
Microchip Technology - ATSAM3X4EA-AU Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ARM® Cortex®-M3

Core Size 32-Bit Single-Core

Speed 84MHz

Connectivity CANbus, EBI/EMI, Ethernet, I²C, IrDA, LINbus, Memory Card, SPI, SSC, UART/USART, USB

Peripherals Brown-out Detect/Reset, DMA, I²S, POR, PWM, WDT

Number of I/O 103

Program Memory Size 256KB (256K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 68K x 8

Voltage - Supply (Vcc/Vdd) 1.62V ~ 3.6V

Data Converters A/D 16x12b; D/A 2x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 144-LQFP

Supplier Device Package 144-LQFP (20x20)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atsam3x4ea-au

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atsam3x4ea-au-4388819
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

10.13.4 CLZ

Count Leading Zeros.

10.13.4.1 Syntax

CLZ{cond} Rd, Rm

where:

cond is an optional condition code, see “Conditional execution” on page 91.

Rd is the destination register.

Rm is the operand register.

10.13.4.2 Operation

The CLZ instruction counts the number of leading zeros in the value in Rm and returns the result in Rd. The result
value is 32 if no bits are set in the source register, and zero if bit[31] is set.

10.13.4.3 Restrictions

Do not use SP and do not use PC.

10.13.4.4 Condition flags

This instruction does not change the flags.

10.13.4.5 Examples
CLZ R4,R9
CLZNE R2,R3
SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

116

18.5.4 EEFC Flash Result Register

Name: EEFC_FRR

Address: 0x400E0A0C (0), 0x400E0C0C (1)

Access: Read-only

Offset: 0x0C

• FVALUE: Flash Result Value

The result of a Flash command is returned in this register. If the size of the result is greater than 32 bits, then the next
resulting value is accessible at the next register read.

31 30 29 28 27 26 25 24

FVALUE

23 22 21 20 19 18 17 16

FVALUE

15 14 13 12 11 10 9 8

FVALUE

7 6 5 4 3 2 1 0

FVALUE
307SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

Single-buffer DMAC transfer: Consists of a single buffer.

Multi-buffer DMAC transfer: A DMAC transfer may consist of multiple DMAC buffers. Multi-buffer DMAC
transfers are supported through buffer chaining (linked list pointers), auto-reloading of channel registers, and
contiguous buffers. The source and destination can independently select which method to use.

̶ Linked lists (buffer chaining) – A descriptor pointer (DSCR) points to the location in system memory
where the next linked list item (LLI) exists. The LLI is a set of registers that describe the next buffer
(buffer descriptor) and a descriptor pointer register. The DMAC fetches the LLI at the beginning of
every buffer when buffer chaining is enabled.

̶ Contiguous buffers – Where the address of the next buffer is selected to be a continuation from the
end of the previous buffer.

Channel locking: Software can program a channel to keep the AHB master interface by locking the arbitration for
the master bus interface for the duration of a DMAC transfer, buffer, or chunk.

Bus locking: Software can program a channel to maintain control of the AMBA bus by asserting hmastlock for the
duration of a DMAC transfer, buffer, or transaction (single or chunk). Channel locking is asserted for the duration of
bus locking at a minimum.

22.4.2 Memory Peripherals

Figure 22-3 on page 342 shows the DMAC transfer hierarchy of the DMAC for a memory peripheral. There is no
handshaking interface with the DMAC, and therefore the memory peripheral can never be a flow controller. Once
the channel is enabled, the transfer proceeds immediately without waiting for a transaction request. The alternative
to not having a transaction-level handshaking interface is to allow the DMAC to attempt AMBA transfers to the
peripheral once the channel is enabled. If the peripheral slave cannot accept these AMBA transfers, it inserts wait
states onto the bus until it is ready; it is not recommended that more than 16 wait states be inserted onto the bus.
By using the handshaking interface, the peripheral can signal to the DMAC that it is ready to transmit/receive data,
and then the DMAC can access the peripheral without the peripheral inserting wait states onto the bus.

22.4.3 Handshaking Interface

Handshaking interfaces are used at the transaction level to control the flow of single or chunk transfers. The
operation of the handshaking interface is different and depends on whether the peripheral or the DMAC is the flow
controller.

The peripheral uses the handshaking interface to indicate to the DMAC that it is ready to transfer/accept data over
the AMBA bus. A non-memory peripheral can request a DMAC transfer through the DMAC using one of two
handshaking interfaces:

 Hardware handshaking

 Software handshaking

Software selects between the hardware or software handshaking interface on a per-channel basis. Software
handshaking is accomplished through memory-mapped registers, while hardware handshaking is accomplished
using a dedicated handshaking interface.

