75	_	PTB10	ADC2_SE9	ADC2_SE9	PTB10	FTM3_CH2	LPI2C0_SDAS				
76	_	PTB9	ADC2_SE10	ADC2_SE10	PTB9	FTM3_CH1	LPI2C0_SCLS				
77	_	PTB8	ADC2_SE11	ADC2_SE11	PTB8	FTM3_CH0					
78	49	PTA1	ADC0_SE1/ ACMP0_IN1	ADC0_SE1/ ACMP0_IN1	PTA1	FTM1_CH1	LPI2C0_SDAS	FXIO_D3	FTM1_QD_ PHA	LPUART0_ RTS	TRGMUX_ OUT0
79	50	PTA0	ADC0_SE0/ ACMP0_IN0	ADC0_SE0/ ACMP0_IN0	PTA0	FTM2_CH1	LPI2C0_SCLS	FXIO_D2	FTM2_QD_ PHA	LPUART0_ CTS	TRGMUX_ OUT3
80	51	PTC7	ADC1_SE5	ADC1_SE5	PTC7	LPUART1_TX	CAN1_TX	FTM3_CH3			
81	52	PTC6	ADC1_SE4	ADC1_SE4	PTC6	LPUART1_RX	CAN1_RX	FTM3_CH2			
82	_	PTA16	ADC1_SE13	ADC1_SE13	PTA16	FTM1_CH3	LPSPI1_PCS2				
83	_	PTA15	ADC1_SE12	ADC1_SE12	PTA15	FTM1_CH2	LPSPI0_PCS3				
84	53	PTE6	ADC1_SE11/ ACMP0_IN6	ADC1_SE11/ ACMP0_IN6	PTE6	LPSPI0_PCS2		FTM3_CH7		LPUART1_ RTS	
85	54	PTE2	ADC1_SE10	ADC1_SE10	PTE2	LPSPI0_SOUT	LPTMR0_ ALT3	FTM3_CH6	PWT_IN3	LPUART1_ CTS	
86	_	VSS	VSS	VSS							
87	_	VDD	VDD	VDD							
88	_	PTA14	DISABLED		PTA14	FTM0_FLT0	FTM3_FLT1	EWM_IN		FTM1_FLT0	BUSOUT
89	55	PTA13	ADC2_SE4	ADC2_SE4	PTA13	FTM1_CH7	CAN1_TX	LPI2C1_SCLS			
90	56	PTA12	ADC2_SE5	ADC2_SE5	PTA12	FTM1_CH6	CAN1_RX	LPI2C1_SDAS			
91	57	PTA11	DISABLED		PTA11	FTM1_CH5	LPUART0_RX	FXIO_D1			
92	58	PTA10	JTAG_TDO/ noetm_Trace_ SWO		PTA10	FTM1_CH4	LPUART0_TX	FXIO_D0			JTAG_TDO/ noetm_Trace_ SWO
93	59	PTE1	ADC2_SE6	ADC2_SE6	PTE1	LPSPI0_SIN	LPI2C0_HREQ	LPI2C1_SCL		FTM1_FLT1	
94	60	PTE0	ADC2_SE7	ADC2_SE7	PTE0	LPSPI0_SCK	TCLK1	LPI2C1_SDA		FTM1_FLT2	
95	61	PTC5	JTAG_TDI		PTC5	FTM2_CH0	RTC_CLKOUT	LPI2C1_HREQ		FTM2_QD_ PHB	JTAG_TDI
96	62	PTC4	JTAG_TCLK/ SWD_CLK	ACMP0_IN2	PTC4	FTM1_CH0	RTC_CLKOUT		EWM_IN	FTM1_QD_ PHB	JTAG_TCLK/ SWD_CLK
97	63	PTA5	RESET_b		PTA5		TCLK1			JTAG_TRST_b	RESET_b
98	64	PTA4	JTAG_TMS/ SWD_DIO		PTA4			ACMP0_OUT	EWM_OUT_b		JTAG_TMS/ SWD_DIO
99	_	PTA9	DISABLED		PTA9			FXIO_D7	FTM3_FLT2	FTM1_FLT3	
100	-	PTA8	DISABLED		PTA8			FXIO_D6	FTM3_FLT3		

