
Microchip Technology - ATSAM3X4EA-CU Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ARM® Cortex®-M3

Core Size 32-Bit Single-Core

Speed 84MHz

Connectivity CANbus, EBI/EMI, Ethernet, I²C, IrDA, LINbus, Memory Card, SPI, SSC, UART/USART, USB

Peripherals Brown-out Detect/Reset, DMA, I²S, POR, PWM, WDT

Number of I/O 103

Program Memory Size 256KB (256K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 68K x 8

Voltage - Supply (Vcc/Vdd) 1.62V ~ 3.6V

Data Converters A/D 16x12b; D/A 2x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 144-LFBGA

Supplier Device Package 144-BGA (13x13)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atsam3x4ea-cu

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atsam3x4ea-cu-4415054
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

9.3.1 PIO Controller A Multiplexing

Notes: 1. WKUPx can be used if PIO controller defines the I/O line as "input".

2. To select this extra function, refer to Section 43.5.3 “Analog Inputs”.

3. Analog input has priority over WKUPx pin.

Table 9-2. Multiplexing on PIO Controller A (PIOA)

I/O Line Peripheral A Peripheral B Extra Function Comments

PA0 CANTX0 PWML3

PA1 CANRX0 PCK0 WKUP0(1)

PA2 TIOA1 NANDRDY AD0(2)

PA3 TIOB1 PWMFI1 AD1/WKUP1(3)

PA4 TCLK1 NWAIT AD2(2)

PA5 TIOA2 PWMFI0 WKUP2(1)

PA6 TIOB2 NCS0 AD3(2)

PA7 TCLK2 NCS1 WKUP3(1)

PA8 URXD PWMH0 WKUP4(1)

PA9 UTXD PWMH3

PA10 RXD0 DATRG WKUP5(1)

PA11 TXD0 ADTRG WKUP6(1)

PA12 RXD1 PWML1 WKUP7(1)

PA13 TXD1 PWMH2

PA14 RTS1 TK

PA15 CTS1 TF WKUP8(1)

PA16 SPCK1 TD AD7(2)

PA17 TWD0 SPCK0

PA18 TWCK0 A20 WKUP9(1)

PA19 MCCK PWMH1

PA20 MCCDA PWML2

PA21 MCDA0 PWML0

PA22 MCDA1 TCLK3 AD4(2)

PA23 MCDA2 TCLK4 AD5(2)

PA24 MCDA3 PCK1 AD6(2)

PA25 SPI0_MISO A18

PA26 SPI0_MOSI A19

PA27 SPI0_SPCK A20 WKUP10(1)

PA28 SPI0_NPCS0 PCK2 WKUP11(1)

PA29 SPI0_NPCS1 NRD

PA30 SPI0_NPCS2 PCK1 217 pins

PA31 SPI0_NPCS3 PCK2 217 pins
SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

40

Figure 12-7. Reset Controller Status and Interrupt

MCK

NRST

NRSTL

2 cycle
resynchronization

2 cycle
resynchronization

URSTS

read
RSTC_SRPeripheral Access

rstc_irq
if (URSTEN = 0) and

(URSTIEN = 1)
229SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

Commands and read operations can be performed in parallel only on different memory planes. Code can be
fetched from one memory plane while a write or an erase operation is performed on another.

In order to perform one of these commands, the Flash Command Register (EEFC_FCR) has to be written with the
correct command using the FCMD field. As soon as the EEFC_FCR register is written, the FRDY flag and the
FVALUE field in the EEFC_FRR register are automatically cleared. Once the current command is achieved,
then the FRDY flag is automatically set. If an interrupt has been enabled by setting the FRDY bit in EEFC_FMR,
the corresponding interrupt line of the NVIC is activated. (Note that this is true for all commands except for the
STUI Command. The FRDY flag is not set when the STUI command is achieved.)

All the commands are protected by the same keyword, which has to be written in the 8 highest bits of the
EEFC_FCR register.

Writing EEFC_FCR with data that does not contain the correct key and/or with an invalid command has no effect
on the whole memory plane, but the FCMDE flag is set in the EEFC_FSR register. This flag is automatically
cleared by a read access to the EEFC_FSR register.

