

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, SD, SPI, UART/USART
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	104
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 46x16b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mk10dn512zvlq10

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.1.1 Example

This is an example of an operating requirement:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	0.9	1.1	V

3.2 Definition: Operating behavior

An *operating behavior* is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.

3.2.1 Example

This is an example of an operating behavior:

Symbol	Description	Min.	Max.	Unit
I _{WP}	Digital I/O weak pullup/ pulldown current	10	130	μA

3.3 Definition: Attribute

An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

3.3.1 Example

This is an example of an attribute:

Symbol	Description	Min.	Max.	Unit
CIN_D	Input capacitance: digital pins	—	7	pF

5.2.3 Voltage and current operating behaviors Table 4. Voltage and current operating behaviors

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
V _{OH}	Output high voltage — high drive strength					
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -9mA	$V_{DD} - 0.5$	—	—	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -3mA	V _{DD} – 0.5	—	—	V	
	Output high voltage — low drive strength					
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -2mA	V _{DD} – 0.5	—	_	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -0.6mA	V _{DD} – 0.5	—	_	v	
I _{OHT}	Output high current total for all ports	_		100	mA	
V _{OL}	Output low voltage — high drive strength					2
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 9mA	_	_	0.5	v	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 3mA	_	—	0.5	v	
	Output low voltage — low drive strength					
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 2mA	_	_	0.5	v	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 0.6mA	_	—	0.5	v	
I _{OLT}	Output low current total for all ports	_		100	mA	
I _{INA}	Input leakage current, analog pins and digital pins configured as analog inputs					3, 4
	• $V_{SS} \le V_{IN} \le V_{DD}$					
	All pins except EXTAL32, XTAL32, EXTAL XTAL	_	0.002	0.5	μA	
	• EXTAL (PTA18) and XTAL (PTA19)	_	0.004	1.5	μA	
	• EXTAL32, XTAL32	_	0.075	10	μA	
I _{IND}	Input leakage current, digital pins					4, 5
	• $V_{SS} \le V_{IN} \le V_{IL}$					
	All digital pins	—	0.002	0.5	μA	
	• V _{IN} = V _{DD}					
	All digital pins except PTD7	-	0.002	0.5	μA	
	• PTD7	—	0.004	1	μA	
I _{IND}	Input leakage current, digital pins					4, 5, 6
	• $V_{IL} < V_{IN} < V_{DD}$					
	• V _{DD} = 3.6 V	_	18	26	μA	
	• V _{DD} = 3.0 V	_	12	49	μA	
	• V _{DD} = 2.5 V	_	8	13	μΑ	
	• V _{DD} = 1.7 V	-	3	6	μA	

Table continues on the next page...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_VBAT}	Average current when CPU is not accessing RTC registers					10
	• @ 1.8V					
	• @ -40 to 25°C	_	0.71	0.81	μA	
	• @ 70°C	_	1.01	1.3	μA	
	• @ 105°C	_	2.82	4.3	μA	
	• @ 3.0V					
	• @ -40 to 25°C	_	0.84	0.94	μA	
	• @ 70°C	_	1.17	1.5	μA	
	• @ 105°C	—	3.16	4.6	μA	

Table 6. Power consumption operating behaviors (continued)

- 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.
- 100MHz core and system clock, 50MHz bus and FlexBus clock, and 25MHz flash clock . MCG configured for FEI mode. All peripheral clocks disabled.
- 3. 100MHz core and system clock, 50MHz bus and FlexBus clock, and 25MHz flash clock. MCG configured for FEI mode. All peripheral clocks enabled.
- 4. Max values are measured with CPU executing DSP instructions.
- 5. 25MHz core and system clock, 25MHz bus clock, and 12.5MHz FlexBus and flash clock. MCG configured for FEI mode.
- 6. 2 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. Code executing from flash.
- 7. 2 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks enabled but peripherals are not in active operation. Code executing from flash.
- 8. 2 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled.
- Data reflects devices with 128 KB of RAM. For devices with 64 KB of RAM, power consumption is reduced by 2 μA. For devices with 32 KB of RAM, power consumption is reduced by 3 μA.
- 10. Includes 32kHz oscillator current and RTC operation.