22.4.3.1 Software Handshaking

When the slave peripheral requires the DMAC to perform a DMAC transaction, it communicates this request by
sending an interrupt to the CPU or interrupt controller.

The interrupt service routine then uses the software registers to initiate and control a DMAC transaction. These
software registers are used to implement the software handshaking interface.

The SRC_H2SEL/DST_H2SEL bit in the DMAC_CFGx channel configuration register must be set to zero to
enable software handshaking.
343SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

399SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

24.6.2 SDRAM Controller Read Cycle

The SDRAM Controller allows burst access, incremental burst of unspecified length or single access. In all cases,
the SDRAM Controller keeps track of the active row in each bank, thus maximizing performance of the SDRAM. If
row and bank addresses do not match the previous row/bank address, then the SDRAM controller automatically
generates a precharge command, activates the new row and starts the read command. To comply with the
SDRAM timing parameters, additional clock cycles on SDCK are inserted between precharge and active
commands (tRP) and between active and read command (tRCD). These two parameters are set in the configuration
register of the SDRAM Controller. After a read command, additional wait states are generated to comply with the
CAS latency (1, 2 or 3 clock delays specified in the configuration register).

For a single access or an incremented burst of unspecified length, the SDRAM Controller anticipates the next
access. While the last value of the column is returned by the SDRAM Controller on the bus, the SDRAM Controller
anticipates the read to the next column and thus anticipates the CAS latency. This reduces the effect of the CAS
latency on the internal bus.

For burst access of specified length (4, 8, 16 words), access is not anticipated. This case leads to the best
performance. If the burst is broken (border, busy mode, etc.), the next access is handled as an incrementing burst
of unspecified length.

Figure 24-3. Read Burst SDRAM Access

SDCK

SDCS

RAS

CAS

SDRAMC_A[12:0]

DATA
(Input)

tRCD = 3

Dna

SDWE

Dnb Dnc Dnd Dne Dnf

Row n col a col b col c col d col e col f

CAS = 2

Figure 25-24. Read Access with NWAIT Assertion in Frozen Mode (EXNW_MODE = 10)

EXNW_MODE = 10 (Frozen)
READ_MODE = 0 (NCS_controlled)

NRD_PULSE = 2, NRD_HOLD = 6
NCS_RD_PULSE =5, NCS_RD_HOLD =3

A[23:2]

MCK

NCS

NRD

1 0

4 3

4 3

2

5 5 5

2 2 0
2 1 0

2 1 0

1

Read cycle

Assertion is ignored

NWAIT

Internally synchronized
NWAIT signal

FROZEN STATE

NBS0, NBS1,
A0,A1
SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

444

28.15.6 PMC Peripheral Clock Status Register 0

Name: PMC_PCSR0

Address: 0x400E0618

Access: Read-only

• PIDx: Peripheral Clock x Status

0 = The corresponding peripheral clock is disabled.

1 = The corresponding peripheral clock is enabled.

Note: To get PIDx, refer to identifiers as defined in the section “Peripheral Identifiers” in the product datasheet. Other peripherals status
can be read in PMC_PCSR1 (Section 28.15.25 ”PMC Peripheral Clock Status Register 1”).

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 – –
SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

544

30.9.17 SSC Write Protect Mode Register

Name: SSC_WPMR

Address: 0x400040E4

Access: Read-write

Reset: See Table 30-6

• WPEN: Write Protect Enable

0 = Disables the Write Protect if WPKEY corresponds to 0x535343 (“SSC” in ASCII).

1 = Enables the Write Protect if WPKEY corresponds to 0x535343 (“SSC” in ASCII).

Protects the registers:

• “SSC Clock Mode Register” on page 593

• “SSC Receive Clock Mode Register” on page 594

• “SSC Receive Frame Mode Register” on page 596

• “SSC Transmit Clock Mode Register” on page 598

• “SSC Transmit Frame Mode Register” on page 600

• “SSC Receive Compare 0 Register” on page 606

• “SSC Receive Compare 1 Register” on page 607

• WPKEY: Write Protect KEY

Should be written at value 0x535343 (“SSC” in ASCII). Writing any other value in this field aborts the write operation of the
WPEN bit. Always reads as 0.