When the current command writes or erases a page in a locked region, the command has no effect on the whole
memory plane, but the FLOCKE flag is set in the EEFC_FSR register. This flag is automatically cleared by a read
access to the EEFC_FSR register.

Table 18-2. Set of Commands

Command Value Mnemonic

Get Flash Descriptor 0x00 GETD

Write page 0x01 WP

Write page and lock 0x02 WPL

Erase page and write page 0x03 EWP

Erase page and write page then lock 0x04 EWPL

Erase all 0x05 EA

Set Lock Bit 0x08 SLB

Clear Lock Bit 0x09 CLB

Get Lock Bit 0x0A GLB

Set GPNVM Bit 0x0B SGPB

Clear GPNVM Bit 0x0C CGPB

Get GPNVM Bit 0x0D GGPB

Start Read Unique Identifier 0x0E STUI

Stop Read Unique Identifier 0x0F SPUI

Get CALIB Bit 0x10 GCALB
SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

296

18.4.3.2 Write Commands

Several commands can be used to program the Flash.

Flash technology requires that an erase is done before programming. The full memory plane can be erased at the
same time, or several pages can be erased at the same time (refer to Section ”The Partial Programming mode
works only with 128-bit (or higher) boundaries. It cannot be used with boundaries lower than 128 bits (8, 16 or 32-
bit for example).”). Also, a page erase can be automatically done before a page write using EWP or EWPL
commands.

After programming, the page (the whole lock region) can be locked to prevent miscellaneous write or erase
sequences. The lock bit can be automatically set after page programming using WPL or EWPL commands.

Data to be written are stored in an internal latch buffer. The size of the latch buffer corresponds to the page size.
The latch buffer wraps around within the internal memory area address space and is repeated as many times as
the number of pages within this address space.

Note: Writing of 8-bit and 16-bit data is not allowed and may lead to unpredictable data corruption.

Write operations are performed in a number of wait states equal to the number of wait states for read operations.

Data are written to the latch buffer before the programming command is written to the Flash Command Register
EEFC_FCR. The sequence is as follows:

 Write the full page, at any page address, within the internal memory area address space.

 Programming starts as soon as the page number and the programming command are written to the Flash
Command Register. The FRDY bit in the Flash Programming Status Register (EEFC_FSR) is automatically
cleared.

 When programming is completed, the FRDY bit in the Flash Programming Status Register (EEFC_FSR)
rises. If an interrupt has been enabled by setting the bit FRDY in EEFC_FMR, the corresponding interrupt
line of the NVIC is activated.

Two errors can be detected in the EEFC_FSR register after a programming sequence:

 a Command Error: a bad keyword has been written in the EEFC_FCR register.

 a Lock Error: the page to be programmed belongs to a locked region. A command must be previously run to
unlock the corresponding region.

Table 18-3. Flash Descriptor Definition

Symbol Word Index Description

FL_ID 0 Flash Interface Description

FL_SIZE 1 Flash size in bytes

FL_PAGE_SIZE 2 Page size in bytes

FL_NB_PLANE 3 Number of planes.

FL_PLANE[0] 4 Number of bytes in the first plane.

...

FL_PLANE[FL_NB_PLANE-1] 4 + FL_NB_PLANE - 1 Number of bytes in the last plane.

FL_NB_LOCK 4 + FL_NB_PLANE
Number of lock bits. A bit is associated with a lock region. A
lock bit is used to prevent write or erase operations in the lock
region.

FL_LOCK[0] 4 + FL_NB_PLANE + 1 Number of bytes in the first lock region.

...
SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

298

24.7.10 SDRAMC Configuration 1 Register

Name: SDRAMC_CR1

Address: 0x400E0228

Access: Read-write

• TMRD: Load Mode Register Command to Active or Refresh Command

Reset Value is 2 cycles.

