

Welcome to <u>E-XFL.COM</u>

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	84MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, MMC, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	63
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	96K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TFBGA
Supplier Device Package	100-TFBGA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/atmel/atsam3a8ca-cu

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

7.2.3.3 Enhanced Embedded Flash Controller

The Enhanced Embedded Flash Controller (EEFC) manages accesses performed by the masters of the system. It enables reading the Flash and writing the write buffer. It also contains a User Interface, mapped within the Memory Controller on the APB.

The EEFC ensures the interface of the Flash block with the 32-bit internal bus. Its 128-bit wide memory interface increases performance.

The user can choose between high performance or lower current consumption by selecting either 128-bit or 64-bit access. It also manages the programming, erasing, locking and unlocking sequences of the Flash using a full set of commands.

One of the commands returns the embedded Flash descriptor definition that informs the system about the Flash organization, thus making the software generic.

7.2.3.4 Lock Regions

Several lock bits are used to protect write and erase operations on lock regions. A lock region is composed of several consecutive pages, and each lock region has its associated lock bit.

Product	Number of Lock Bits	Lock Region Size		
SAM3X8				
SAM3A8	32	16 Kbytes (64 pages)		
SAM3X4	10			
SAM3A4	16	16 Kbytes (64 pages)		

Table 7-3. Number of Lock Bits

If a locked-region's erase or program command occurs, the command is aborted and the EEFC triggers an interrupt.

The lock bits are software programmable through the EEFC User Interface. The "Set Lock Bit" command enables the protection. The "Clear Lock Bit" command unlocks the lock region.

Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.

7.2.3.5 Security Bit Feature

The SAM3X/A series features a security bit, based on a specific General Purpose NVM bit (GPNVM bit 0). When the security is enabled, any access to the Flash, either through the ICE interface or through the Fast Flash Programming Interface (FFPI), is forbidden. This ensures the confidentiality of the code programmed in the Flash.

This security bit can only be enabled through the "Set General Purpose NVM Bit 0" command of the EEFC0 User Interface. Disabling the security bit can only be achieved by asserting the ERASE pin at 1, and after a full Flash erase is performed. When the security bit is deactivated, all accesses to the Flash are permitted.

It is important to note that the assertion of the ERASE pin should always be longer than 200 ms.

As the ERASE pin integrates a permanent pull-down, it can be left unconnected during normal operation. However, it is safer to connect it directly to GND for the final application.

7.2.3.6 Calibration Bits

NVM bits are used to calibrate the brownout detector and the voltage regulator. These bits are factory configured and cannot be changed by the user. The ERASE pin has no effect on the calibration bits.

7.2.3.7 Unique Identifier

Each device integrates its own 128-bit unique identifier. These bits are factory configured and cannot be changed by the user. The ERASE pin has no effect on the unique identifier.

10.4.3.6 Application Program Status Register

The APSR contains the current state of the condition flags from previous instruction executions. See the register summary in Table 10-2 on page 51 for its attributes. The bit assignments are:

• N

Negative or less than flag:

0 = operation result was positive, zero, greater than, or equal

1 = operation result was negative or less than.

• Z

Zero flag:

0 = operation result was not zero

1 = operation result was zero.

• C

Carry or borrow flag:

0 = add operation did not result in a carry bit or subtract operation resulted in a borrow bit

1 = add operation resulted in a carry bit or subtract operation did not result in a borrow bit.

• V

Overflow flag:

0 = operation did not result in an overflow

1 = operation resulted in an overflow.

• Q

Sticky saturation flag:

0 = indicates that saturation has not occurred since reset or since the bit was last cleared to zero

1 = indicates when an SSAT or USAT instruction results in saturation.

This bit is cleared to zero by software using an MRS instruction.

10.4.3.7 Interrupt Program Status Register

The IPSR contains the exception type number of the current *Interrupt Service Routine* (ISR). See the register summary in Table 10-2 on page 51 for its attributes. The bit assignments are:

• ISR_NUMBER

This is the number of the current exception:

- 0 = Thread mode
- 1 = Reserved
- 2 = NMI
- 3 = Hard fault
- 4 = Memory management fault
- 5 = Bus fault
- 6 = Usage fault

10.18.11 WFE

Wait For Event.