31 30 29 28 27 26 25 24

WPKEY

23 22 21 20 19 18 17 16

WPKEY

15 14 13 12 11 10 9 8

WPKEY

7 6 5 4 3 2 1 0

— — — — — — — WPEN
SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

616

33.11.8 TWI Interrupt Disable Register

Name: TWI_IDR

Address: 0x4008C028 (0), 0x40090028 (1)

Access: Write-only

Reset: 0x00000000

• TXCOMP: Transmission Completed Interrupt Disable

• RXRDY: Receive Holding Register Ready Interrupt Disable

• TXRDY: Transmit Holding Register Ready Interrupt Disable

• SVACC: Slave Access Interrupt Disable

• GACC: General Call Access Interrupt Disable

• OVRE: Overrun Error Interrupt Disable

• NACK: Not Acknowledge Interrupt Disable

• ARBLST: Arbitration Lost Interrupt Disable

• SCL_WS: Clock Wait State Interrupt Disable

• EOSACC: End Of Slave Access Interrupt Disable

• ENDRX: End of Receive Buffer Interrupt Disable

• ENDTX: End of Transmit Buffer Interrupt Disable

• RXBUFF: Receive Buffer Full Interrupt Disable

• TXBUFE: Transmit Buffer Empty Interrupt Disable

0 = No effect.

1 = Disables the corresponding interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

TXBUFE RXBUFF ENDTX ENDRX EOSACC SCL_WS ARBLST NACK

7 6 5 4 3 2 1 0

– OVRE GACC SVACC – TXRDY RXRDY TXCOMP
SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

746

35.8.4 USART Interrupt Disable Register

Name: US_IDR

Address: 0x4009800C (0), 0x4009C00C (1), 0x400A000C (2), 0x400A400C (3)

Access: Write-only

0: No effect

1: Disables the corresponding interrupt.

• RXRDY: RXRDY Interrupt Disable

• TXRDY: TXRDY Interrupt Disable

• RXBRK: Receiver Break Interrupt Disable

• ENDRX: End of Receive Transfer Interrupt Disable

• ENDTX: End of Transmit Interrupt Disable

• OVRE: Overrun Error Interrupt Disable

• FRAME: Framing Error Interrupt Disable

• PARE: Parity Error Interrupt Disable

• TIMEOUT: Time-out Interrupt Disable

• TXEMPTY: TXEMPTY Interrupt Disable

• ITER: Max number of Repetitions Reached Disable

• UNRE: SPI Underrun Error Disable

• TXBUFE: Buffer Empty Interrupt Disable

• RXBUFF: Buffer Full Interrupt Disable

• NACK: Non Acknowledge Interrupt Disable

• LINBK: LIN Break Sent or LIN Break Received Interrupt Disable

• LINID: LIN Identifier Sent or LIN Identifier Received Interrupt Disable

31 30 29 28 27 26 25 24

– – LINSNRE LINCE LINIPE LINISFE LINBE MANE

23 22 21 20 19 18 17 16

– – – CTSIC – – –

15 14 13 12 11 10 9 8

LINTC LINID NACK/LINBK RXBUFF TXBUFE ITER/UNRE TXEMPTY TIMEOUT

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX RXBRK TXRDY RXRDY
833SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

Figure 36-15. Predefined Connection of the Quadrature Decoder with Timer Counters

36.6.14.2 Input Pre-processing

Input pre-processing consists of capabilities to take into account rotary sensor factors such as polarities and phase
definition followed by configurable digital filtering.

Each input can be negated and swapping PHA, PHB is also configurable.

The MAXFILT field in the TC_BMR is used to configure a minimum duration for which the pulse is stated as valid.
When the filter is active, pulses with a duration lower than MAXFILT +1 × tperipheral clock ns are not passed to down-
stream logic.

Timer/Counter
Channel 0

1

XC0

TIOA

TIOB

Timer/Counter
Channel 1

1

XC0

TIOB

QDEN

Timer/Counter
Channel 2

1

TIOB0
XC0

1
1

SPEEDEN

1

XC0

Quadrature
Decoder

(Filter + Edge
Detect + QD)

PHA

PHB

IDX

TIOA0

TIOB0

TIOB1

TIOB1

TIOA0

Index

Speed/Position

Rotation

Speed Time Base

Reset pulse

Direction

PHEdges QDEN
SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

872

37.14.3 HSMCI Data Timeout Register

Name: HSMCI_DTOR

Address: 0x40000008

Access: Read-write

This register can only be written if the WPEN bit is cleared in “HSMCI Write Protect Mode Register” on page 967.

