E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, SD, SPI, UART/USART, USB, USB OTG
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	66
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 33x16b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mk60dn256zvll10

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Field		Description
	001	Park on master port M1
	010	Park on master port M2
	011	Park on master port M3
	100	Park on master port M4
	101	Park on master port M5
	110	Reserved
	111	Reserved

AXBS_CRSn field descriptions (continued)

17.2.3 Master General Purpose Control Register (AXBS MGPCRn)

The MGPCR controls only whether the master's undefined length burst accesses are allowed to complete uninterrupted or whether they can be broken by requests from higher priority masters. The MGPCR can only be accessed in Supervisor mode with 32-bit accesses.

Addresses: AXBS_MGPCR0 is 4000_4000h base + 800h offset = 4000_4800h AXBS MGPCR1 is 4000 4000h base + 900h offset = 4000 4900h AXBS_MGPCR2 is 4000_4000h base + A00h offset = 4000_4A00h AXBS_MGPCR3 is 4000_4000h base + B00h offset = 4000_4B00h AXBS_MGPCR4 is 4000_4000h base + C00h offset = 4000_4C00h AXBS_MGPCR5 is 4000_4000h base + D00h offset = 4000_4D00h AXBS_MGPCR6 is 4000_4000h base + E00h offset = 4000_4E00h AXBS_MGPCR7 is 4000_4000h base + F00h offset = 4000_4F00h

AXBS MGPCRn field descriptions

Field	Description
31–3 Reserved	This read-only field is reserved and always has the value zero.
2–0 AULB	Arbitrates on undefined length bursts
	Determines whether, and when, the crossbar switch arbitrates away the slave port the master owns when the master is performing undefined length burst accesses.
	000 No arbitration is allowed during an undefined length burst
	001 Arbitration is allowed at any time during an undefined length burst
	010 Arbitration is allowed after four beats of an undefined length burst
	011 Arbitration is allowed after eight beats of an undefined length burst
	100 Arbitration is allowed after 16 beats of an undefined length burst
	Table continues on the part page

Table continues on the next page...

AIPSx_PACRn field descriptions (continued)

Field	Description
27 Reserved	This read-only field is reserved and always has the value zero.
26	Supervisor protect
SP1	Determines whether the peripheral requires supervisor privilege level for access. When this bit is set, the master privilege level must indicate the supervisor access attribute , and the MPROTn[MPL] control bit for the master must be set. If not, access terminates with an error response and no peripheral access initiates.
	0 This peripheral does not require supervisor privilege level for accesses.1 This peripheral requires supervisor privilege level for accesses.
25	Write protect
WP1	Determines whether the peripheral allows write accesss. When this bit is set and a write access is attempted, access terminates with an error response and no peripheral access initiates.
	0 This peripheral allows write accesses.1 This peripheral is write protected.
24 TD1	Trusted protect
	Determines whether the peripheral allows accesses from an untrusted master. When this bit is set and an access is attempted by an untrusted master, the access terminates with an error response and no peripheral access initiates.
	0 Accesses from an untrusted master are allowed.1 Accesses from an untrusted master are not allowed.
23 Reserved	This read-only field is reserved and always has the value zero.
22 SP2	Supervisor protect
	Determines whether the peripheral requires supervisor privilege level for access. When this bit is set, the master privilege level must indicate the supervisor access attribute , and the MPROTn[MPL] control bit for the master must be set. If not, access terminates with an error response and no peripheral access initiates.
	0 This peripheral does not require supervisor privilege level for accesses.
	1 This peripheral requires supervisor privilege level for accesses.
21 WP2	Write protect
	Determines whether the peripheral allows write accesss. When this bit is set and a write access is attempted, access terminates with an error response and no peripheral access initiates.
	0 This peripheral allows write accesses.1 This peripheral is write protected.
20 TP2	Trusted protect
	Determines whether the peripheral allows accesses from an untrusted master. When this bit is set and an access is attempted by an untrusted master, the access terminates with an error response and no peripheral access initiates.

Table continues on the next page ...

loop complete indicators, setting the transfer control descriptor DONE flag and the possible assertion of an interrupt request, are not affected when an error is detected. After the error status has been updated, the eDMA engine continues operating by servicing the next appropriate channel. A channel that experiences an error condition is not automatically disabled. If a channel is terminated by an error and then issues another service request before the error is fixed, that channel executes and terminates with the same error condition.