10.18.11.1 Syntax

WFE{cond}

where:

cond is an optional condition code, see "Conditional execution" on page 91.

10.18.11.2 Operation

WFE is a hint instruction.

If the event register is 0, WFE suspends execution until one of the following events occurs:

- an exception, unless masked by the exception mask registers or the current priority level
- an exception enters the Pending state, if SEVONPEND in the System Control Register is set
- a Debug Entry request, if Debug is enabled
- an event signaled by a peripheral or another processor in a multiprocessor system using the SEV instruction.

If the event register is 1, WFE clears it to 0 and returns immediately.

For more information see "Power management" on page 80.

10.18.11.3 Condition flags

This instruction does not change the flags.

10.18.11.4 Examples

WFE ; Wait for event

• UNDEFINSTR

Undefined instruction usage fault:

- 0: no undefined instruction usage fault
- 1: the processor has attempted to execute an undefined instruction.

When this bit is set to 1, the PC value stacked for the exception return points to the undefined instruction.

An undefined instruction is an instruction that the processor cannot decode.

The UFSR bits are sticky. This means as one or more fault occurs, the associated bits are set to 1. A bit that is set to 1 is cleared to 0 only by writing 1 to that bit, or by a reset.

Thread-safe

In a multi-tasking environment, thread-safe functions use safeguard mechanisms when accessing shared resources, to ensure correct operation without the risk of shared access conflicts.

Thumb instruction

One or two halfwords that specify an operation for a processor to perform. Thumb instructions must be halfwordaligned.

Unaligned

A data item stored at an address that is not divisible by the number of bytes that defines the data size is said to be unaligned. For example, a word stored at an address that is not divisible by four.

Undefined

Indicates an instruction that generates an Undefined instruction exception.

Unpredictable (UNP)

You cannot rely on the behavior. Unpredictable behavior must not represent security holes. Unpredictable behavior must not halt or hang the processor, or any parts of the system.

Warm reset

Also known as a core reset. Initializes the majority of the processor excluding the debug controller and debug logic. This type of reset is useful if you are using the debugging features of a processor.

Word

A 32-bit data item.

Write

Writes are defined as operations that have the semantics of a store. Writes include the Thumb instructions STM, STR, STRH, STRB, and PUSH.

14.6.9 RTC Interrupt Enable Register

Name: Address: Access:	RTC_IER 0x400E1A80 Write-only						
31	30	29	28	27	26	25	24
—	_	-	-	-	-	_	-
23	22	21	20	19	18	17	16
_	-	_	_	_	_	_	-
15	14	13	12	11	10	9	8
_	-	—	—	—	—	—	-
7	6	5	4	3	2	1	0
-	_	-	CALEN	TIMEN	SECEN	ALREN	ACKEN

• ACKEN: Acknowledge Update Interrupt Enable

0: No effect.

1: The acknowledge for update interrupt is enabled.

• ALREN: Alarm Interrupt Enable

0: No effect.

1: The alarm interrupt is enabled.

• SECEN: Second Event Interrupt Enable

0: No effect.

1: The second periodic interrupt is enabled.

• TIMEN: Time Event Interrupt Enable

0: No effect.

1: The selected time event interrupt is enabled.

• CALEN: Calendar Event Interrupt Enable

0: No effect.

1: The selected calendar event interrupt is enabled.