5.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- MCG in FBE mode for 50 MHz and lower frequencies. MCG in FEE mode at greater than 50 MHz frequencies.
- No GPIOs toggled
- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFL

- 2. $V_{DD} = 3.3 \text{ V}, T_A = 25 \text{ °C}, f_{OSC} = 12 \text{ MHz} \text{ (crystal)}, f_{SYS} = 96 \text{ MHz}, f_{BUS} = 48 \text{ MHz}$
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method

5.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.freescale.com.
- 2. Perform a keyword search for "EMC design."

5.2.8 Capacitance attributes

Table 8. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN_A}	Input capacitance: analog pins	_	7	pF
C _{IN_D}	Input capacitance: digital pins	—	7	pF

5.3 Switching specifications

5.3.1 Device clock specifications

Table 9. Device clock specifications

Symbol	Description	Min.	Max.	Unit	Notes	
	Normal run mode					
f _{SYS}	System and core clock		100	MHz		
f _{BUS}	Bus clock	_	50	MHz		
FB_CLK	FlexBus clock	_	50	MHz		
f _{FLASH}	Flash clock	_	25	MHz		
f _{LPTMR}	LPTMR clock	_	25	MHz		

5.3.2 General switching specifications

These general purpose specifications apply to all signals configured for GPIO, UART, CAN, CMT, and I²C signals.

Symbol	Description	Min.	Max.	Unit	Notes
	GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	_	Bus clock cycles	1, 2
	GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) — Asynchronous path	100	—	ns	3
	GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) — Asynchronous path	16	_	ns	3
	External reset pulse width (digital glitch filter disabled)	100	—	ns	3
	Mode select (EZP_CS) hold time after reset deassertion	2	_	Bus clock cycles	
	Port rise and fall time (high drive strength)				4
	Slew disabled				
	• $1.71 \le V_{DD} \le 2.7V$	—	12	ns	
	• $2.7 \le V_{DD} \le 3.6V$	—	6	ns	
	Slew enabled				
	• $1.71 \le V_{DD} \le 2.7V$	—	36	ns	
	• $2.7 \le V_{DD} \le 3.6V$	—	24	ns	
	Port rise and fall time (low drive strength)				5
	Slew disabled				
	• $1.71 \le V_{DD} \le 2.7V$	—	12	ns	
	• $2.7 \le V_{DD} \le 3.6V$	—	6	ns	
	Slew enabled				
	• 1.71 ≤ V _{DD} ≤ 2.7V	—	36	ns	
	• $2.7 \le V_{DD} \le 3.6V$	—	24	ns	

Table 10. General switching specifications

- This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be recognized in that case.
- 2. The greater synchronous and asynchronous timing must be met.
- 3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and VLLSx modes.
- 4. 75 pF load
- 5. 15 pF load

5.4 Thermal specifications

6.1.2 JTAG electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
J1	TCLK frequency of operation			MHz
	Boundary Scan	0	10	
	JTAG and CJTAG	0	25	
	Serial Wire Debug	0	50	
J2	TCLK cycle period	1/J1		ns
J3	TCLK clock pulse width			
	Boundary Scan	50	_	ns
	JTAG and CJTAG	20	_	ns
	Serial Wire Debug	10	_	ns
J4	TCLK rise and fall times	—	3	ns
J5	Boundary scan input data setup time to TCLK rise	20	—	ns
J6	Boundary scan input data hold time after TCLK rise	0	_	ns
J7	TCLK low to boundary scan output data valid	_	25	ns
J8	TCLK low to boundary scan output high-Z	—	25	ns
J9	TMS, TDI input data setup time to TCLK rise	8		ns
J10	TMS, TDI input data hold time after TCLK rise	1		ns
J11	TCLK low to TDO data valid	—	17	ns
J12	TCLK low to TDO high-Z		17	ns
J13	TRST assert time	100		ns
J14	TRST setup time (negation) to TCLK high	8		ns

Table 14. JTAG full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
J1	TCLK frequency of operation			MHz
	Boundary Scan	0	10	
	JTAG and CJTAG	0	20	
	Serial Wire Debug	0	40	
J2	TCLK cycle period	1/J1	—	ns

Table continues on the next page ...