21.4.3 Channel preemption

Channel preemption is enabled on a per-channel basis by setting the DCHPRIn[ECP] bit. Channel preemption allows the executing channel's data transfers to temporarily suspend in favor of starting a higher priority channel. After the preempting channel has completed all its minor loop data transfers, the preempted channel is restored and resumes execution. After the restored channel completes one read/write sequence, it is again eligible for preemption. If any higher priority channel is requesting service, the restored channel is suspended and the higher priority channel is serviced. Nested preemption, that is, attempting to preempt a preempting channel, is not supported. After a preempting channel begins execution, it cannot be preempted. Preemption is available only when fixed arbitration is selected.

A channel's ability to preempt another channel can be disabled by setting DCHPRIn[DPA]. When a channel's preempt ability is disabled, that channel cannot suspend a lower priority channel's data transfer, regardless of the lower priority channel's ECP setting. This allows for a pool of low priority, large data-moving channels to be defined. These low priority channels can be configured to not preempt each other, thus preventing a low priority channel from consuming the preempt slot normally available to a true, high priority channel.

21.4.4 Performance

This section addresses the performance of the eDMA module, focusing on two separate metrics:

- In the traditional data movement context, performance is best expressed as the peak data transfer rates achieved using the eDMA. In most implementations, this transfer rate is limited by the speed of the source and destination address spaces.
- In a second context where device-paced movement of single data values to/from peripherals is dominant, a measure of the requests that can be serviced in a fixed time is a more relevant metric. In this environment, the speed of the source and destination

Functional Description

Mode	Description
Bypassed Low Power Internal (BLPI)1	Bypassed Low Power Internal (BLPI) mode is entered when all the following conditions occur:
	C1[CLKS] bits are written to 01
	C1[IREFS] bit is written to 1
	C6[PLLS] bit is written to 0
	C2[LP] bit is written to 1
	In BLPI mode, MCGOUTCLK is derived from the internal reference clock. The FLL is disabled and PLL is disabled even if the C5[PLLCLKEN] is set to 1.
Bypassed Low Power	Bypassed Low Power External (BLPE) mode is entered when all the following conditions occur:
External (BLPE)	C1[CLKS] bits are written to 10
	C1[IREFS] bit is written to 0
	C2[LP] bit is written to 1
	In BLPE mode, MCGOUTCLK is derived from the OSCSEL external reference clock. The FLL is disabled and PLL is disabled even if the C5[PLLCLKEN] is set to 1.
Stop	Entered whenever the MCU enters a Stop state. The power modes are chip specific. For power mode assignments, see the chapter that describes how modules are configured and MCG behavior during Stop recovery. Entering Stop mode, the FLL is disabled, and all MCG clock signals are static except in the following case:
	MCGPLLCLK is active in Normal Stop mode when PLLSTEN=1
	MCGIRCLK is active in Stop mode when all the following conditions become true:
	• C1[IRCLKEN] = 1
	• C1[IREFSTEN] = 1
	 When entering Low Power Stop modes (LLS or VLPS) from PEE mode, on exit the MCG clock mode is forced to PBE clock mode, the C1[CLKS] and S[CLKST] will be configured to 2'b10 and S[LOCK] bit will be cleared without setting S[LOLS].
	 When entering Normal Stop mode from PEE mode and if C5[PLLSTEN]=0, on exit the MCG clock mode is forced to PBE mode, the C1[CLKS] and S[CLKST] will be configured to 2'b10 and S[LOCK] bit will clear without setting S[LOLS]. If C5[PLLSTEN]=1, the S[LOCK] bit will not get cleared and on exit the MCG will continue to run in PEE mode.

Table 24-14. MCG Modes of Operation (continued)

1. If entering VLPR mode, MCG has to be configured and enter BLPE mode or BLPI mode with the 4 MHz IRC clock selected (C2[IRCS]=1). Once in VLPR mode, writes to any of the MCG control registers that can cause a MCG clock mode switch to a non low power clock mode must be avoided.

NOTE

For the chip-specific modes of operation, refer to the power management chapter of this MCU.

Field	Description
	00 Default voltage reference pin pair (external pins V _{REFH} and V _{REFL})
	01 Alternate reference pair (V _{ALTH} and V _{ALTL}). This pair may be additional external pins or internal sources depending on MCU configuration. Consult the Chip Configuration information for details specific to this MCU.
	10 Reserved
	11 Reserved

ADCx_SC2 field descriptions (continued)

34.3.7 Status and control register 3 (ADCx_SC3)

The SC3 register controls the calibration, continuous convert, and hardware averaging functions of the ADC module.