22.7 AHB DMA Controller (DMAC) User Interface

Table 22-5.Register Mapping

Offset	Register	Name	Access	Reset
0x000	DMAC Global Configuration Register	DMAC_GCFG	Read-write	0x10
0x004	DMAC Enable Register	DMAC_EN	Read-write	0x0
0x008	DMAC Software Single Request Register	DMAC_SREQ	Read-write	0x0
0x00C	DMAC Software Chunk Transfer Request Register	DMAC_CREQ	Read-write	0x0
0x010	DMAC Software Last Transfer Flag Register	DMAC_LAST	Read-write	0x0
0x014	Reserved			
0x018	DMAC Error, Chained Buffer Transfer Completed Interrupt and Buffer Transfer Completed Interrupt Enable register.	DMAC_EBCIER	Write-only	-
0x01C	DMAC Error, Chained Buffer Transfer Completed Interrupt and Buffer Transfer Completed Interrupt Disable register.	DMAC_EBCIDR	Write-only	-
0x020	DMAC Error, Chained Buffer Transfer Completed Interrupt and Buffer transfer completed Mask Register.	DMAC_EBCIMR	Read-only	0x0
0x024	DMAC Error, Chained Buffer Transfer Completed Interrupt and Buffer transfer completed Status Register.	DMAC_EBCISR	Read-only	0x0
0x028	DMAC Channel Handler Enable Register	DMAC_CHER	Write-only	-
0x02C	DMAC Channel Handler Disable Register	DMAC_CHDR	Write-only	-
0x030	DMAC Channel Handler Status Register	DMAC_CHSR	Read-only	0x00FF0000
0x034	Reserved	-	-	-
0x038	Reserved	-	-	-
0x03C+ch_num*(0x28)+(0x0)	DMAC Channel Source Address Register	DMAC_SADDR	Read-write	0x0
0x03C+ch_num*(0x28)+(0x4)	DMAC Channel Destination Address Register	DMAC_DADDR	Read-write	0x0
0x03C+ch_num*(0x28)+(0x8)	DMAC Channel Descriptor Address Register	DMAC_DSCR	Read-write	0x0
0x03C+ch_num*(0x28)+(0xC)	DMAC Channel Control A Register	DMAC_CTRLA	Read-write	0x0
0x03C+ch_num*(0x28)+(0x10)	DMAC Channel Control B Register	DMAC_CTRLB	Read-write	0x0
0x03C+ch_num*(0x28)+(0x14)	DMAC Channel Configuration Register	DMAC_CFG	Read-write	0x01000000
0x03C+ch_num*(0x28)+(0x18)	Reserved	-	-	-
0x03C+ch_num*(0x28)+(0x1C)	Reserved	-	-	-
0x03C+ch_num*(0x28)+(0x20)	Reserved	-	-	-
0x03C+ch_num*(0x28)+(0x24)	Reserved	-	-	-
0x1E4	DMAC Write Protect Mode Register	DMAC_WPMR	Read-write	0x0
0x1E8	DMAC Write Protect Status Register	DMAC_WPSR	Read-only	0x0
0x01EC- 0x1FC	Reserved	-	-	_

31.7.9 PIO Controller Input Filter Status Register

Name: PIO_IFSR

Address: 0x400E0E28 (PIOA), 0x400E1028 (PIOB), 0x400E1228 (PIOC), 0x400E1428 (PIOD), 0x400E1628 (PIOE), 0x400E1828 (PIOF)

Access: Read-only

31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

• P0-P31: Input Filer Status

0: The input glitch filter is disabled on the I/O line.

1: The input glitch filter is enabled on the I/O line.

31.7.21 PIO Pull Up Disable Register

Name: PIO_PUDR

Address: 0x400E0E60 (PIOA), 0x400E1060 (PIOB), 0x400E1260 (PIOC), 0x400E1460 (PIOD), 0x400E1660 (PIOE), 0x400E1860 (PIOF)

Access: Write-only

31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

This register can only be written if the WPEN bit is cleared in "PIO Write Protect Mode Register" .

• P0-P31: Pull Up Disable.

0: No effect.

1: Disables the pull up resistor on the I/O line.