This field defines the delay between a Load mode register command and an active or refresh command in number of
cycles. Number of cycles is between 0 and 15.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – TMRD
417SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

• NFSEL: NAND Flash Selection

If this bit is set to one, the chip select is assigned to NAND Flash write enable and read enable lines drive the Error Cor-
recting Code module.
495SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

26.5.6 Receive Next Counter Register

Name: PERIPH_RNCR

Access: Read-write

• RXNCTR: Receive Next Counter

RXNCTR contains next receive buffer size.

When a half duplex peripheral is connected to the PDC, RXNCTR = TXNCTR.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
RXNCTR

7 6 5 4 3 2 1 0

RXNCTR
SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

514

30.9.17 SSC Write Protect Mode Register

Name: SSC_WPMR

Address: 0x400040E4

Access: Read-write

Reset: See Table 30-6

• WPEN: Write Protect Enable

0 = Disables the Write Protect if WPKEY corresponds to 0x535343 (“SSC” in ASCII).

1 = Enables the Write Protect if WPKEY corresponds to 0x535343 (“SSC” in ASCII).

Protects the registers:

• “SSC Clock Mode Register” on page 593

• “SSC Receive Clock Mode Register” on page 594

• “SSC Receive Frame Mode Register” on page 596

• “SSC Transmit Clock Mode Register” on page 598

• “SSC Transmit Frame Mode Register” on page 600

• “SSC Receive Compare 0 Register” on page 606

• “SSC Receive Compare 1 Register” on page 607

• WPKEY: Write Protect KEY

Should be written at value 0x535343 (“SSC” in ASCII). Writing any other value in this field aborts the write operation of the
WPEN bit. Always reads as 0.

31 30 29 28 27 26 25 24

WPKEY

23 22 21 20 19 18 17 16

WPKEY

15 14 13 12 11 10 9 8

WPKEY

7 6 5 4 3 2 1 0

— — — — — — — WPEN
SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

616

Otherwise, the following equation determines the delay:

Delay Between Consecutive Transfers
32 DLYBCT×

MCK
------------------------------------=
705SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

Figure 33-8. Master Write with One Byte Internal Address and Multiple Data Bytes

33.8.5 Master Receiver Mode

The read sequence begins by setting the START bit. After the start condition has been sent, the master sends a 7-
bit slave address to notify the slave device. The bit following the slave address indicates the transfer direction, 1 in
this case (MREAD = 1 in TWI_MMR). During the acknowledge clock pulse (9th pulse), the master releases the
data line (HIGH), enabling the slave to pull it down in order to generate the acknowledge. The master polls the
data line during this clock pulse and sets the NACK bit in the status register if the slave does not acknowledge the
byte.

If an acknowledge is received, the master is then ready to receive data from the slave. After data has been
received, the master sends an acknowledge condition to notify the slave that the data has been received except
for the last data, after the stop condition. See Figure 33-9. When the RXRDY bit is set in the status register, a
character has been received in the receive-holding register (TWI_RHR). The RXRDY bit is reset when reading the
TWI_RHR.

When a single data byte read is performed, with or without internal address (IADR), the START and STOP bits
must be set at the same time. See Figure 33-9. When a multiple data byte read is performed, with or without
internal address (IADR), the STOP bit must be set after the next-to-last data received. See Figure 33-10. For
Internal Address usage see Section 33.8.6.

Figure 33-9. Master Read with One Data Byte

A DATA n AS DADR W DATA n+1 A PDATA n+2 A

TXCOMP

TXRDY

Write THR (Data n)

Write THR (Data n+1) Write THR (Data n+2)
Last data sent

STOP command performed
(by writing in the TWI_CR)

TWD IADR A

TWCK

AS DADR R DATA N P

TXCOMP

Write START &
STOP Bit

RXRDY

Read RHR

TWD
715SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

33.11.9 TWI Interrupt Mask Register

Name: TWI_IMR

Address: 0x4008C02C (0), 0x4009002C (1)

Access: Read-only

Reset: 0x00000000

• TXCOMP: Transmission Completed Interrupt Mask

• RXRDY: Receive Holding Register Ready Interrupt Mask

• TXRDY: Transmit Holding Register Ready Interrupt Mask

• SVACC: Slave Access Interrupt Mask

• GACC: General Call Access Interrupt Mask

• OVRE: Overrun Error Interrupt Mask

• NACK: Not Acknowledge Interrupt Mask

• ARBLST: Arbitration Lost Interrupt Mask

• SCL_WS: Clock Wait State Interrupt Mask

• EOSACC: End Of Slave Access Interrupt Mask

• ENDRX: End of Receive Buffer Interrupt Mask

• ENDTX: End of Transmit Buffer Interrupt Mask

• RXBUFF: Receive Buffer Full Interrupt Mask

• TXBUFE: Transmit Buffer Empty Interrupt Mask

0 = The corresponding interrupt is disabled.