Addresses: ADC0_SC3 is 4003_B000h base + 24h offset = 4003_B024h

ADC1_SC3 is 400B_B000h base + 24h offset = 400B_B024h

ADCx_SC3 field descriptions

Field	Description
31–8 Reserved	This read-only field is reserved and always has the value zero.
7 CAL	Calibration CAL begins the calibration sequence when set. This bit stays set while the calibration is in progress and is cleared when the calibration sequence is completed. The CALF bit must be checked to determine the result of the calibration sequence. Once started, the calibration routine cannot be interrupted by writes to the ADC registers or the results will be invalid and the CALF bit will set. Setting the CAL bit will abort any current conversion.
6 CALF	Calibration failed flag CALF displays the result of the calibration sequence. The calibration sequence will fail if ADTRG = 1, any ADC register is written, or any stop mode is entered before the calibration sequence completes. The CALF bit is cleared by writing a 1 to this bit.

Table continues on the next page ...

Note

Hexadecimal values are designated by a preceding 0x, binary values designated by a preceding %, and decimal values have no preceding character.

34.5.1 ADC module initialization example

This section provides details about the ADC module initialization.

34.5.1.1 Initialization sequence

Before the ADC module can be used to complete conversions, an initialization procedure must be performed. A typical sequence is as follows:

- 1. Calibrate the ADC by following the calibration instructions in Calibration function.
- 2. Update the configuration register (CFG) to select the input clock source and the divide ratio used to generate the internal clock, ADCK. This register is also used for selecting sample time and low-power configuration.
- 3. Update status and control register 2 (SC2) to select the conversion trigger (hardware or software) and compare function options, if enabled.
- 4. Update status and control register 3 (SC3) to select whether conversions will be continuous or completed only once (ADCO) and to select whether to perform hardware averaging.
- 5. Update the status and control register (SC1:SC1n) to select whether conversions will be single-ended or differential and to enable or disable conversion complete interrupts. Also, select the input channel on which to perform conversions.
- 6. Update PGA register (PGA) to enable or disable PGA and configure appropriate gain. This register is also used for selecting power mode and whether the module is chopper stabilized.

34.5.1.2 Pseudo-code example

In this example, the ADC module is set up with interrupts enabled to perform a single 10bit conversion at low power with a long sample time on input channel 1, where the internal ADCK clock is derived from the bus clock divided by 1.

NOTE

The assignment of module modes to core modes is chipspecific. For module-to-core mode assignments, see the chapter that describes how modules are configured.

37.3.2.1 SC[MODE_LV]=00

The internal bandgap is enabled to generate an accurate 1.2 V output that can be trimmed with the TRM register's TRIM[5:0] bitfield. The bandgap requires some time for startup and stabilization. SC[VREFST] can be monitored to determine if the stabilization and startup is complete.

The output buffer is disabled in this mode, and there is no buffered voltage output. The Voltage Reference is in standby mode. If this mode is first selected and the tight regulation buffer mode is subsequently enabled, there will be a delay before the buffer output is settled at the final value. This is the buffer start up delay (Tstup) and the value is specified in the appropriate device data sheet.

37.3.2.2 SC[MODE_LV] = 01

Reserved

37.3.2.3 SC[MODE_LV] = 10

The tight regulation buffer is enabled to generate a buffered 1.2 V voltage to VREF_OUT. If this mode is entered from the standby mode (SC[MODE_LV] = 00, SC[VREFEN] = 1) there will be a delay before the buffer output is settled at the final value. This is the buffer start up delay (Tstup) and the value is specified in the appropriate device data sheet. If this mode is entered when the VREF module is enabled then you must wait the longer of Tstup or until SC[VREFST] = 1.

37.3.2.4 SC[MODE_LV] = 11

Reserved

37.4 Initialization/Application Information

The Voltage Reference requires some time for startup and stabilization. After SC[VREFEN] = 1, SC[VREFST] can be monitored to determine if the stabilization and startup of the VREF bandgap is complete.