Peripheral operating requirements and behaviors

Symbol	Description	Min.	Max.	Unit
J3	TCLK clock pulse width			
	Boundary Scan	50	—	ns
	JTAG and CJTAG	25	_	ns
	Serial Wire Debug	12.5	_	ns
J4	TCLK rise and fall times	_	3	ns
J5	Boundary scan input data setup time to TCLK rise	20		ns
J6	Boundary scan input data hold time after TCLK rise	0		ns
J7	TCLK low to boundary scan output data valid		25	ns
J8	TCLK low to boundary scan output high-Z		25	ns
J9	TMS, TDI input data setup time to TCLK rise	8		ns
J10	TMS, TDI input data hold time after TCLK rise	1.4		ns
J11	TCLK low to TDO data valid		22.1	ns
J12	TCLK low to TDO high-Z		22.1	ns
J13	TRST assert time	100		ns
J14	TRST setup time (negation) to TCLK high	8		ns

Table 14. JTAG full voltage range electricals (continued)

Figure 5. Test clock input timing

Peripheral operating requirements and behaviors

6.2 System modules

There are no specifications necessary for the device's system modules.

6.3 Clock modules

6.3.1 MCG specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{ints_ft}	Internal reference frequency (slow clock) — factory trimmed at nominal VDD and 25 °C	_	32.768	_	kHz	
f _{ints_t}	Internal reference frequency (slow clock) — user trimmed — over fixed voltage and temperature range of 0–70°C	31.25	_	38.2	kHz	
$\Delta_{fdco_res_t}$	Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM and SCFTRIM	_	± 0.3	± 0.6	%f _{dco}	1
∆f _{dco_t}	Total deviation of trimmed average DCO output frequency over fixed voltage and temperature range of 0–70°C	_	± 1.5	± 4.5	%f _{dco}	1
f _{intf_ft}	Internal reference frequency (fast clock) — factory trimmed at nominal VDD and 25°C	_	4	_	MHz	
f _{intf_t}	Internal reference frequency (fast clock) — user trimmed at nominal VDD and 25 °C	3	—	5	MHz	
f _{loc_low}	Loss of external clock minimum frequency — RANGE = 00	(3/5) x f _{ints_t}	_	—	kHz	
f _{loc_high}	Loss of external clock minimum frequency — RANGE = 01, 10, or 11	(16/5) x f _{ints_t}			kHz	
	FI	L				
f _{fll_ref}	FLL reference frequency range	31.25		39.0625	kHz	

Table 15. MCG specifications

Table continues on the next page...

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{dco}	DCO output	Low range (DRS=00)	20	20.97	25	MHz	2, 3
	frequency range	$640 imes f_{fll_ref}$					
		Mid range (DRS=01)	40	41.94	50	MHz	
		$1280 \times f_{fll_ref}$					
		Mid-high range (DRS=10)	60	62.91	75	MHz	
		$1920 \times f_{fll_ref}$					
		High range (DRS=11)	80	83.89	100	MHz	
		$2560 \times f_{fll_ref}$					
f _{dco_t_DMX32}	DCO output	Low range (DRS=00)	—	23.99	—	MHz	4, 5
	frequency	$732 \times f_{fll_ref}$					
		Mid range (DRS=01)	_	47.97	—	MHz	
		$1464 \times f_{fll_ref}$					
		Mid-high range (DRS=10)	—	71.99	—	MHz	
		$2197 \times f_{fll_ref}$					
		High range (DRS=11)	—	95.98	—	MHz	
		$2929 \times f_{fll_ref}$					
J _{cyc_fll}	FLL period jitter		_	180	_	ps	
	 f_{VCO} = 48 Mł f_{VCO} = 98 Mł 	Hz Hz	_	150	_		
t _{fll_acquire}	FLL target frequen	cy acquisition time			1	ms	6
		P	L				
f _{vco}	VCO operating free	quency	48.0	—	100	MHz	
I _{pll}	PLL operating curr PLL @ 96 M 2 MHz, VDIV	ent Hz (f _{osc_hi_1} = 8 MHz, f _{pll_ref} = / multiplier = 48)	_	1060	_	μA	7
I _{pll}	PLL operating curr PLL @ 48 M 2 MHz, VDIV	ent Hz (f _{osc_hi_1} = 8 MHz, f _{pll_ref} = / multiplier = 24)	_	600	—	μA	7
f _{pll_ref}	PLL reference freq	uency range	2.0		4.0	MHz	
J _{cyc_pll}	PLL period jitter (F	IMS)					8
	• f _{vco} = 48 MH	Z	—	120	_	ps	
	• f _{vco} = 100 M	Hz	_	50	_	ps	
J _{acc_pll}	PLL accumulated j	itter over 1µs (RMS)					8
	• f _{vco} = 48 MH	Z	—	1350	_	ps	
	• f _{vco} = 100 M	Hz	_	600	_	ps	
D _{lock}	Lock entry frequen	cy tolerance	± 1.49		± 2.98	%	
D _{unl}	Lock exit frequenc	y tolerance	± 4.47		± 5.97	%	
t _{pll_lock}	Lock detector dete	ction time			150 × 10 ⁻⁶ + 1075(1/ f _{pll_ref})	S	9