36.7.14 TC Block Mode Register

Name:	TC_BMR								
Address:	0x400800C4 (0), 0x400840C4 (1), 0x400880C4 (2)								
Access:	Read/Write								
31	30	29	28	27	26	25	24		
_	-	_	-	-	-	MAX	FILT		
23	22	21	20	19	18	17	16		
	MAX	FILT	-	_	_	IDXPHB	SWAP		
15	14	13	12	11	10	9	8		
INVIDX	INVB	INVA	EDGPHA	QDTRANS	SPEEDEN	POSEN	QDEN		
7	6	5	4	3	2	1	0		
-	-	TC2X	XC2S	TC1)	XC1S	TC0>	KC0S		

This register can only be written if the WPEN bit is cleared in the TC Write Protection Mode Register.

TC0XC0S: External Clock Signal 0 Selection

Value	Name	Description			
0	TCLK0	Signal connected to XC0: TCLK0			
1	_	Reserved			
2	TIOA1	Signal connected to XC0: TIOA1			
3	TIOA2	Signal connected to XC0: TIOA2			

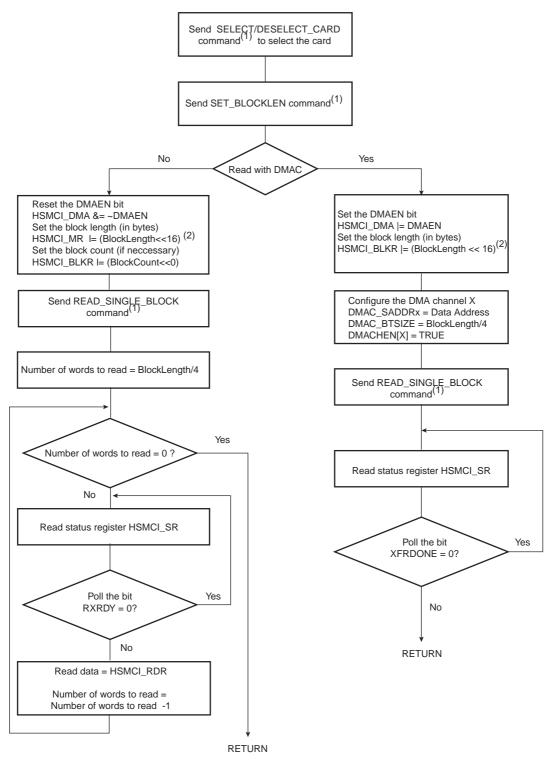
TC1XC1S: External Clock Signal 1 Selection

Value	Name	Description			
0	TCLK1	Signal connected to XC1: TCLK1			
1	-	Reserved			
2	TIOA0	Signal connected to XC1: TIOA0			
3	TIOA2	Signal connected to XC1: TIOA2			

TC2XC2S: External Clock Signal 2 Selection

Value	Name	Description		
0	TCLK2	Signal connected to XC2: TCLK2		
1	_	Reserved		
2	TIOA0	Signal connected to XC2: TIOA0		
3	TIOA1	Signal connected to XC2: TIOA1		

QDEN: Quadrature Decoder Enabled


0: Disabled.

1: Enables the QDEC (filter, edge detection and quadrature decoding).

Quadrature decoding (direction change) can be disabled using QDTRANS bit.

One of the POSEN or SPEEDEN bits must be also enabled.

- Notes: 1. It is assumed that this command has been correctly sent (see Figure 37-8).
 - 2. This field is also accessible in the HSMCI Block Register (HSMCI_BLKR).

37.14.15 HSMCI Interrupt Mask Register

Name:	HSMCI_IMR						
Address:	0x4000004C						
Access:	Read-only						
31	30	29	28	27	26	25	24
UNRE	OVRE	ACKRCVE	ACKRCV	XFRDONE	FIFOEMPTY	DMADONE	BLKOVRE
23	22	21	20	19	18	17	16
CSTOE	DTOE	DCRCE	RTOE	RENDE	RCRCE	RDIRE	RINDE
15	14	13	12	11	10	9	8
_	-	CSRCV	SDIOWAIT	_	_	SDIO IRQ for Slot B	SDIO IRQ for Slot A
7	6	5	4	3	2	1	0
-	-	NOTBUSY	DTIP	BLKE	TXRDY	RXRDY	CMDRDY