Field	Description
	0 Disable TOF interrupts. Use software polling.
	1 Enable TOF interrupts. An interrupt is generated when TOF equals one.
5	Center-aligned PWM Select
	Selects CPWM mode. This mode configures the FTM to operate in up-down counting mode.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 FTM counter operates in up counting mode.
	1 FTM counter operates in up-down counting mode.
4–3	Clock Source Selection
ULK5	Selects one of the three FTM counter clock sources.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	00 No clock selected (This in effect disables the FTM counter.)
	01 System clock
	10 Fixed frequency clock
	11 External clock
2–0 PS	Prescale Factor Selection
F 5	Selects one of 8 division factors for the clock source selected by CLKS. The new prescaler factor affects the clock source on the next system clock cycle after the new value is updated into the register bits.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	000 Divide by 1
	001 Divide by 2
	010 Divide by 4
	011 Divide by 8
	100 Divide by 16
	101 Divide by 32
	110 Divide by 64
	111 Divide by 128

FTMx_SC field descriptions (continued)

39.3.4 Counter (FTMx_CNT)

The CNT register contains the FTM counter value.

Reset clears the CNT register. Writing any value to COUNT updates the counter with its initial value (CNTIN).

When BDM is active, the FTM counter is frozen (this is the value that you may read).

Field	Description
	Selects the value that is forced into the channel output when the initialization occurs.
	0 The initialization value is 0.
	1 The initialization value is 1.
2 CH2OI	Channel 2 Output Initialization Value
	Selects the value that is forced into the channel output when the initialization occurs.
	0 The initialization value is 0.
	1 The initialization value is 1.
1 CH1OI	Channel 1 Output Initialization Value
ormor	Selects the value that is forced into the channel output when the initialization occurs.
	0 The initialization value is 0.
	1 The initialization value is 1.
0 CH0OI	Channel 0 Output Initialization Value
011001	Selects the value that is forced into the channel output when the initialization occurs.
	0 The initialization value is 0.
	1 The initialization value is 1.
2 CH2OI 1 CH1OI 0 CH0OI	 Channel 2 Output Initialization Value Selects the value that is forced into the channel output when the initialization occurs. 0 The initialization value is 0. 1 The initialization value is 1. Channel 1 Output Initialization Value Selects the value that is forced into the channel output when the initialization occurs. 0 The initialization value is 0. 1 The initialization value is 0. 1 The initialization value is 1. Channel 0 Output Initialization Value Selects the value that is forced into the channel output when the initialization occurs. 0 The initialization value is 1. Channel 0 Output Initialization Value Selects the value that is forced into the channel output when the initialization occurs. 0 The initialization value is 1. Channel 1 Output Initialization value is 0. 1 The initialization value is 1.

FTMx_OUTINIT field descriptions (continued)

39.3.13 Output Mask (FTMx_OUTMASK)

This register provides a mask for each FTM channel. The mask of a channel determines if its output responds (that is, it is masked or not) when a match occurs. This feature is used for BLDC control where the PWM signal is presented to an electric motor at specific times to provide electronic commutation.

Any write to the OUTMASK register, stores the value in its write buffer. The register is updated with the value of its write buffer according to PWM Synchronization.

Figure 39-254. FTM Counter Overflow in Down Counting for Quadrature Decoder Mode

39.4.25.1 Quadrature Decoder Boundary Conditions

The following figures are examples of motor jittering which causes the FTM counter transitions as indicated by these figures. It is expected to observe these behaviors in motor position control applications.

Time

Figure 39-255. Motor Position Jittering in a Mid Count Value

Functional description

Updates to the time compensation register will not take effect until the next time the time seconds register increments and provided the previous compensation interval has expired. When the compensation interval is set to other than once a second then the compensation is applied in the first second interval and the remaining second intervals receive no compensation.

Compensation is disabled by configuring the time compensation register to zero.

43.3.4 Time alarm

The time alarm register, SR[TAF] and IER[TAIE] allow the RTC to generate an interrupt at a predefined time. The 32-bit time alarm register is compared with the 32-bit time seconds register each time it increments. The SR[TAF] will set when the time alarm register equals the time seconds register and the time seconds register increments.

The time alarm flag is cleared by writing the time alarm register. This will usually be the next alarm value, although writing a value that is less than the time seconds register (such as zero) will prevent the time alarm flag from setting again. The time alarm flag cannot otherwise be disabled, although the interrupt it generates is enabled or disabled by IER[TAIE].

43.3.5 Update mode

The update mode bit (CR[UM]) in the control register configures software write access to the time counter enable (SR[TCE]) bit. When CR[UM] is clear, SR[TCE] can only be written when the LR[SRL] bit is set. When CR[UM] is set, the SR[TCE] can also be written when SR[TCE] is clear or when SR[TIF] or SR[TOF] are set. This allows the time seconds and prescaler registers to be initialized whenever time is invalidated, while preventing the time seconds and prescaler registers from being changed on the fly. When LR[SRL] is set, the CR[UM] bit has no effect on SR[TCE].