1 = The corresponding interrupt is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

TXBUFE RXBUFF ENDTX ENDRX EOSACC SCL_WS ARBLST NACK

7 6 5 4 3 2 1 0

– OVRE GACC SVACC – TXRDY RXRDY TXCOMP
747SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

34.5 UART Operations

The UART operates in asynchronous mode only and supports only 8-bit character handling (with parity). It has no
clock pin.

The UART is made up of a receiver and a transmitter that operate independently, and a common baud rate
generator. Receiver timeout and transmitter time guard are not implemented. However, all the implemented
features are compatible with those of a standard USART.

34.5.1 Baud Rate Generator

The baud rate generator provides the bit period clock named baud rate clock to both the receiver and the
transmitter.

The baud rate clock is the master clock divided by 16 times the value (CD) written in UART_BRGR (Baud Rate
Generator Register). If UART_BRGR is set to 0, the baud rate clock is disabled and the UART remains inactive.
The maximum allowable baud rate is Master Clock divided by 16. The minimum allowable baud rate is Master
Clock divided by (16 x 65536).

Figure 34-2. Baud Rate Generator

34.5.2 Receiver

34.5.2.1 Receiver Reset, Enable and Disable

After device reset, the UART receiver is disabled and must be enabled before being used. The receiver can be
enabled by writing the control register UART_CR with the bit RXEN at 1. At this command, the receiver starts
looking for a start bit.

The programmer can disable the receiver by writing UART_CR with the bit RXDIS at 1. If the receiver is waiting for
a start bit, it is immediately stopped. However, if the receiver has already detected a start bit and is receiving the
data, it waits for the stop bit before actually stopping its operation.

The programmer can also put the receiver in its reset state by writing UART_CR with the bit RSTRX at 1. In doing
so, the receiver immediately stops its current operations and is disabled, whatever its current state. If RSTRX is
applied when data is being processed, this data is lost.

 Baud Rate
MCK

16 CD ×
---------------------- =

MCK 16-bit Counter

0

Baud Rate
Clock

CD

CD

OUT

Divide
by 16

0

1

>1

Receiver
Sampling Clock
SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

752

–SRC_WIDTH is set to BYTE.

–SCSIZE must be set according to the value of HSMCI_DMA, CHKSIZE field.

–BTSIZE is programmed with block_length[1:0]. (last 1, 2, or 3 bytes of the buffer).

o. Program LLI_B(n).DMAC_CTRLBx with the following field’s values:

̶ DST_INCR is set to INCR.

̶ SRC_INCR is set to INCR.

̶ FC field is programmed with peripheral to memory flow control mode.

̶ Both SRC_DSCR and DST_DSCR are set to 1 (descriptor fetch is disabled) or Next descriptor
location points to 0.

̶ DIF and SIF are set with their respective layer ID. If SIF is different from DIF, the DMA Controller is
able to prefetch data and write HSMCI simultaneously.

p. Program LLI_B(n).DMAC_CFGx memory location for channel x with the following field’s values:

̶ FIFOCFG defines the watermark of the DMAC channel FIFO.

̶ SRC_H2SEL is set to true to enable hardware handshaking on the destination.

̶ SRC_PER is programmed with the hardware handshaking ID of the targeted HSMCI Host Controller

q. Program LLI_B(n).DMAC_DSCR with address of descriptor LLI_W(n+1). If LLI_B(n) is the last
descriptor, then program LLI_B(n).DMAC_DSCR with 0.

r. Program DMAC_CTRLBx register for channel x with 0, its content is updated with the LLI Fetch
operation.

s. Program DMAC_DSCRx with the address of LLI_W(0) if block_length is greater than 4 else with
address of LLI_B(0).

t. Enable Channel x writing one to DMAC_CHER[x]. The DMAC is ready and waiting for request.