• CMDRDY: Command Ready Interrupt Mask

- RXRDY: Receiver Ready Interrupt Mask
- TXRDY: Transmit Ready Interrupt Mask
- BLKE: Data Block Ended Interrupt Mask
- DTIP: Data Transfer in Progress Interrupt Mask
- NOTBUSY: Data Not Busy Interrupt Mask
- SDIOIRQA: SDIO Interrupt for Slot A Interrupt Mask
- SDIOIRQB: SDIO Interrupt for Slot B Interrupt Mask
- SDIOWAIT: SDIO Read Wait Operation Status Interrupt Mask
- CSRCV: Completion Signal Received Interrupt Mask
- RINDE: Response Index Error Interrupt Mask
- RDIRE: Response Direction Error Interrupt Mask
- RCRCE: Response CRC Error Interrupt Mask
- RENDE: Response End Bit Error Interrupt Mask
- RTOE: Response Time-out Error Interrupt Mask
- DCRCE: Data CRC Error Interrupt Mask
- DTOE: Data Time-out Error Interrupt Mask
- CSTOE: Completion Signal Time-out Error Interrupt Mask
- BLKOVRE: DMA Block Overrun Error Interrupt Mask

Atmel

38.7.24 PWM Fault Status Register

Name:	PWM_FSR							
Address:	0x40094060							
Access:	Read-only							
31	30	29	28	27	26	25	24	
			_	-				
23	22	21	20	19	18	17	16	
			_	-				
15	14	13	12	11	10	9	8	
	FS							
7	6	5	4	3	2	1	0	
			FI	V				

• FIV: Fault Input Value (fault input bit varies from 0 to 5)

For each field bit y (fault input number):

0 = The current sampled value of the fault input y is 0 (after filtering if enabled).

1 = The current sampled value of the fault input y is 1 (after filtering if enabled).

• FS: Fault Status (fault input bit varies from 0 to 5)

For each field bit y (fault input number):

- 0 = The fault y is not currently active.
- 1 = The fault y is currently active.

• CES: Counter Event Selection

The bit CES defines when the channel counter event occurs when the period is center aligned (flag CHIDx in the "PWM Interrupt Status Register 1" on page 1013).

CALG = 0 (Left Alignment):

0/1 = The channel counter event occurs at the end of the PWM period.

CALG = 1 (Center Alignment):

0 = The channel counter event occurs at the end of the PWM period.

1 = The channel counter event occurs at the end of the PWM period and at half the PWM period.

• DTE: Dead-Time Generator Enable

0 = The dead-time generator is disabled.

1 = The dead-time generator is enabled.

• DTHI: Dead-Time PWMHx Output Inverted

- 0 = The dead-time PWMHx output is not inverted.
- 1 = The dead-time PWMHx output is inverted.

• DTLI: Dead-Time PWMLx Output Inverted

0 = The dead-time PWMLx output is not inverted.

1 = The dead-time PWMLx output is inverted.

• PBK: Pipe Banks

Value	Name	Description
0	1 BANK	Single-bank pipe
0	_	• • • •
1	2_BANK	Double-bank pipe
2	3_BANK	Triple-bank pipe
3		Reserved

This field contains the number of banks for the pipe.

For control endpoints, a single-bank pipe (0b00) should be selected. This field is cleared upon sending a USB reset.

• ALLOC: Pipe Memory Allocate

Writing a one to this bit will allocate the pipe memory.

Writing a zero to this bit will free the pipe memory.

This bit is cleared when a USB Reset is requested.

Refer to the DPRAM Management chapter for more details.

40.9.9 CAN Error Counter Register

Name:	CAN_ECR						
Address:	0x400B4020 (0),	0x400B8020 (1)				
Access:	Read-only						
31	30	29	28	27	26	25	24
-	-	_	-	-	_	_	-
23	22	21	20	19	18	17	16
			TI	EC			
15	14	13	12	11	10	9	8
-	-	-	_	-	-	_	-
7	6	5	4	3	2	1	0
			R	EC			
7	6	5	•		2	1	l

• REC: Receive Error Counter

When a receiver detects an error, REC will be increased by one, except when the detected error is a BIT ERROR while sending an ACTIVE ERROR FLAG or an OVERLOAD FLAG.