4.3.1 Core Modules

Table 7. JTAG Signal Descriptions

Chip signal name	Module signal name	Description	I/O
JTAG_TMS	JTAG_TMS/ SWD_DIO	JTAG Test Mode Selection	I/O
JTAG_TCLK	JTAG_TCLK/ SWD_CLK	JTAG Test Clock	I
JTAG_TDI	JTAG_TDI	JTAG Test Data Input	I
JTAG_TDO	JTAG_TDO/ TRACE_SWO	JTAG Test Data Output	0
JTAG_TRST_b	JTAG_TRST_b	JTAG Reset	I

Table 8. SWD Signal Descriptions

Chip signal name	Module signal name	Description	I/O
SWD_CLK	JTAG_TCLK/ SWD_CLK	Serial Wire Clock	I
SWD_DIO	JTAG_TMS/ SWD_DIO	Serial Wire Data	I/O

Table 9. TPIU Signal Descriptions

Chip signal name	Module signal name	Description	I/O
TRACE_SWO	JTAG_TDO/ TRACE_SWO	Trace output data from the ARM CoreSight debug block over a single pin	0

4.3.2 System Modules

Table 10. System Signal Descriptions

Chip signal name	Module signal name	Description	I/O
NMI_b	_	Non-maskable interrupt NOTE: Driving the NMI signal low forces a non-maskable interrupt, if the NMI function is selected on the corresponding pin.	I
RESET_b		Reset bidirectional signal	I/O
VDD		MCU power	I
VSS	—	MCU ground	I

Chip signal name	Module signal name	Description	I/O
EWM_IN	EWM_in	EWM input for safety status of external safety circuits. The polarity of EWM_IN is programmable using the EWM_CTRL[ASSIN] bit. The default polarity is active-low.	Ι
EWM_OUT_b	EWM_out	EWM reset out signal	0

Table 11. EWM Signal Descriptions

4.3.3 Clock Modules

Table 12. OSC (in SCG) Signal Descriptions

Chip signal name	Module signal name	Description	I/O
EXTAL	EXTAL	External clock/Oscillator input	I
XTAL	XTAL	Oscillator output	0

Table 13. RTC Oscillator (OSC32) Signal Descriptions

Chip signal name	Module signal name	Description	I/O
EXTAL32	EXTAL32	32.768 kHz oscillator input	I
XTAL32	XTAL32	32.768 kHz oscillator output	0

4.3.4 Analog

Table 14. ADCn Signal Descriptions

Chip signal name	Module signal name	Description	I/O
ADCn_SE[15:0]	AD[15:0]	Single-Ended Analog Channel Inputs	I
VREFH	V _{REFSH}	Voltage Reference Select High	I
VREFL	V _{REFSL}	Voltage Reference Select Low	I
VDDA	V _{DDA}	Analog Power Supply	I

Table 15. DAC0 Signal Descriptions

Chip signal name	Module signal name	Description	I/O
DAC0_OUT	_	DAC output	0

Chip signal name	Module signal name	Description	I/O
LPSPIn_SOUT	SOUT	Serial Data Out	0
LPSPIn_SIN	SIN	Serial Data In	I
LPSPIn_SCK	SCK	Serial Clock	I/O
LPSPIn_PCS[3:0]	PCS[3:0]	Peripheral Chip Select 0-3	I/O

Table 21. LPSPIn Signal Descriptions

Table 22. LPI2Cn Signal Descriptions

Chip signal name	Module signal name	Description	I/O
LPI2Cn_SCL	SCL	Bidirectional serial clock line of the I2C system.	I/O
LPI2Cn_SDA	SDA	Bidirectional serial data line of the I2C system.	I/O
LPI2Cn_HREQ	HREQ	Host request, can initiate an LPI2C master transfer if asserted and the I2C bus is idle.	I
LPI2Cn_SCLS	SCLS	Secondary I2C clock line.	I/O
LPI2Cn_SDAS	SDAS	Secondary I2C data line.	I/O

Table 23. LPUARTn Signal Descriptions

Chip signal name	Module signal name	Description	I/O
LPUARTn_TX	LPUART_TX	Transmit data	0
LPUARTn_RX	LPUART_RX	Receive data	I
LPUARTn_CTS	LPUART_CTS	Clear to send	I
LPUARTn_RTS	LPUART_RTS	Request to send	0