• DTOCYC: Data Timeout Cycle Number

These fields determine the maximum number of Master Clock cycles that the HSMCI waits between two data block trans-
fers. It equals (DTOCYC x Multiplier).

• DTOMUL: Data Timeout Multiplier

Multiplier is defined by DTOMUL as shown in the following table:

If the data time-out set by DTOCYC and DTOMUL has been exceeded, the Data Time-out Error flag (DTOE) in the HSMCI
Status Register (HSMCI_SR) raises.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– DTOMUL DTOCYC

Value Name Description

0 1 DTOCYC

1 16 DTOCYC x 16

2 128 DTOCYC x 128

3 256 DTOCYC x 256

4 1024 DTOCYC x 1024

5 4096 DTOCYC x 4096

6 65536 DTOCYC x 65536

7 1048576 DTOCYC x 1048576
945SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

38.7.36 PWM Comparison x Mode Update Register

Name: PWM_CMPMUPDx

Address: 0x4009413C [0], 0x4009414C [1], 0x4009415C [2], 0x4009416C [3], 0x4009417C [4], 0x4009418C [5],
0x4009419C [6], 0x400941AC [7]

Access: Write-only

This register acts as a double buffer for the CEN, CTR, CPR and CUPR values. This prevents an unexpected comparison
x match.

• CENUPD: Comparison x Enable Update

0 = The comparison x is disabled and can not match.

1 = The comparison x is enabled and can match.

• CTRUPD: Comparison x Trigger Update

The comparison x is performed when the value of the comparison x period counter (CPRCNT) reaches the value defined
by CTR.

• CPRUPD: Comparison x Period Update

CPR defines the maximum value of the comparison x period counter (CPRCNT). The comparison x value is performed
periodically once every CPR+1 periods of the channel 0 counter.

• CUPRUPD: Comparison x Update Period Update

Defines the time between each update of the comparison x mode and the comparison x value. This time is equal to
CUPR+1 periods of the channel 0 counter.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – CUPRUPD

15 14 13 12 11 10 9 8

– – – – CPRUPD

7 6 5 4 3 2 1 0

CTRUPD – – – CENUPD
1043SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

38.7.41 PWM Channel Period Update Register

Name: PWM_CPRDUPDx [x=0..7]

Address: 0x40094210 [0], 0x40094230 [1], 0x40094250 [2], 0x40094270 [3], 0x40094290 [4], 0x400942B0 [5],
0x400942D0 [6], 0x400942F0 [7]

Access: Write-only

This register can only be written if the bits WPSWS3 and WPHWS3 are cleared in “PWM Write Protect Status Register” on
page 1039.

This register acts as a double buffer for the CPRD value. This prevents an unexpected waveform when modifying the
waveform period.

Only the first 16 bits (channel counter size) are significant.

• CPRDUPD: Channel Period Update

If the waveform is left-aligned, then the output waveform period depends on the channel counter source clock and can be
calculated:

– By using the PWM master clock (MCK) divided by an X given prescaler value (with X being 1, 2, 4, 8, 16, 32,
64, 128, 256, 512, or 1024). The resulting period formula will be:

– By using the PWM master clock (MCK) divided by one of both DIVA or DIVB divider, the formula becomes,
respectively:

 or

If the waveform is center-aligned, then the output waveform period depends on the channel counter source clock and can
be calculated:

– By using the PWM master clock (MCK) divided by an X given prescaler value (with X being 1, 2, 4, 8, 16, 32,
64, 128, 256, 512, or 1024). The resulting period formula will be:

– By using the PWM master clock (MCK) divided by one of both DIVA or DIVB divider, the formula becomes,
respectively:

 or

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

CPRDUPD

15 14 13 12 11 10 9 8

CPRDUPD

7 6 5 4 3 2 1 0

CPRDUPD

X CPRDUPD×()
MCK

--

CRPDUPD DIVA×()
MCK

-- CRPDUPD DIVB×()
MCK

--

2 X CPRDUPD××()
MCK

--

2 CPRDUPD DIVA××()
MCK

--- 2 CPRDUPD× DIVB×()
MCK

1049SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

39.6.2.2 Device Global Interrupt Status Register

Name: UOTGHS_DEVISR

Address: 0x400AC004

Access: Read-only

• DMA_x: DMA Channel x Interrupt

This bit is set when an interrupt is triggered by the DMA channel x. This triggers a USB interrupt if DMA_x is one.

This bit is cleared when the UOTGHS_DEVDMASTATUSx interrupt source is cleared.