6.6.1 ADC electrical specifications

The 16-bit accuracy specifications listed in Table 27 and Table 28 are achievable on the differential pins ADCx_DP0, ADCx_DM0, ADCx_DP1, ADCx_DM1, ADCx_DP3, and ADCx_DM3.

The ADCx_DP2 and ADCx_DM2 ADC inputs are connected to the PGA outputs and are not direct device pins. Accuracy specifications for these pins are defined in Table 29 and Table 30.

All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications.

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V _{DDA}	Supply voltage	Absolute	1.71	—	3.6	V	
ΔV_{DDA}	Supply voltage	Delta to V _{DD} (V _{DD} - V _{DDA})	-100	0	+100	mV	2
ΔV_{SSA}	Ground voltage	Delta to V_{SS} (V_{SS} - V_{SSA})	-100	0	+100	mV	2
V _{REFH}	ADC reference voltage high		1.13	V _{DDA}	V _{DDA}	V	
V _{REFL}	ADC reference voltage low		V _{SSA}	V _{SSA}	V _{SSA}	V	
V _{ADIN}	Input voltage	16-bit differential mode	VREFL		31/32 * VREFH	V	
		All other modes	VREFL	—	VREFH		
C _{ADIN}	Input capacitance	16-bit mode	_	8	10	pF	
		 8-bit / 10-bit / 12-bit modes 	_	4	5		
R _{ADIN}	Input resistance		_	2	5	kΩ	
R _{AS}	Analog source resistance	13-bit / 12-bit modes f _{ADCK} < 4 MHz	_	_	5	kΩ	3
f _{ADCK}	ADC conversion clock frequency	≤ 13-bit mode	1.0		18.0	MHz	4
f _{ADCK}	ADC conversion clock frequency	16-bit mode	2.0	_	12.0	MHz	4
C _{rate}	ADC conversion	≤ 13-bit modes					5
	rate	No ADC hardware averaging	20.000	—	818.330	Ksps	
		Continuous conversions enabled, subsequent conversion time					

6.6.1.1 16-bit ADC operating conditions

 Table 27.
 16-bit ADC operating conditions

Table continues on the next page ...

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
	ADC	• ADLPC = 1, ADHSC = 0	1.2	2.4	3.9	MHz	t _{ADACK} = 1/
	asynchronous clock source	• ADLPC = 1, ADHSC = 1	2.4	4.0	6.1	MHz	† _{ADACK}
f _{ADACK}		• ADLPC = 0, ADHSC = 0	3.0	5.2	7.3	MHz	
		• ADLPC = 0, ADHSC = 1	4.4	6.2	9.5	MHz	
	Sample Time	See Reference Manual chapter	for sample t	times			
TUE	Total unadjusted	12-bit modes	_	±4	±6.8	LSB ⁴	5
	error	 <12-bit modes 	—	±1.4	±2.1		
DNL	Differential non-	12-bit modes	_	±0.7	-1.1 to +1.9	LSB ⁴	5
	linearity				-0.3 to 0.5		
		 <12-bit modes 	—	±0.2			
INL	Integral non-	12-bit modes	_	±1.0	-2.7 to +1.9	LSB ⁴	5
	linearity				-0.7 to +0.5		
		 <12-bit modes 	—	±0.5			
E _{FS}	Full-scale error	12-bit modes	_	-4	-5.4	LSB ⁴	V _{ADIN} =
		 <12-bit modes 	—	-1.4	-1.8		V _{DDA}
	a						5
EQ	Quantization	16-bit modes	_	-1 to 0	-	LSB ⁴	
		 ≤13-bit modes 	_	_	±0.5		
ENOB	Effective number	16-bit differential mode					6
	of bits	• Avg = 32	12.8	14.5	_	bits	
		• Avg = 4	11.9	13.8	_	bits	
		16-bit single-ended mode					
		• Avg = 32	10.0	10.0		b 14 -	
		• Avg = 4	12.2	13.9	_	DIts	
	Cirral to raise		11.4	13.1		DItS	
SINAD	plus distortion	See ENOB	6.02	2 × ENOB +	1.76	dB	
THD	Total harmonic	16-bit differential mode					7
	distortion	• Avg = 32	—	-94	—	dB	
		16-bit single-ended mode					
		• Avg = 32	_	-85	-	dB	
		7.vg = 02					
SFDR	Spurious free	16-bit differential mode					7
	- Julian o rango	• Avg = 32	82	95	-	dB	
		16-bit single-ended mode	_			.—	
		• Avg = 32	78	90		dB	