Table 24. FlexIO Signal Descriptions

Chip signal name	Module signal name	Description	I/O
FXIO_D[7:0]	FXIO_D[7:0]	Bidirectional FlexIO Shifter and Timer pin inputs/outputs	I/O

5.3.1 Nonswitching electrical specifications

5.3.1.1 Voltage and current operating requirements Table 27. Voltage and current operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V_{DD}	Supply voltage	2.7	5.5	V	
V _{DDA}	Analog supply voltage	2.7	5.5	V	
V _{DD} – V _{DDA}	V _{DD} -to-V _{DDA} differential voltage	- 0.1	0.1	V	
V _{SS} – V _{SSA}	V_{SS} -to- V_{SSA} differential voltage	- 0.1	0.1	V	
I _{ICIO}	Analog DC injection current — single pin				•
	$V_{IN} < V_{SS}$ - 0.3 V (Negative current injection)	- 5	—	mA	1, 2
	$V_{IN} > V_{DD} + 0.3 V$ (Positive current injection)		+ 5	mA	
I _{ICcont}	Contiguous pin DC injection current — regional limit, includes sum of negative injection currents or sum of positive injection currents of 16 contiguous pins	- 25	_	mA	
V _{ODPU}	Open drain pullup voltage level	V _{DD}	V _{DD}	V	3

All analog pins are internally clamped to V_{SS} and V_{DD} through ESD protection diodes. If V_{IN} is less than V_{AIO_MIN} or greater than V_{AIO_MAX}, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(V_{AIO_MIN}-V_{IN})/II_{ICIO}I. The positive injection current limiting resistor is calculated as R=(V_{AIO_MIN}-V_{IN})/II_{ICIO}I. The positive injection current limiting resistor is calculated as R=(V_{AIO_MIN}-V_{IN})/II_{ICIO}I. Select the larger of these two calculated resistances if the pin is exposed to positive and negative injection currents.

- 2. Max voltage levels that I/O pins can withstand while keeping the injection current (maximum) at 5mA:
 - Max supply V_{DD} = 6.0 V for 60 s lifetime (with no switching restrictions) or for 10 hours (if device is in reset or no switching state)
 - Max I/O pin voltage = 6.5 V (at injection current \leq 5 mA) or 7.0 V (at injection current > 5 mA)
- 3. Open drain outputs must be pulled to V_{DD} .

5.3.1.2 DC electrical specifications at 3.3 V Range and 5.0 V Range Table 28. DC electrical specifications

Symbol	Parameter	Value			Unit	Notes
		Min	Тур	Max		
V _{DD}	I/O Supply Voltage ¹	2.7	3.3	4	V	
	@ V _{DD} = 3.3 V					
	@ V _{DD} = 5.0 V	4	—	5.5	V	
V _{ih}	Input Buffer High Voltage	$0.7 \times V_{DD}$	_	V _{DD} + 0.3	V	
	@ V _{DD} = 3.3 V					
	@ V _{DD} = 5.0 V	$0.65 \times V_{DD}$		V _{DD} + 0.3	V	

Table continues on the next page...

- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFE

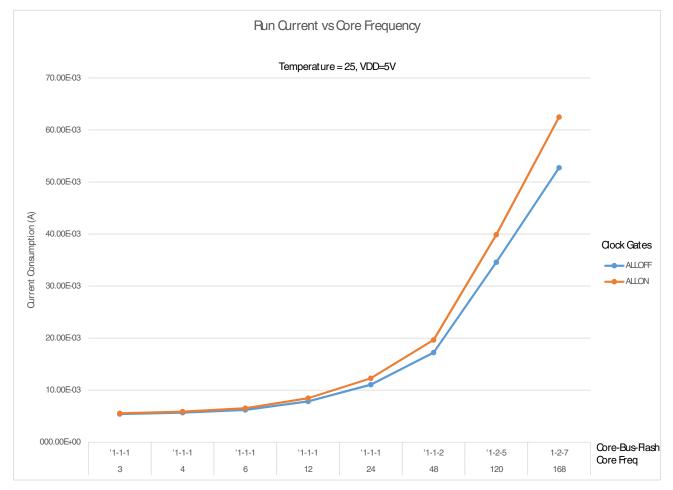


Figure 14. Run mode supply current vs. core frequency

- AN2764: Improving the Transient Immunity Performance of Microcontroller-Based Applications
- AN1259: System Design and Layout Techniques for Noise Reduction in MCU-Based Systems

5.3.1.7.1 EMC radiated emissions operating behaviors

EMC measurements to IC-level IEC standards are available from NXP on request.