When a receiver detects a dominant bit as the first bit after sending an ERROR FLAG, REC is increased by 8.

When a receiver detects a BIT ERROR while sending an ACTIVE ERROR FLAG, REC is increased by 8.

Any node tolerates up to 7 consecutive dominant bits after sending an ACTIVE ERROR FLAG, PASSIVE ERROR FLAG or OVERLOAD FLAG. After detecting the 14th consecutive dominant bit (in case of an ACTIVE ERROR FLAG or an OVER-LOAD FLAG) or after detecting the 8th consecutive dominant bit following a PASSIVE ERROR FLAG, and after each sequence of additional eight consecutive dominant bits, each receiver increases its REC by 8.

After successful reception of a message, REC is decreased by 1 if it was between 1 and 127. If REC was 0, it stays 0, and if it was greater than 127, then it is set to a value between 119 and 127.

• TEC: Transmit Error Counter

When a transmitter sends an ERROR FLAG, TEC is increased by 8 except when

- the transmitter is error passive and detects an ACKNOWLEDGMENT ERROR because of not detecting a dominant ACK and does not detect a dominant bit while sending its PASSIVE ERROR FLAG.
- the transmitter sends an ERROR FLAG because a STUFF ERROR occurred during arbitration and should have been recessive and has been sent as recessive but monitored as dominant.

When a transmitter detects a BIT ERROR while sending an ACTIVE ERROR FLAG or an OVERLOAD FLAG, the TEC will be increased by 8.

Any node tolerates up to 7 consecutive dominant bits after sending an ACTIVE ERROR FLAG, PASSIVE ERROR FLAG or OVERLOAD FLAG. After detecting the 14th consecutive dominant bit (in case of an ACTIVE ERROR FLAG or an OVER-LOAD FLAG) or after detecting the 8th consecutive dominant bit following a PASSIVE ERROR FLAG, and after each sequence of additional eight consecutive dominant bits every transmitter increases its TEC by 8.

After a successful transmission the TEC is decreased by 1 unless it was already 0.

40.9.11 CAN Abort Command Register

Name: Address:	CAN_ACR 0x400B4028 (0)	0v400B8028 (1)				
		, 0740000020 (,				
Access:	Write-only						
31	30	29	28	27	26	25	24
-	-	-	-	-	-	_	-
23	22	21	20	19	18	17	16
-	-	-	-	-	_	-	-
15	14	13	12	11	10	9	8
-	—	—	-	—	_	-	-
7	6	5	4	3	2	1	0
MB7	MB6	MB5	MB4	MB3	MB2	MB1	MB0

This register initializes several abort requests at the same time.

• MBx: Abort Request for Mailbox x

Mailbox Object Type	Description
Receive	No action
Receive with overwrite	No action
Transmit	Cancels transfer request if the message has not been transmitted to the CAN transceiver.
Consumer	Cancels the current transfer before the remote frame has been sent.
Producer	Cancels the current transfer. The next remote frame is not serviced.

It is possible to set MACR field (in the CAN_MCRx register) for each mailbox.

43.7.20 ADC Write Protect Mode Register

Name:	ADC_WPMR						
Address:	0x400C00E4						
Access:	Read-write						
31	30	29	28	27	26	25	24
			WP	KEY			
23	22	21	20	19	18	17	16
			WP	KEY			
15	14	13	12	11	10	9	8
			WP	KEY			
7	6	5	4	3	2	1	0
-	-	—	—	_	—	—	WPEN

• WPEN: Write Protect Enable

0 = Disables the Write Protect if WPKEY corresponds to 0x414443 ("ADC" in ASCII).

1 = Enables the Write Protect if WPKEY corresponds to 0x414443 ("ADC" in ASCII).