• PEP_x: Endpoint x Interrupt

This bit is set when an interrupt is triggered by the endpoint x (UOTGHS_DEVEPTISRx, UOTGHS_DEVEPTIMRx). This
triggers a USB interrupt if UOTGHS_DEVIMR.PEP_x is one.

This bit is cleared when the interrupt source is serviced.

• UPRSM: Upstream Resume Interrupt

This bit is set when the UOTGHS sends a resume signal called “Upstream Resume”. This triggers a USB interrupt if
UOTGHS_DEVIMR.UPRSME is one.

This bit is cleared when the UOTGHS_DEVICR.UPRSMC bit is written to one to acknowledge the interrupt (USB clock
inputs must be enabled before).

• EORSM: End of Resume Interrupt

This bit is set when the UOTGHS detects a valid “End of Resume” signal initiated by the host. This triggers a USB interrupt
if UOTGHS_DEVIMR.EORSME is one.

This bit is cleared when the UOTGHS_DEVICR.EORSMC bit is written to one to acknowledge the interrupt.

• WAKEUP: Wake-Up Interrupt

This bit is set when the UOTGHS is reactivated by a filtered non-idle signal from the lines (not by an upstream resume).
This triggers an interrupt if UOTGHS_DEVIMR.WAKEUPE is one.

This bit is cleared when the UOTGHS_DEVICR.WAKEUPC bit is written to one to acknowledge the interrupt (USB clock
inputs must be enabled before).

This bit is cleared when the Suspend (SUSP) interrupt bit is set.

This interrupt is generated even if the clock is frozen by the UOTGHS_CTRL.FRZCLK bit.

• EORST: End of Reset Interrupt

This bit is set when a USB “End of Reset” has been detected. This triggers a USB interrupt if UOTGHS_DEVIMR.EORSTE
is one.

This bit is cleared when the UOTGHS_DEVICR.EORSTC bit is written to one to acknowledge the interrupt.

31 30 29 28 27 26 25 24

– DMA_6 DMA_5 DMA_4 DMA_3 DMA_2 DMA_1 –

23 22 21 20 19 18 17 16

– – PEP_9 PEP_8 PEP_7 PEP_6 PEP_5 PEP_4

15 14 13 12 11 10 9 8

PEP_3 PEP_2 PEP_1 PEP_0 – – – –

7 6 5 4 3 2 1 0

– UPRSM EORSM WAKEUP EORST SOF MSOF SUSP
1101SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

39.6.2.8 Device Endpoint Register

Name: UOTGHS_DEVEPT

Address: 0x400AC01C

Access: Read-write

• EPRSTx: Endpoint x Reset

Writing a one to this bit will reset the endpoint x FIFO prior to any other operation, upon hardware reset or when a USB bus
reset has been received. This resets the endpoint x registers (UOTGHS_DEVEPTCFGx, UOTGHS_DEVEPTISRx,
UOTGHS_DEVEPTIMRx) but not the endpoint configuration (UOTGHS_DEVEPTCFGx.ALLOC,
UOTGHS_DEVEPTCFGx.EPBK, UOTGHS_DEVEPTCFGx.EPSIZE, UOTGHS_DEVEPTCFGx.EPDIR,
UOTGHS_DEVEPTCFGx.EPTYPE).

All the endpoint mechanism (FIFO counter, reception, transmission, etc.) is reset apart from the Data Toggle Sequence
field (UOTGHS_DEVEPTISRx.DTSEQ) which can be cleared by setting the UOTGHS_DEVEPTIMRx.RSTDT bit (by writ-
ing a one to the UOTGHS_DEVEPTIERx.RSTDTS bit).

The endpoint configuration remains active and the endpoint is still enabled.

Writing a zero to this bit will complete the reset operation and start using the FIFO.

This bit is cleared upon receiving a USB reset.

• EPENx: Endpoint x Enable

0: The endpoint x is disabled, what forces the endpoint x state to inactive (no answer to USB requests) and resets the end-
point x registers (UOTGHS_DEVEPTCFGx, UOTGHS_DEVEPTISRx, UOTGHS_DEVEPTIMRx) but not the endpoint
configuration (UOTGHS_DEVEPTCFGx.ALLOC, UOTGHS_DEVEPTCFGx.EPBK, UOTGHS_DEVEPTCFGx.EPSIZE,
UOTGHS_DEVEPTCFGx.EPDIR, UOTGHS_DEVEPTCFGx.EPTYPE).

1: The endpoint x is enabled.