Table 28. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

Table continues on the next page ...

Peripheral operating requirements and behaviors

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
EIL	Input leakage error			I _{In} × R _{AS}		mV	I _{In} = leakage current (refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	mV/°C	
V _{TEMP25}	Temp sensor voltage	25 °C	706	716	726	mV	

Table 28. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

- 1. All accuracy numbers assume the ADC is calibrated with V_{REFH} = V_{DDA}
- Typical values assume V_{DDA} = 3.0 V, Temp = 25°C, f_{ADCK} = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power). For lowest power operation the ADLPC bit must be set, the HSC bit must be clear with 1 MHz ADC conversion clock speed.
- 4. 1 LSB = $(V_{REFH} V_{REFL})/2^N$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
- 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.

6.6.3.2 12-bit DAC operating behaviors Table 33. 12-bit DAC operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA_DACL}	Supply current — low-power mode	_	_	150	μΑ	
I _{DDA_DACH}	Supply current — high-speed mode	_	—	700	μΑ	
tDACLP	Full-scale settling time (0x080 to 0xF7F) — low-power mode	_	100	200	μs	1
t _{DACHP}	Full-scale settling time (0x080 to 0xF7F) — high-power mode	—	15	30	μs	1
t _{CCDACLP}	Code-to-code settling time (0xBF8 to 0xC08) — low-power mode and high-speed mode	_	0.7	1	μs	1
V _{dacoutl}	DAC output voltage range low — high-speed mode, no load, DAC set to 0x000	—	—	100	mV	
V _{dacouth}	DAC output voltage range high — high- speed mode, no load, DAC set to 0xFFF	V _{DACR} -100	—	V _{DACR}	mV	
INL	Integral non-linearity error — high speed mode	—	—	±8	LSB	2
DNL	Differential non-linearity error — V _{DACR} > 2 V	—	—	±1	LSB	3
DNL	Differential non-linearity error — V _{DACR} = VREF_OUT	—	—	±1	LSB	4
V _{OFFSET}	Offset error	_	±0.4	±0.8	%FSR	5
E _G	Gain error	_	±0.1	±0.6	%FSR	5
PSRR	Power supply rejection ratio, $V_{DDA} \ge 2.4 \text{ V}$	60	—	90	dB	
T _{CO}	Temperature coefficient offset voltage	_	3.7	_	μV/C	6
T _{GE}	Temperature coefficient gain error	_	0.000421	_	%FSR/C	
Rop	Output resistance load = $3 \text{ k}\Omega$	_	—	250	Ω	
SR	Slew rate -80h \rightarrow F7Fh \rightarrow 80h				V/µs	
	 High power (SP_{HP}) 	1.2	1.7	—		
	Low power (SP _{LP})	0.05	0.12	—		
СТ	Channel to channel cross talk	_	—	-80	dB	
BW	3dB bandwidth				kHz	
	 High power (SP_{HP}) 	550	_	—		
	Low power (SP _{LP})	40	_	—		

1. Settling within ±1 LSB

- 2. The INL is measured for 0 + 100 mV to V_{DACR} –100 mV
- 3. The DNL is measured for 0 + 100 mV to V_{DACR} –100 mV
- 4. The DNL is measured for 0 + 100 mV to V_{DACR} –100 mV with V_{DDA} > 2.4 V
- 5. Calculated by a best fit curve from V_{SS} + 100 mV to V_{DACR} 100 mV
- V_{DDA} = 3.0 V, reference select set for V_{DDA} (DACx_CO:DACRFS = 1), high power mode (DACx_CO:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device

Figure 24. SDHC timing

6.8.7 I²S switching specifications

This section provides the AC timings for the I²S in master (clocks driven) and slave modes (clocks input). All timings are given for non-inverted serial clock polarity (TCR[TSCKP] = 0, RCR[RSCKP] = 0) and a non-inverted frame sync (TCR[TFSI] = 0, RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (I2S_BCLK) and/or the frame sync (I2S_FS) shown in the figures below.