Protects the registers:

"ADC Mode Register" on page 1333

"ADC Channel Sequence 1 Register" on page 1336

"ADC Channel Sequence 2 Register" on page 1337

"ADC Channel Enable Register" on page 1338

"ADC Channel Disable Register" on page 1339

"ADC Extended Mode Register" on page 1347

"ADC Compare Window Register" on page 1348

"ADC Channel Gain Register" on page 1349

"ADC Channel Offset Register" on page 1350

"ADC Analog Control Register" on page 1352

• WPKEY: Write Protect KEY

Should be written at value 0x414443 ("ADC" in ASCII). Writing any other value in this field aborts the write operation of the WPEN bit. Always reads as 0.

Atmel

Table 50-1. SAM3X/SAM3A Datasheet Rev. 11057C Revision History (Continued)

ction 45. "Electrical Characteristics" dated and harmonized parameter symbols ble 45-1 Absolute Maximum Ratings*: dded "(except VBUS)" to description "Voltage on Input Pins with Respect to Ground" dded "Voltage on VBUS Pin with Respect to Ground" ble 45-2 DC Characteristics: removed parameter "Input Capacitance" ble 45-3 1.8V Voltage Regulator Characteristics: updated conditions for CD _{IN} and CD _{OUT} ble 45-4 Core Power Supply Brownout Detector Characteristics: added parameter "Reset Period" ded Table 45-6 "Threshold Selection" ble 45-7 Backup Power Supply Zero-Power-on Reset Characteristics: modified parameter name "Reset Time-out riod" to "Reset Period"
ble 45-1 Absolute Maximum Ratings*: dded "(except VBUS)" to description "Voltage on Input Pins with Respect to Ground" dded "Voltage on VBUS Pin with Respect to Ground" ble 45-2 DC Characteristics: removed parameter "Input Capacitance" ble 45-3 1.8V Voltage Regulator Characteristics: updated conditions for CD _{IN} and CD _{OUT} ble 45-4 Core Power Supply Brownout Detector Characteristics: added parameter "Reset Period" ded Table 45-6 "Threshold Selection" ble 45-7 Backup Power Supply Zero-Power-on Reset Characteristics: modified parameter name "Reset Time-out
dded "(except VBUS)" to description "Voltage on Input Pins with Respect to Ground" dded "Voltage on VBUS Pin with Respect to Ground" ble 45-2 DC Characteristics: removed parameter "Input Capacitance" ble 45-3 1.8V Voltage Regulator Characteristics: updated conditions for CD _{IN} and CD _{OUT} ble 45-4 Core Power Supply Brownout Detector Characteristics: added parameter "Reset Period" ded Table 45-6 "Threshold Selection" ble 45-7 Backup Power Supply Zero-Power-on Reset Characteristics: modified parameter name "Reset Time-out
dded "Voltage on VBUS Pin with Respect to Ground" ble 45-2 DC Characteristics: removed parameter "Input Capacitance" ble 45-3 1.8V Voltage Regulator Characteristics: updated condtions for CD _{IN} and CD _{OUT} ble 45-4 Core Power Supply Brownout Detector Characteristics: added parameter "Reset Period" ded Table 45-6 "Threshold Selection" ble 45-7 Backup Power Supply Zero-Power-on Reset Characteristics: modified parameter name "Reset Time-out
ble 45-2 DC Characteristics: removed parameter "Input Capacitance" ble 45-3 1.8V Voltage Regulator Characteristics: updated conditions for CD _{IN} and CD _{OUT} ble 45-4 Core Power Supply Brownout Detector Characteristics: added parameter "Reset Period" ded Table 45-6 "Threshold Selection" ble 45-7 Backup Power Supply Zero-Power-on Reset Characteristics: modified parameter name "Reset Time-out
ble 45-3 1.8V Voltage Regulator Characteristics: updated condtions for CD _{IN} and CD _{OUT} ble 45-4 Core Power Supply Brownout Detector Characteristics: added parameter "Reset Period" ded Table 45-6 "Threshold Selection" ble 45-7 Backup Power Supply Zero-Power-on Reset Characteristics: modified parameter name "Reset Time-out