4. Enable DMADONE interrupt in the HSMCI_IER register.

5. Poll CBTC[x] bit in the DMAC_EBCISR Register.

6. If a new list of buffers shall be transferred, repeat step 7. Check and handle HSMCI errors.

7. Poll FIFOEMPTY field in the HSMCI_SR.

8. Send The STOP_TRANSMISSION command writing HSMCI_ARG then HSMCI_CMDR.

9. Wait for XFRDONE in HSMCI_SR register.
SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

934

37.14.7 HSMCI Block Register

Name: HSMCI_BLKR

Address: 0x40000018

Access: Read-write

• BCNT: MMC/SDIO Block Count - SDIO Byte Count

This field determines the number of data byte(s) or block(s) to transfer.

The transfer data type and the authorized values for BCNT field are determined by the TRTYP field in the HSMCI Com-
mand Register (HSMCI_CMDR):

Warning: In SDIO Byte and Block modes, writing to the 7 last bits of BCNT field is forbidden and may lead to unpredictable
results.

• BLKLEN: Data Block Length

This field determines the size of the data block.

This field is also accessible in the HSMCI Mode Register (HSMCI_MR).

Bits 16 and 17 must be set to 0 if FBYTE is disabled.

Note: In SDIO Byte mode, BLKLEN field is not used.

31 30 29 28 27 26 25 24

BLKLEN

23 22 21 20 19 18 17 16

BLKLEN

15 14 13 12 11 10 9 8

BCNT

7 6 5 4 3 2 1 0

BCNT

Value Name Description

0 MULTIPLE
MMC/SDCARD Multiple Block

From 1 to 65635: Value 0 corresponds to an infinite block transfer.

4 BYTE

SDIO Byte

From 1 to 512 bytes: Value 0 corresponds to a 512-byte transfer.

Values from 0x200 to 0xFFFF are forbidden.

5 BLOCK

SDIO Block

From 1 to 511 blocks: Value 0 corresponds to an infinite block transfer.

Values from 0x200 to 0xFFFF are forbidden.
SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

950

37.14.20 HSMCI FIFOx Memory Aperture

Name: HSMCI_FIFOx[x=0..255]

Address: 0x40000200

Access: Read-write

• DATA: Data to Read or Data to Write

31 30 29 28 27 26 25 24

DATA

23 22 21 20 19 18 17 16

DATA

15 14 13 12 11 10 9 8

DATA

7 6 5 4 3 2 1 0

DATA
969SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

The UOTGHS can be disabled at any time by writing a zero to UOTGHS_CTRL.USBE. In fact, writing a zero to
UOTGHS_CTRL.USBE acts as a hardware reset , except that the UOTGHS_CTRL.OTGPADE,
UOTGHS_CTRL.VBUSPO, UOTGHS_CTRL.FRZCLK, UOTGHS_CTRL.UIDE, UOTGHS_CTRL.UIMOD and,
UOTGHS_DEVCTRL.LS bits are not reset.

39.5.1.3 Interrupts

One interrupt vector is assigned to the USB interface. Figure 39-6 on page 1059 shows the structure of the USB
interrupt system.

Figure 39-6. Interrupt System

See Section 39.5.2.19 and Section 39.5.3.13 for further details about device and host interrupts.