5.3.1.7.2 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions.

- 1. Go to http://www.nxp.com.
- 2. Perform a keyword search for "EMC design".
- 3. Select the "Documents" category and find the application notes.

5.3.1.8 Capacitance attributes

Table 33. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN_A}	Input capacitance: analog pins	—	7	pF
C _{IN_D}	Input capacitance: digital pins	—	7	pF

NOTE

Please refer to External Oscillator electrical specifications for EXTAL/XTAL pins.

5.3.2 Switching specifications

5.3.2.1 Device clock specifications

Symbol	Description	Min.	Max.	Unit	Notes		
	High Speed RUN mode						
f _{SYS}	System and core clock	_	168	MHz			
f _{BUS}	_	84	MHz				

Table 34. Device clock specifications

Table continues on the next page...

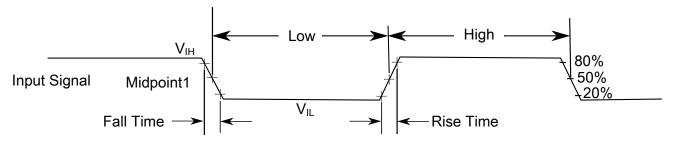

Symbol	Description	Min.	Max.	Unit	Notes
f _{FLASH}	Flash clock	_	25	MHz	
	Normal RUN mod	le	•		•
f _{SYS}	System and core clock	_	120	MHz	
f _{BUS}	f _{BUS} Bus clock		60	MHz	
f _{FLASH}	Flash clock	—	25	MHz	
f _{LPTMR}	LPTMR clock	—	50	MHz	
	VLPR / VLPW mod	de ¹			
f _{SYS}	System and core clock	_	4	MHz	
f _{BUS}	Bus clock	—	4	MHz	
f _{FLASH}	Flash clock	_	1	MHz	
f _{ERCLK}	External reference clock	_	16	MHz	
f _{LPTMR}	f _{LPTMR} LPTMR clock		13	MHz	
f _{FlexCAN}	FlexCAN clock		4	MHz	

Table 34.	Device clock specifications	(continued)
-----------	------------------------------------	-------------

1. The frequency limitations in VLPR / VLPW mode here override any frequency specification listed in the timing specification for any other module.

5.3.2.2 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

The midpoint is V_{IL} + (V_{IH} - V_{IL}) / 2

Figure 16. Input signal measurement reference

All digital I/O switching characteristics, unless otherwise specified, assume that the output pins have the following characteristics.

- $C_L=30 \text{ pF loads}$
- Normal drive strength

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max. ³	Unit	Notes
	Sample Time		275	_	Refer to the device's <i>Reference</i> <i>Manual</i>	ns	
TUE	Total unadjusted error at 2.7 to 5.5 V		—	±4.5	±6.56	LSB ⁵	6
DNL	Differential non- linearity at 2.7 to 5.5 V		_	±0.8	±1.07	LSB ⁵	6
INL	Integral non-linearity at 2.7 to 5.5 V		-	±1.4	±3.95	LSB ⁵	6
E _{FS}	Full-scale error at 2.7 to 5.5 V		_	-2	-3.40	LSB ⁵	$V_{ADIN} = V_{DDA}^{6}$
E _{ZS}	Zero-scale error at 2.7 to 5.5 V		_	-2.7	-4.14	LSB ⁵	
EQ	Quantization error at 2.7 to 5.5 V		_	-	±0.5	LSB ⁵	
ENOB	Effective number of bits at 2.7 to 5.5 V		_	11.3	—	bits	7
SINAD	Signal-to-noise plus distortion at 2.7 to 5.5 V	See ENOB	_	70	—	dB	SINAD = 6.02 × ENOB + 1.76
EIL	Input leakage error at 2.7 to 5.5 V			I _{In} × R _{AS}		mV	I _{In} = leakage current (refer to the MCU's voltage and current operating ratings)
V _{TEMP_S}	Temperature sensor slope at 2.7 to 5.5 V	Across the full temperature range of the device	1.492	1.564	1.636	mV/°C	8, 9
V _{TEMP25}	Temperatue sensor voltage at 2.7 to 5.5 V	25 °C	730	740.5	751	mV	8, 9