31 30 29 28 27 26 25 24

– – – – – – – EPRST8

23 22 21 20 19 18 17 16

EPRST7 EPRST6 EPRST5 EPRST4 EPRST3 EPRST2 EPRST1 EPRST0

15 14 13 12 11 10 9 8

– – – – – – – EPEN8

7 6 5 4 3 2 1 0

EPEN7 EPEN6 EPEN5 EPEN4 EPEN3 EPEN2 EPEN1 EPEN0
1113SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

• MDATAE: MData Interrupt

This bit is set when UOTGHS_DEVEPTIERx.MDATAES bit is written to one. This will enable the Multiple DATA interrupt.
(see DTSEQ bits)

This bit is cleared when UOTGHS_DEVEPTIDRx.MDATAEC bit is written to one. This will disable the Multiple DATA
interrupt.

• SHORTPACKETE: Short Packet Interrupt

If this bit is set for non-control IN endpoints, a short packet transmission is guaranteed upon ending a DMA transfer, thus
signaling an end of isochronous frame or a bulk or interrupt end of transfer, provided that he End of DMA Buffer Output
Enable (END_B_EN) bit and the Automatic Switch (AUTOSW) bit are written to one.

This bit is set when UOTGHS_DEVEPTIERx.SHORTPACKETES bit is written to one. This will enable the Short Packet
interrupt (UOTGHS_DEVEPTISRx.SHORTPACKET).

This bit is cleared when UOTGHS_DEVEPTIDRx.SHORTPACKETEC bit is written to one. This will disable the Short
Packet interrupt (UOTGHS_DEVEPTISRx.SHORTPACKET).

• STALLEDE: STALLed Interrupt

This bit is set when UOTGHS_DEVEPTIERx.STALLEDES bit is written to one. This will enable the STALLed interrupt
(UOTGHS_DEVEPTISRx.STALLEDI).

This bit is cleared when UOTGHS_DEVEPTIDRx.STALLEDEC bit is written to one. This will disable the STALLed interrupt
(UOTGHS_DEVEPTISRx.STALLEDI).

• CRCERRE: CRC Error Interrupt

This bit is set when UOTGHS_DEVEPTIERx.CRCERRES bit is written to one. This will enable the CRC Error interrupt
(UOTGHS_DEVEPTISRx.CRCERRI).

This bit is cleared when UOTGHS_DEVEPTIDRx.CRCERREC bit is written to one. This will disable the CRC Error inter-
rupt (UOTGHS_DEVEPTISRx.CRCERRI).

• OVERFE: Overflow Interrupt

This bit is set when UOTGHS_DEVEPTIERx.OVERFES bit is written to one. This will enable the Overflow interrupt
(UOTGHS_DEVEPTISRx.OVERFI).

This bit is cleared when UOTGHS_DEVEPTIDRx.OVERFEC bit is written to one. This will disable the Overflow interrupt
(UOTGHS_DEVEPTISRx.OVERFI).

• NAKINE: NAKed IN Interrupt

This bit is set when UOTGHS_DEVEPTIERx.NAKINES bit is written to one. This will enable the NAKed IN interrupt
(UOTGHS_DEVEPTISRx.NAKINI).

This bit is cleared when UOTGHS_DEVEPTIDRx.NAKINEC bit is written to one. This will disable the NAKed IN interrupt
(UOTGHS_DEVEPTISRx.NAKINI).

• HBISOFLUSHE: High Bandwidth Isochronous IN Flush Interrupt

This bit is set when UOTGHS_DEVEPTIERx.HBISOFLUSHES bit is written to one. This will enable the HBISOFLUSHI
interrupt.

This bit is cleared when UOTGHS_DEVEPTIDRx.HBISOFLUSHEC bit disable the HBISOFLUSHI interrupt.
SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

1128

41.4 Functional Description

The MACB has several clock domains:

 System bus clock (AHB and APB): DMA and register blocks

 Transmit clock: transmit block

 Receive clock: receive and address checker block

The system bus clock must run at least as fast as the receive clock and transmit clock (25 MHz at 100 Mbps, and
2.5 MHZ at 10 Mbps).

Figure 41-1 illustrates the different blocks of the EMAC module.

The control registers drive the MDIO interface, setup up DMA activity, start frame transmission and select modes
of operation such as full- or half-duplex.

The receive block checks for valid preamble, FCS, alignment and length, and presents received frames to the
address checking block and DMA interface.

The transmit block takes data from the DMA interface, adds preamble and, if necessary, pad and FCS, and
transmits data according to the CSMA/CD (carrier sense multiple access with collision detect) protocol. The start
of transmission is deferred if CRS (carrier sense) is active.