43.3.6 Register lock

The lock register can be used to block write accesses to certain registers until the next VBAT POR or software reset. Locking the control register will disable the software reset. Locking the lock register will block future updates to the lock register.

Write accesses to a locked register are ignored and do not generate a bus error.

44.3.5 Ethernet Control Register (ENET_ECR)

ECR is a read/write user register, though hardware may alter fields in this register as well. It controls many of the high level features of the Ethernet MAC, including legacy FEC support through the EN1588 bit.

Address: ENET_ECR is 400C_0000h base + 24h offset = 400C_0024h

ENET_ECR field descriptions

Field	Description
31–28 Reserved	This read-only field is reserved and always has the value one.
27–8 Reserved	This read-only field is reserved and always has the value zero.
7	STOPEN Signal Control
STOPEN	Controls device behavior in doze mode.
	In doze mode, if this bit is set then all the clocks of the ENET assembly are disabled (except the RMII/MII clock). Doze mode is like a conditional stop mode entry for the ENET assembly depending on ECR[STOPEN].
	NOTE: If module clocks are gated in this mode, the module can still wake the system after receiving a magic packet in stop mode. MAGICEN must be set prior to entering sleep/stop mode.
6	Debug enable
DBGEN	Enables the MAC to enter hardware freeze mode when the device enters debug mode.
	0 MAC continues operation in debug mode.
	1 MAC enters hardware freeze mode when the processor is in debug mode.
5 Reserved	This read-only field is reserved and always has the value zero.
4 EN1588	EN1588 enable
	Enables enhanced functionality of the MAC.

Table continues on the next page ...

46.4.5 USBDCD_TIMER1

Address: USBDCD_TIMER1 is 4003_5000h base + 14h offset = 4003_5014h

USBDCD_TIMER1 field descriptions

Field	Description
31–26 Reserved	This read-only field is reserved and always has the value zero.
25–16 TDCD_DBNC	Time Period to Debounce D+ Signal Sets the amount of time (in ms) to debounce the D+ signal during the data pin contact detection phase (while IDP_SRC and RDM_DWN are enabled). Valid values are 1-1023, but the USB Battery Charging Specification requires a minimum value of 10 ms.
15–10 Reserved	This read-only field is reserved and always has the value zero.
9–0 TVDPSRC_ON	Time Period Comparator Enabled Sets the amount of time (in ms) that VDP_SRC, IDM_SINK, and the D-/VDAT_REF comparator are enabled and connected to the D+/D- lines during the charging port detection phase of the sequence. Valid values are 1-1023, but the USB Battery Charging Specification requires a minimum value of 40 ms.

46.4.6 USBDCD_TIMER2

TIMER2 contains timing parameters. Note that register values can be written that are not compliant with the USB Battery Charging Specification v1.1, so care should be taken when overwriting the default values.

Address: USBDCD_TIMER2 is 4003_5000h base + 18h offset = 4003_5018h

USBDCD_TIMER2 field descriptions

Field	Description
31–26 Reserved	This read-only field is reserved and always has the value zero.

Table continues on the next page ...

51.3.2 UART Baud Rate Registers: Low (UARTx_BDL)

This register, along with the BDH register, controls the prescale divisor for UART baud rate generation. To update the 13-bit baud rate setting (SBR[12:0]), first write to BDH to buffer the high half of the new value and then write to BDL. The working value in BDH does not change until BDL is written. BDL is reset to a non-zero value, but after reset the baud rate generator remains disabled until the first time the receiver or transmitter is enabled (C2[RE] or C2[TE] bits are set)

UARTx_BDL field descriptions

Field	Description			
7–0 SBB	UART Baud Rate Bits			
ODIT	The baud rate for the UART is determined by these 13 bits. See Baud rate generation for details			
	NOTE: The baud rate generator is disabled until the C2[TE] bit or the C2[RE] bit is set for the first time after reset. The baud rate generator is disabled when SBR = 0.			
	NOTE: Writing to BDH has no effect without writing to BDL, since writing to BDH puts the data in a temporary location until BDL is written.			
	NOTE: When the 1/32 narrow pulse width is selected for infrared (IrDA), the baud rate bits must be even, the least significant bit is 0. Refer to MODEM register.			

Overview

card, which is also known as SDIO card, provides high-speed data I/O with low power consumption for mobile electronic devices. For the sake of simplicity, the figure does not show cards with reduced size or mini cards.