Table 54. 12-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

1. All accuracy numbers assume the ADC is calibrated with $V_{REFH} = V_{DDA}$

- 2. Typical values assume V_{DDA} = 5.0 V, Temp = 25 °C, f_{ADCK} = 48 MHz unless otherwise stated.
- 3. These values are based on characterization but not covered by test limits in production.
- The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed.
- 5. 1 LSB = $(V_{REFH} V_{REFL})/2^N$
- 6. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 7. Input data is 100 Hz sine wave. ADC conversion clock < 40 MHz.
- 8. ADC conversion clock < 3 MHz
- 9. The sensor must be calibrated to gain good accuracy, so as to provide good linearity, see also AN3031 for more detailed application information of the temperature sensor.

5.4.5.2 CMP with 8-bit DAC electrical specifications Table 55. Comparator with 8-bit DAC electrical specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	
V _{DD}	Supply voltage	2.7	—	5.5	V	
I _{DDHS}	Supply current, High-speed mode ²				μA	
	within ambient temperature range	_	145	200	-	
I _{DDLS}	Supply current, Low-speed mode ²	current, Low-speed mode ²		μA		
	within ambient temperature range	—	5	10		
V _{AIN}	Analog input voltage	0	0 - V _{DDX}	V _{DDX}	V	
V _{AIO}	Analog input offset voltage, High-speed mode	input offset voltage, High-speed mode				
	within ambient temperature range	-25	±1	25	l	
V _{AIO}	Analog input offset voltage, Low-speed mode					
	within ambient temperature range	-40	±4	40	1	
t _{DHSB}	Propagation delay, High-speed mode ³				ns	
	within ambient temperature range	_	30	200	1	
t _{DLSB}	Propagation delay, Low-speed mode ³				μs	
	within ambient temperature range	—	0.5	2		
t _{DHSS}	Propagation delay, High-speed mode ⁴	agation delay, High-speed mode ⁴				
	within ambient temperature range	_	70	400		
t _{DLSS}	Propagation delay, Low-speed mode ⁴		μs			
	within ambient temperature range	_	1	5	1	
t _{IDHS}	Initialization delay, High-speed mode ³				μs	
	within ambient temperature range	—	1.5	3		
t _{IDLS}	Initialization delay, Low-speed mode ³				μs	
	within ambient temperature range	—	10	30		
V _{HYST0}	Analog comparator hysteresis, Hyst0 (V _{AIO})	· · · · ·			mV	
	within ambient temperature range	—	0	_		
V _{HYST1}	Analog comparator hysteresis, Hyst1, High-speed mode	eresis, Hyst1, High-speed				
	within ambient temperature range	—	16	53		
	Analog comparator hysteresis, Hyst1, Low-speed mode					
	within ambient temperature range	_	11	30	1	
V _{HYST2}	Analog comparator hysteresis, Hyst2, High-speed mode					
	within ambient temperature range	-	32	90		
	Analog comparator hysteresis, Hyst2, Low-speed mode					
	within ambient temperature range	_	22	53		
V _{HYST3}	Analog comparator hysteresis, Hyst3, High-speed mode				mV	

Table continues on the next page...

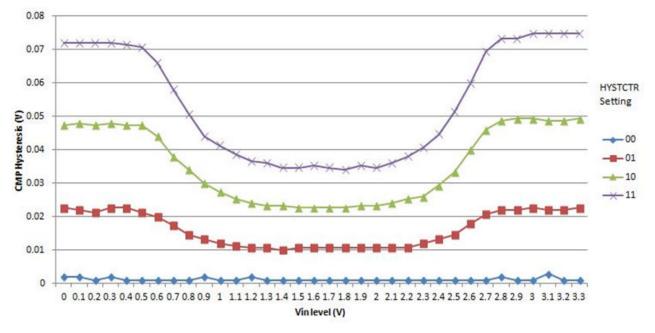


Figure 21. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)

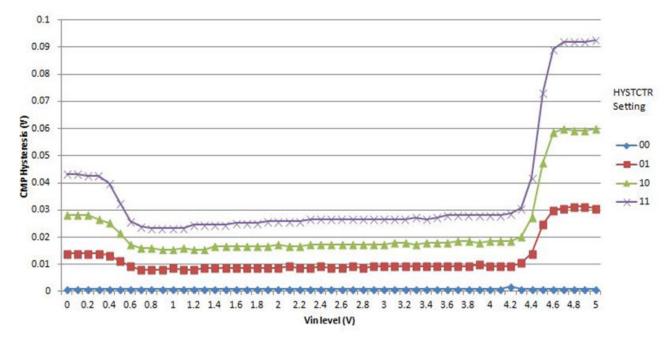


Figure 22. Typical hysteresis vs. Vin level (VDD = 5 V, PMODE = 0)

5.4.6.2 LPSPI electrical specifications

The Low Power Serial Peripheral Interface (LPSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic LPSPI timing modes.