Num	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
S1	I2S_MCLK cycle time	2 x t _{SYS}		ns
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period
S3	I2S_BCLK cycle time	5 x t _{SYS}		ns
S4	I2S_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_BCLK to I2S_FS output valid		15	ns
S6	I2S_BCLK to I2S_FS output invalid	-2.5		ns
S7	I2S_BCLK to I2S_TXD valid	_	15	ns
S8	I2S_BCLK to I2S_TXD invalid	-3	—	ns
S9	I2S_RXD/I2S_FS input setup before I2S_BCLK	20	—	ns
S10	I2S_RXD/I2S_FS input hold after I2S_BCLK	0	—	ns

Table 44. I²S master mode timing (limited voltage range)

7 Dimensions

7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to freescale.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
144-pin LQFP	98ASS23177W
144-pin MAPBGA	98ASA00222D

8 Pinout

8.1 K10 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

144 LQFP	144 Map Bga	Pin Name	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
-	L5	RESERVED	RESERVED	RESERVED								
_	M5	NC	NC	NC								
-	A10	NC	NC	NC								
_	B10	NC	NC	NC								
-	C10	NC	NC	NC								
1	D3	PTE0	ADC1_SE4a	ADC1_SE4a	PTE0	SPI1_PCS1	UART1_TX	SDHC0_D1		I2C1_SDA		
2	D2	PTE1/ LLWU_P0	ADC1_SE5a	ADC1_SE5a	PTE1/ LLWU_P0	SPI1_SOUT	UART1_RX	SDHC0_D0		I2C1_SCL		
3	D1	PTE2/ LLWU_P1	ADC1_SE6a	ADC1_SE6a	PTE2/ LLWU_P1	SPI1_SCK	UART1_CTS_ b	SDHC0_DCLK				
4	E4	PTE3	ADC1_SE7a	ADC1_SE7a	PTE3	SPI1_SIN	UART1_RTS_ b	SDHC0_CMD				
5	E5	VDD	VDD	VDD								
6	F6	VSS	VSS	VSS								