UOTGHS_CTRL.IDTE

UOTGHS_SR.IDTI

UOTGHS_SR.VBUSTI

UOTGHS_CTRL.VBUSTE
UOTGHS_SR.SRPI

UOTGHS_CTRL.SRPE
UOTGHS_SR.VBERRI

UOTGHS_CTRL.VBERRE
UOTGHS_SR.BCERRI

UOTGHS_CTRL.BCERRE
UOTGHS_SR.ROLEEXI

UOTGHS_CTRL.ROLEEXE
UOTGHS_SR.HNPERRI

UOTGHS_CTRL.HNPERRE
UOTGHS_SR.STOI

UOTGHS_CTRL.STOE

USB General
Interrupt

USB Device
Interrupt

USB Host
Interrupt

USB
Interrupt

Asynchronous interrupt source

UOTGHS_DEVIMR.SUSPE

UOTGHS_DEVIMR.SUSP

UOTGHS_DEVIMR.SOF

UOTGHS_DEVIMR.SOFE
UOTGHS_DEVIMR.EORST

UOTGHS_DEVIMR.EORSTE
UOTGHS_DEVIMR.WAKEUP

UOTGHS_DEVIMR.WAKEUPE
UOTGHS_DEVIMR.EORSM

UOTGHS_DEVIMR.EORSME
UOTGHS_DEVIMR.UPRSM

UOTGHS_DEVIMR.UPRSME
UOTGHS_DEVIMR.EPXINT

UOTGHS_DEVIMR.EPXINTE
UOTGHS_DEVIMR.DMAXINT

UOTGHS_DEVIMR.DMAXINTE

UOTGHS_HSTIMR.DCONNIE

UOTGHS_HSTISR.DCONNI

UOTGHS_HSTISR.DDISCI

UOTGHS_HSTIMR.DDISCIE
UOTGHS_HSTISR.RSTI

UOTGHS_HSTIMR.RSTIE
UOTGHS_HSTISR.RSMEDI

UOTGHS_HSTIMR.RSMEDIE
UOTGHS_HSTISR.RXRSMI

UOTGHS_HSTIMR.RXRSMIE
UOTGHS_HSTISR.HSOFI

UOTGHS_HSTIMR.HSOFIE
UOTGHS_HSTISR.HWUPI

UOTGHS_HSTIMR.HWUPIE
UOTGHS_HSTISR.PXINT

UOTGHS_HSTIMR.PXINTE
UOTGHS_HSTISR.DMAXINT

UOTGHS_HSTIMR.DMAXINTE

UOTGHS_DEVEPTIMRx.TXINE

UOTGHS_DEVEPTISRx.TXINI

UOTGHS_DEVEPTISRx.RXOUTI

UOTGHS_DEVEPTIMRx.RXOUTE
UOTGHS_DEVEPTISRx.RXSTPI

UOTGHS_DEVEPTIMRx.RXSTPE
UOTGHS_DEVEPTISRx.UNDERFI

UOTGHS_DEVEPTIMRx.UNDERFE
UOTGHS_DEVEPTISRx.NAKOUTI

UOTGHS_DEVEPTIMRx.NAKOUTE

UOTGHS_DEVEPTISRx.NAKINI

UOTGHS_DEVEPTIMRx.NAKINE

UOTGHS_DEVEPTISRx.OVERFI

UOTGHS_DEVEPTIMRx.OVERFE
UOTGHS_DEVEPTISRx.STALLEDI

UOTGHS_DEVEPTIMRx.STALLEDE
UOTGHS_DEVEPTISRx.CRCERRI

UOTGHS_DEVEPTIMRx.CRCERRE
UOTGHS_DEVEPTISRx.SHORTPACKET

UOTGHS_DEVEPTIMRx.SHORTPACKETE
UOTGHS_DEVEPTISRx.DTSEQ=MDATA & UESTAX.RXOUTI

UOTGHS_DEVEPTIMRx.MDATAE

UOTGHS_HSTPIPIMRx.RXINE

UOTGHS_HSTPIPISRx.RXINI

UOTGHS_HSTPIPISRx.TXOUTI

UOTGHS_HSTPIPIMRx.TXOUTE
UOTGHS_HSTPIPISRx.TXSTPI

UOTGHS_HSTPIPIMRx.TXSTPE
UOTGHS_HSTPIPISRx.UNDERFI

UOTGHS_HSTPIPIMRx.UNDERFIE
UOTGHS_HSTPIPISRx.PERRI

UOTGHS_HSTPIPIMRx.PERRE
UOTGHS_HSTPIPISRx.NAKEDI

UOTGHS_HSTPIPIMRx.NAKEDE
UOTGHS_HSTPIPISRx.OVERFI

UOTGHS_HSTPIPIMRx.OVERFIE
UOTGHS_HSTPIPISRx.RXSTALLDI

UOTGHS_HSTPIPIMRx.RXSTALLDE
UOTGHS_HSTPIPISRx.CRCERRI

UOTGHS_HSTPIPIMRx.CRCERRE
UOTGHS_HSTPIPISRx.SHORTPACKETI

UOTGHS_HSTPIPIMRx.SHORTPACKETIE
UOTGHS_HSTPIPISRx.NBUSYBK

UOTGHS_HSTPIPIMRx.NBUSYBKE

UDDMAX_CONTROL.EOT_IRQ_EN

UOTGHS_DEVDMASTATUSx.EOT_STA

UOTGHS_DEVDMASTATUSx.EOCH_BUFF_STA

UDDMAX_CONTROL.EOBUFF_IRQ_EN
UOTGHS_DEVDMASTATUSx.DESC_LD_STA

UDDMAX_CONTROL.DESC_LD_IRQ_EN

UOTGHS_HSTDMACONTROLx.EOT_IRQ_EN