All timing is shown with respect to 20% V_{DD} and 80% V_{DD} thresholds, unless noted, as well as input signal transitions of 3 ns and a 30 pF maximum load on all LPSPI pins.

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	f _{periph} /2048	f _{periph} /2	Hz	1
2	t _{SPSCK}	SPSCK period	2 x t _{periph}	2048 x t _{periph}	ns	2
3	t _{Lead}	Enable lead time	1/2	—	t _{SPSCK}	_
4	t _{Lag}	Enable lag time	1/2	_	t _{SPSCK}	—
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} - 30	1024 x t _{periph}	ns	-
6	t _{SU}	Data setup time (inputs)	18	_	ns	—
7	t _{HI}	Data hold time (inputs)	0	_	ns	-
8	t _v	Data valid (after SPSCK edge)	—	15	ns	_
9	t _{HO}	Data hold time (outputs)	0		ns	_
10	t _{RI}	Rise time input	—	t _{periph} - 25	ns	-
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	—	25	ns	-
	t _{FO}	Fall time output				

Table 58. LPSPI master mode timing

1. $f_{periph} = LPSPI peripheral clock$

2. $t_{periph} = 1/f_{periph}$

NOTE

High drive pin should be used for fast bit rate.

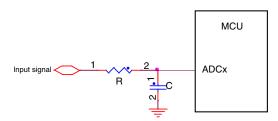
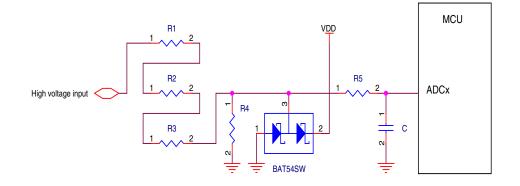



Figure 34. RC circuit for ADC input

High voltage measurement circuits require voltage division, current limiting, and overvoltage protection as shown the following figure. The voltage divider formed by R1 – R4 must yield a voltage less than or equal to VREFH. The current must be limited to less than the injection current limit. Since the ADC pins do not have diodes to VDD, external clamp diodes must be included to protect against transient over-voltages.

Figure 35. High voltage measurement with an ADC input

NOTE

For more details of ADC related usage, refer to AN5250: How to Increase the Analog-to-Digital Converter Accuracy in an Application.

6.1.4 Digital design

Ensure that all I/O pins cannot get pulled above VDD (Max I/O is VDD+0.3V).

CAUTION

Do not provide power to I/O pins prior to VDD, especially the RESET_b pin.

• RESET_b pin

Do not add a pull-down resistor or capacitor on the NMI_b pin, because a low level on this pin will trigger non-maskable interrupt. When this pin is enabled as the NMI function, an external pull-up resistor (10 k Ω) as shown in the following figure is recommended for robustness.

If the NMI_b pin is used as an I/O pin, the non-maskable interrupt handler is required to disable the NMI function by remapping to another function. The NMI function is disabled by programming the FOPT[NMI_DIS] bit to zero.

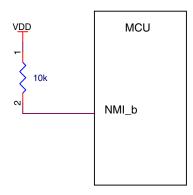


Figure 38. NMI pin biasing

• Debug interface

This MCU uses the standard ARM SWD interface protocol as shown in the following figure. While pull-up or pull-down resistors are not required (SWD_DIO has an internal pull-up and SWD_CLK has an internal pull-down), external 10 k Ω pull resistors are recommended for system robustness. The RESET_b pin recommendations mentioned above must also be considered.

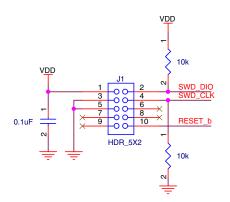


Figure 39. SWD debug interface

• Unused pin