ble 45-4 Core Power Supply Brownout Detector Characteristics: added parameter "Reset Period" ded Table 45-6 "Threshold Selection" ble 45-7 Backup Power Supply Zero-Power-on Reset Characteristics: modified parameter name "Reset Time-out
ded Table 45-6 "Threshold Selection" ble 45-7 Backup Power Supply Zero-Power-on Reset Characteristics: modified parameter name "Reset Time-out
ble 45-7 Backup Power Supply Zero-Power-on Reset Characteristics: modified parameter name "Reset Time-out
ction 45.3.1 "Backup Mode Current Consumption": deleted instances of "Configuration A"
ction 45.4.3 "32.768 kHz Crystal Oscillator Characteristics": added parameter "Allowed Crystal Capacitance Load"
ble 45-17 "32.768 kHz Crystal Oscillator Characteristics": updated conditions for parameters "Startup Time" and urrent Consumption"
ble 45-19 "XIN32 Clock Electrical Characteristics (In Bypass Mode)": in table footnote, corrected "32768 kHz" to 2.768 kHz"
dated Figure 45-13 "XIN32 Clock Timing"
ble 45-20 "3 to 20 MHz Crystal Oscillator Characteristics": added parameter "Allowed Crystal Capacitance Load"; eted all footnotes
dated Figure 45-15 "XIN Clock Timing"
ction 45.4.9.1 "Choosing a Crystal": under 'Load Capacitance', changed "This is the equivalent capacitor" to "C _{crystal} he equivalent capacitor"
ction 45.4.9.2 "Printed Circuit Board (PCB)": deleted sentence "A board design example is given on Atmel's website he MCU Technical Center Section."
ble 45-24 "PLLA Characteristics":
pdated Input Frequency values (was 8 MHz min/16 MHz max; is 1 MHz min/40 MHz max)
pdated Output Frequency values (was 96 MHz min/192 MHz max; is 80 MHz min/240 MHz max)
ble 45-25 "UPLL Characteristics for USB High Speed Device Port": added max value for Current Consumption
ble 45-30 "Channel Conversion Time and ADC Clock": changed max value of ADC Clock Frequency from 20 MHz to MHz
ction 45.6 "USB On-the-Go High Speed Port": removed section 46.6.5 "USB High Speed Design Guidelines"
ded Section 45.6.2.2 "VBUS Pin Characteristics"
ction 45.7.1 "Static Performance Characteristics": updated conditions at beginning of section
erted new heading Section 45.7.2 "Dynamic Performance Characteristics" and updated content
ure 45-18 "Simplified Acquisition Path": inserted correct diagram (was previously graph of offset and gain initions)
ction 45.8 "Temperature Sensor": specified instances of "27°C" as ambient temperature (T _A)
ded Table 45-44 "Analog Outputs"
ure 45-21 "SPI Slave Mode with (CPOL = 0 and NCPHA = 1) or (CPOL = 1 and NCPHA = 0)": added 'MOSI'
ction 45.10.3.1 "Maximum SPI Frequency": updated description under "Master Write Mode" and "Master Read de"
ble 45-49 "SSC Timings": deleted footnote "Timings SSC4 and SSC7 dependadded to timings"
ction 45.10.6 "SMC Timings": updated conditions

Atmel Enabling Unlimited Possibilities

Т

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200

www.atmel.com

© 2015 Atmel Corporation. / Rev.: Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15.

Atmel[®], Atmel logo and combinations thereof, Enabling Unlimited Possibilities[®], and others are registered trademarks or trademarks of Atmel Corporation in U.S. and other countries. ARM[®], ARM Connected[®] logo, and others are the registered trademarks or trademarks of ARM Ltd. Windows[®] is a registered trademark of Microsoft Corporation in U.S. and/or other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL MEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LASS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death ("Safety-Critical Applications") without an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.