UOTGHS_HSTDMASTATUSx.EOT_STA

UOTGHS_HSTDMASTATUSx.EOCH_BUFF_STA

UOTGHS_HSTDMACONTROLx.EOBUFF_IRQ_EN
UOTGHS_HSTDMASTATUSx.DESC_LD_STA

UOTGHS_HSTDMACONTROLx.DESC_LD_IRQ_EN

USB Device
Endpoint X

Interrupt

USB Host
Pipe X

Interrupt

USB Device
DMA Channel X

Interrupt

USB Host
DMA Channel X

Interrupt

UOTGHS_DEVIMR.MSOFE

UOTGHS_DEVIMR.MSOF

UOTGHS_DEVEPTISRx.HBISOINERRI

UOTGHS_DEVEPTIMRx.HBISOINERRE

UOTGHS_DEVEPTISRx.HBISOFLUSHI

UOTGHS_DEVEPTIMRx.HBISOFLUSHE

UOTGHS_DEVEPTISRx.DTSEQ=DATAX & UESTAX.RXOUTI

UOTGHS_DEVEPTIMRx.DATAXE
UOTGHS_DEVEPTISRx.TRANSERR

UOTGHS_DEVEPTIMRx.TRANSERRE
UOTGHS_DEVEPTISRx.NBUSYBK

UOTGHS_DEVEPTIMRx.NBUSYBKE
1059SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

• MSOFS: Micro Start of Frame Interrupt Set

Writing a one to this bit will set MSOF bit in UOTGHS_DEVISR, which may be useful for test or debug purposes.

Writing a zero to this bit has no effect.

This bit always reads as zero.

• SUSPS: Suspend Interrupt Set

Writing a one to this bit will set SUSP bit in UOTGHS_DEVISR, which may be useful for test or debug purposes.

Writing a zero to this bit has no effect.

This bit always reads as zero.
SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

1106

39.6.3.22 Host DMA Channel x Next Descriptor Address Register

Name: UOTGHS_HSTDMANXTDSCx [x=1..6]

Address: 0x400AC710 [1], 0x400AC720 [2], 0x400AC730 [3], 0x400AC740 [4], 0x400AC750 [5], 0x400AC760 [6],
0x400AC770 [7]

Access: Read-write

• NXT_DSC_ADD: Next Descriptor Address

This field points to the next channel descriptor to be processed. This channel descriptor must be aligned, so bits 0 to 3 of
the address must be equal to zero.

31 30 29 28 27 26 25 24

NXT_DSC_ADD

23 22 21 20 19 18 17 16

NXT_DSC_ADD

15 14 13 12 11 10 9 8

NXT_DSC_ADD

7 6 5 4 3 2 1 0

NXT_DSC_ADD
1179SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

Fault Confinement

To distinguish between temporary and permanent failures, every CAN controller has two error counters: REC
(Receive Error Counter) and TEC (Transmit Error Counter). The two counters are incremented upon detected
errors and are decremented upon correct transmissions or receptions, respectively. Depending on the counter
values, the state of the node changes: the initial state of the CAN controller is Error Active, meaning that the
controller can send Error Active flags. The controller changes to the Error Passive state if there is an accumulation
of errors. If the CAN controller fails or if there is an extreme accumulation of errors, there is a state transition to Bus
Off.