Figure 52-1. System connection of the SDHC

CE-ATA is a hard drive interface that is optimized for embedded applications storage. The device is layered on the top of the MMC protocol stack using the same physical interface. The interface electrical and signaling definition is defined like that in the MMC specification. Refer to the CE-ATA specification for more details.

- Check errors correspond to bits 1-4.
- Set bits 1-4 corresponding to detected errors.
- Clear bits 1-4 corresponding to detected errors.
- 3. Before reading the auto CMD12 error status bit 7.
 - Set bit 7 to 1 if there is a command that can't be issued.
 - Clear bit 7 if there is no command to issue.

The timing for generating the auto CMD12 error and writing to the command register are asynchronous. After that, bit 7 shall be sampled when the driver is not writing to the command register. So it is suggested to read this register only when the IRQSTAT[AC12E] is set. An Auto CMD12 error interrupt is generated when one of the error bits (0-4) is set to 1. The command not issued by auto CMD12 error does not generate an interrupt.

Address: SDHC_AC12ERR is 400B_1000h base + 3Ch offset = 400B_103Ch

Field	Description
31–8 Reserved	This read-only field is reserved and always has the value zero.

Table continues on the next page ...

53.4.1.2 Network mode

Network mode creates a time division multiplexed (TDM) network, such as a TDM CODEC network or a network of DSPs. In continuous clock mode, a frame sync occurs at the beginning of each frame. In this mode, the frame is divided into more than one time slot. During each time slot, one data word can be transferred. Each time slot is then assigned to an appropriate codec or DSP on the network. The processor can be a master device that controls its own private network, or a slave device that is connected to an existing TDM network and occupies a few time slots.

The frame sync signal indicates the beginning of a new data frame. Each data frame is divided into time slots and transmission and/or reception of one data word can occur in each time slot (rather than in just the frame sync time slot as in normal mode).

The frame rate dividers, controlled by the DC bits, select two to thirty-two time slots per frame. The length of the frame is determined by:

- Period of the serial bit clock (PSR, PM bits for internal clock, or the frequency of the external clock on the STCK port)
- Number of bits per sample (WL bits)
- Number of time slots per frame (DC bits)

In network mode, data can be transmitted in any time slot. The distinction of the network mode is that each time slot is identified with respect to the frame sync (data word time). This time slot identification allows the option of transmitting data during the time slot by

54.1.2.1 Run mode

In run mode, the GPIO operates normally.

54.1.2.2 Wait mode

In wait mode, the GPIO operates normally.

54.1.2.3 Stop mode

The GPIO is disabled in stop mode, although the pins retain their state.

54.1.2.4 Debug mode

In debug mode, the GPIO operates normally.

54.1.3 GPIO signal descriptions

Table 54-1. GPIO signal descriptions

Signal	Description	I/O
PORTA[31:0]	General purpose input/output	I/O
PORTB[31:0]	General purpose input/output	I/O
PORTC[31:0]	General purpose input/output	I/O
PORTD[31:0]	General purpose input/output	I/O
PORTE[31:0]	General purpose input/output	I/O

NOTE

Not all pins within each port are implemented on each device. Refer to the Signal Multiplexing chapter for the number of GPIO ports available in the device.

GPIOx_PTOR field descriptions (continued)

Field	Description
	0 Corresponding bit in PDORn does not change.
	1 Corresponding bit in PDORn is set to the inverse of its existing logic state.

54.2.5 Port Data Input Register (GPIOx_PDIR)

Addresses: GPIOA_PDIR is 400F_F000h base + 10h offset = 400F_F010h

GPIOB_PDIR is 400F_F040h base + 10h offset = 400F_F050h

GPIOC_PDIR is 400F_F080h base + 10h offset = 400F_F090h

GPIOD_PDIR is 400F_F0C0h base + 10h offset = 400F_F0D0h

GPIOE_PDIR is 400F_F100h base + 10h offset = 400F_F110h

GPIOx_PDIR field descriptions

Field	Description
31–0 PDI	Port Data Input
	Unimplemented pins for a particular device read as zero. Pins that are not configured for a digital function read as zero. If the corresponding Port Control and Interrupt module is disabled, then that Port Data Input Register does not update.
	0 Pin logic level is logic zero or is configured for use by digital function.1 Pin logic level is logic one.

54.2.6 Port Data Direction Register (GPIOx_PDDR)

The PDDR configures the individual port pins for input or output.