If COL (collision) becomes active during transmission, a jam sequence is asserted and the transmission is retried
after a random back off. CRS and COL have no effect in full duplex mode.

The DMA block connects to external memory through its AHB bus interface. It contains receive and transmit FIFOs
for buffering frame data. It loads the transmit FIFO and empties the receive FIFO using AHB bus master
operations. Receive data is not sent to memory until the address checking logic has determined that the frame
should be copied. Receive or transmit frames are stored in one or more buffers. Receive buffers have a fixed
length of 128 bytes. Transmit buffers range in length between 0 and 2047 bytes, and up to 128 buffers are
permitted per frame. The DMA block manages the transmit and receive framebuffer queues. These queues can
hold multiple frames.

41.4.1 Clock

Synchronization module in the EMAC requires that the bus clock (hclk) runs at the speed of the macb_tx/rx_clk at
least, which is 25 MHz at 100 Mbps, and 2.5 MHz at 10 Mbps.

41.4.2 Memory Interface

Frame data is transferred to and from the EMAC through the DMA interface. All transfers are 32-bit words and may
be single accesses or bursts of 2, 3 or 4 words. Burst accesses do not cross sixteen-byte boundaries. Bursts of 4
words are the default data transfer; single accesses or bursts of less than four words may be used to transfer data
at the beginning or the end of a buffer.

The DMA controller performs six types of operation on the bus. In order of priority, these are:

1. Receive buffer manager write

2. Receive buffer manager read

3. Transmit data DMA read

4. Receive data DMA write

5. Transmit buffer manager read

6. Transmit buffer manager write

41.4.2.1 FIFO

The FIFO depths are 128 bytes for receive and 128 bytes for transmit and are a function of the system clock
speed, memory latency and network speed.
SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

1244

41.6 Ethernet MAC 10/100 (EMAC) User Interface

Table 41-6. Register Mapping

Offset Register Name Access Reset

0x00 Network Control Register EMAC_NCR Read-write 0

0x04 Network Configuration Register EMAC_NCFGR Read-write 0x800

0x08 Network Status Register EMAC_NSR Read-only -

0x0C Reserved

0x10 Reserved

0x14 Transmit Status Register EMAC_TSR Read-write 0x0000_0000

0x18 Receive Buffer Queue Pointer Register EMAC_RBQP Read-write 0x0000_0000

0x1C Transmit Buffer Queue Pointer Register EMAC_TBQP Read-write 0x0000_0000

0x20 Receive Status Register EMAC_RSR Read-write 0x0000_0000

0x24 Interrupt Status Register EMAC_ISR Read-write 0x0000_0000

0x28 Interrupt Enable Register EMAC_IER Write-only -

0x2C Interrupt Disable Register EMAC_IDR Write-only -

0x30 Interrupt Mask Register EMAC_IMR Read-only 0x0000_3FFF

0x34 Phy Maintenance Register EMAC_MAN Read-write 0x0000_0000

0x38 Pause Time Register EMAC_PTR Read-write 0x0000_0000

0x3C Pause Frames Received Register EMAC_PFR Read-write 0x0000_0000

0x40 Frames Transmitted Ok Register EMAC_FTO Read-write 0x0000_0000

0x44 Single Collision Frames Register EMAC_SCF Read-write 0x0000_0000

0x48 Multiple Collision Frames Register EMAC_MCF Read-write 0x0000_0000

0x4C Frames Received Ok Register EMAC_FRO Read-write 0x0000_0000

0x50 Frame Check Sequence Errors Register EMAC_FCSE Read-write 0x0000_0000

0x54 Alignment Errors Register EMAC_ALE Read-write 0x0000_0000

0x58 Deferred Transmission Frames Register EMAC_DTF Read-write 0x0000_0000

0x5C Late Collisions Register EMAC_LCOL Read-write 0x0000_0000

0x60 Excessive Collisions Register EMAC_ECOL Read-write 0x0000_0000

0x64 Transmit Underrun Errors Register EMAC_TUND Read-write 0x0000_0000

0x68 Carrier Sense Errors Register EMAC_CSE Read-write 0x0000_0000

0x6C Receive Resource Errors Register EMAC_RRE Read-write 0x0000_0000

0x70 Receive Overrun Errors Register EMAC_ROV Read-write 0x0000_0000

0x74 Receive Symbol Errors Register EMAC_RSE Read-write 0x0000_0000

0x78 Excessive Length Errors Register EMAC_ELE Read-write 0x0000_0000

0x7C Receive Jabbers Register EMAC_RJA Read-write 0x0000_0000

0x80 Undersize Frames Register EMAC_USF Read-write 0x0000_0000

0x84 SQE Test Errors Register EMAC_STE Read-write 0x0000_0000

0x88 Received Length Field Mismatch Register EMAC_RLE Read-write 0x0000_0000
1257SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

45.10.6.2 Write Timings

Notes: 1. Hold length = total cycle duration - setup duration - pulse duration. “Hold length” is for “NCS_WR_HOLD length” or
“NWE_HOLD length”.