Figure 40-7. Line Error Mode

An error active unit takes part in bus communication and sends an active error frame when the CAN controller
detects an error.

An error passive unit cannot send an active error frame. It takes part in bus communication, but when an error is
detected, a passive error frame is sent. Also, after a transmission, an error passive unit waits before initiating
further transmission.

A bus off unit is not allowed to have any influence on the bus.

For fault confinement, two errors counters (TEC and REC) are implemented. These counters are accessible via
the CAN_ECR register. The state of the CAN controller is automatically updated according to these counter
values. If the CAN controller is in Error Active state, then the ERRA bit is set in the CAN_SR register. The
corresponding interrupt is pending while the interrupt is not masked in the CAN_IMR register. If the CAN controller
is in Error Passive Mode, then the ERRP bit is set in the CAN_SR register and an interrupt remains pending while
the ERRP bit is set in the CAN_IMR register. If the CAN is in Bus Off Mode, then the BOFF bit is set in the
CAN_SR register. As for ERRP and ERRA, an interrupt is pending while the BOFF bit is set in the CAN_IMR
register.

When one of the error counters values exceeds 96, an increased error rate is indicated to the controller through
the WARN bit in CAN_SR register, but the node remains error active. The corresponding interrupt is pending while
the interrupt is set in the CAN_IMR register.

Refer to the Bosch CAN specification v2.0 for details on fault confinement.

Error Interrupt Handler

WARN, BOFF, ERRA and ERRP (CAN_SR) represent the current status of the CAN bus and are not latched.
They reflect the current TEC and REC (CAN_ECR) values as described in Section “Fault Confinement” on page
1196.

Based on that, if these bits are used as an interrupt, the user can enter into an interrupt and not see the
corresponding status register if the TEC and REC counter have changed their state. When entering Bus Off Mode,
the only way to exit from this state is 128 occurrences of 11 consecutive recessive bits or a CAN controller reset.

ERROR
ACTIVE

ERROR
PASSIVE BUS OFF

TEC > 255

Init

TEC > 127
or

REC > 127

TEC < 127
and

REC < 127

128 occurences of 11 consecutive recessive bits
or

CAN controller reset
SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

1196

43.7.12 ADC Interrupt Status Register

Name: ADC_ISR

Address: 0x400C0030

Access: Read-only

• EOCx: End of Conversion x

0 = Corresponding analog channel is disabled, or the conversion is not finished. This flag is cleared when reading the cor-
responding ADC_CDRx registers.

1 = Corresponding analog channel is enabled and conversion is complete.

• DRDY: Data Ready

0 = No data has been converted since the last read of ADC_LCDR.

1 = At least one data has been converted and is available in ADC_LCDR.

• GOVRE: General Overrun Error

0 = No General Overrun Error occurred since the last read of ADC_ISR.

1 = At least one General Overrun Error has occurred since the last read of ADC_ISR.

• COMPE: Comparison Error

0 = No Comparison Error since the last read of ADC_ISR.

1 = At least one Comparison Error has occurred since the last read of ADC_ISR.

• ENDRX: End of RX Buffer

0 = The Receive Counter Register has not reached 0 since the last write in ADC_RCR or ADC_RNCR.

1 = The Receive Counter Register has reached 0 since the last write in ADC_RCR or ADC_RNCR.

• RXBUFF: RX Buffer Full

0 = ADC_RCR or ADC_RNCR have a value other than 0.

1 = Both ADC_RCR and ADC_RNCR have a value of 0.

31 30 29 28 27 26 25 24

– – – RXBUFF ENDRX COMPE GOVRE DRDY

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

EOC15 EOC14 EOC13 EOC12 EOC11 EOC10 EOC9 EOC8

7 6 5 4 3 2 1 0

EOC7 EOC6 EOC5 EOC4 EOC3 EOC2 EOC1 EOC0
1345SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15