Table 45-52. SMC Write Signals - NWE Controlled (WRITE_MODE = 1)

Symbol

Parameter Min Max

UnitVDDIO supply 1.8V Domain 3.3V Domain 1.8V Domain 3.3V Domain

 HOLD or NO HOLD SETTINGS (NWE_HOLD ≠ 0, NWE_HOLD = 0)

SMC15 Data Out Valid before NWE High NWE_PULSE × tCPMCK - 7.5 NWE_PULSE × tCPMCK - 7 ns

SMC16 NWE Pulse Width NWE_PULSE × tCPMCK - 3 NWE_PULSE × tCPMCK - 3 ns

SMC17
NBS0/A0 NBS1, NBS2/A1, NBS3,
A2–A25 valid before NWE low

NWE_SETUP × tCPMCK + 6 NWE_SETUP × tCPMCK + 6 ns

SMC18 NCS low before NWE high
(NWE_SETUP -

NCS_RD_SETUP +
NWE_PULSE) × tCPMCK + 10

(NWE_SETUP -
NCS_RD_SETUP +

NWE_PULSE) × tCPMCK + 12
ns

HOLD SETTINGS (NWE_HOLD ≠ 0)

SMC19

NWE High to Data OUT, NBS0/A0
NBS1, NBS2/A1, NBS3, A2–A25
change

NWE_HOLD × tCPMCK - 2.4 NWE_HOLD × tCPMCK - 1.8 ns

SMC20 NWE High to NCS Inactive(1) (NWE_HOLD - NCS_WR_HOLD)
× tCPMCK - 0.3

(NWE_HOLD - NCS_WR_HOLD)
× tCPMCK - 0.3

ns

NO HOLD SETTINGS (NWE_HOLD = 0)

SMC21

NWE High to Data OUT, NBS0/A0
NBS1, NBS2/A1, NBS3, A2–A25,
NCS change(1)

4 4 ns

Table 45-53. SMC Write NCS Controlled (WRITE_MODE = 0)

Symbol

Parameter Min Max

UnitVDDIO supply 1.8V Domain 3.3V Domain 1.8V Domain 3.3V Domain

SMC22 Data Out Valid before NCS High NCS_WR_PULSE × tCPMCK - 1 NCS_WR_PULSE × tCPMCK - 1 ns

SMC23 NCS Pulse Width NCS_WR_PULSE × tCPMCK - 6 NCS_WR_PULSE × tCPMCK - 6 ns

SMC24
NBS0/A0 NBS1, NBS2/A1, NBS3,
A2–A25 valid before NCS low

NCS_WR_SETUP × tCPMCK - 5 NCS_WR_SETUP × tCPMCK - 5 ns

SMC25 NWE low before NCS high
(NCS_WR_SETUP -

NWE_SETUP + NCS pulse) ×
tCPMCK + 1.3

(NCS_WR_SETUP -
NWE_SETUP + NCS pulse) ×

tCPMCK + 1.3
ns

SMC26

NCS High to Data Out, NBS0/A0,
NBS1, NBS2/A1, NBS3, A2–A25,
change

NCS_WR_HOLD × tCPMCK - 8.2 NCS_WR_HOLD × tCPMCK - 9.6 ns

SMC27 NCS High to NWE Inactive
(NCS_WR_HOLD - NWE_HOLD)

× tCPMCK - 6.2
(NCS_WR_HOLD - NWE_HOLD)

× tCPMCK - 9
ns
D R A F T 1423SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

Figure 45-38. EMAC MII Mode

EMDC

EMDIO

ECOL

ECRS

ETXCK

ETXER

ETXEN

ETX[3:0]

ERXCK

ERX[3:0]

ERXER

ERXDV

EMAC3EMAC1 EMAC2

EMAC4 EMAC5

EMAC6 EMAC7

EMAC8

EMAC9

EMAC10

EMAC11 EMAC12

EMAC13 EMAC14

EMAC15 EMAC16
D R A F TSAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

1430