Pinout

144 LQFP	144 Map	Pin Name	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
7	E3	PTE4/	DISABLED		PTE4/	SPI1_PCS0	UART3_TX	SDHC0_D3				
8	F2	LLWU_P2	DISABLED		PTF5	SPI1 PCS2	UART3 BX	SDHC0 D2				
9	F1	PTE6	DISABLED		PTE6	SPI1 PCS3	UART3 CTS	1250 MCLK		12S0 CLKIN		
		1120	DIGNBEED		1120		b	LOU_MOLIY				
10	F4	PTE7	DISABLED		PTE7		UART3_RTS_ b	12S0_RXD				
11	F3	PTE8	DISABLED		PTE8		UART5_TX	I2S0_RX_FS				
12	F2	PTE9	DISABLED		PTE9		UART5_RX	I2S0_RX_ BCLK				
13	F1	PTE10	DISABLED		PTE10		UART5_CTS_ b	I2S0_TXD				
14	G4	PTE11	DISABLED		PTE11		UART5_RTS_ b	I2S0_TX_FS				
15	G3	PTE12	DISABLED		PTE12			I2S0_TX_ BCLK				
16	E6	VDD	VDD	VDD								
17	F7	VSS	VSS	VSS								
18	H1	PTE16	ADC0_SE4a	ADC0_SE4a	PTE16	SPI0_PCS0	UART2_TX	FTM_CLKIN0		FTM0_FLT3		
19	H2	PTE17	ADC0_SE5a	ADC0_SE5a	PTE17	SPI0_SCK	UART2_RX	FTM_CLKIN1		LPT0_ALT3		
20	G1	PTE18	ADC0_SE6a	ADC0_SE6a	PTE18	SPI0_SOUT	UART2_CTS_ b	I2C0_SDA				
21	G2	PTE19	ADC0_SE7a	ADC0_SE7a	PTE19	SPI0_SIN	UART2_RTS_ b	I2C0_SCL				
22	H3	VSS	VSS	VSS								
23	J1	ADC0_DP1	ADC0_DP1	ADC0_DP1								
24	J2	ADC0_DM1	ADC0_DM1	ADC0_DM1								
25	K1	ADC1_DP1	ADC1_DP1	ADC1_DP1								
26	K2	ADC1_DM1	ADC1_DM1	ADC1_DM1								
27	L1	PGA0_DP/ ADC0_DP0/ ADC1_DP3	PGA0_DP/ ADC0_DP0/ ADC1_DP3	PGA0_DP/ ADC0_DP0/ ADC1_DP3								
28	L2	PGA0_DM/ ADC0_DM0/ ADC1_DM3	PGA0_DM/ ADC0_DM0/ ADC1_DM3	PGA0_DM/ ADC0_DM0/ ADC1_DM3								
29	M1	PGA1_DP/ ADC1_DP0/ ADC0_DP3	PGA1_DP/ ADC1_DP0/ ADC0_DP3	PGA1_DP/ ADC1_DP0/ ADC0_DP3								
30	M2	PGA1_DM/ ADC1_DM0/ ADC0_DM3	PGA1_DM/ ADC1_DM0/ ADC0_DM3	PGA1_DM/ ADC1_DM0/ ADC0_DM3								
31	H5	VDDA	VDDA	VDDA								
32	G5	VREFH	VREFH	VREFH								
33	G6	VREFL	VREFL	VREFL								
34	H6	VSSA	VSSA	VSSA								

144 LQFP	144 Map Bga	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
143	C2	PTD14	DISABLED		PTD14	SPI2_SIN		SDHC0_D6		FB_A22		
144	C1	PTD15	DISABLED		PTD15	SPI2_PCS1		SDHC0_D7		FB_A23		

8.2 K10 Pinouts

The below figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section.

Pinout

Figure 27. K10 144 LQFP Pinout Diagram

Revision History

	1	2	3	4	5	6	7	8	9	10	11	12	
A	PTD7	PTD6	PTD5	PTD4	PTD0	PTC16	PTC12	PTC8	PTC4	NC	PTC3	PTC2	А
в	PTD12	PTD11	PTD10	PTD3	PTC19	PTC15	PTC11	PTC7	PTD9	NC	PTC1	PTC0	в
с	PTD15	PTD14	PTD13	PTD2	PTC18	PTC14	PTC10	PTC6	PTD8	NC	PTB23	PTB22	с
D	PTE2	PTE1	PTE0	PTD1	PTC17	PTC13	PTC9	PTC5	PTB21	PTB20	PTB19	PTB18	D
E	PTE6	PTE5	PTE4	PTE3	VDD	VDD	VDD	VDD	PTB17	PTB16	PTB11	PTB10	E
F	PTE10	PTE9	PTE8	PTE7	VDD	VSS	VSS	VDD	PTB9	PTB8	PTB7	PTB6	F
G	PTE18	PTE19	PTE12	PTE11	VREFH	VREFL	VSS	VSS	PTB5	PTB4	PTB3	PTB2	G
н	PTE16	PTE17	VSS	PTE28	VDDA	VSSA	VSS	VSS	PTB1	PTB0	PTA29	PTA28	н
J	ADC0_DP1	ADC0_DM1	ADC0_SE16/ CMP1_IN2/ ADC0_SE21	PTE27	PTA0	PTA1	PTA6	PTA7	PTA13	PTA27	PTA26	PTA25	J
к	ADC1_DP1	ADC1_DM1	ADC1_SE16/ CMP2_IN2/ ADC0_SE22	PTE26	PTE25	PTA2	PTA3	PTA8	PTA12	PTA16	PTA17	PTA24	к
L	PGA0_DP/ ADC0_DP0/ ADC1_DP3	PGA0_DM/ ADC0_DM0/ ADC1_DM3	DAC0_OUT/ CMP1_IN3/ ADC0_SE23	DAC1_OUT/ CMP2_IN3/ ADC1_SE23	RESERVED	VBAT	PTA4	PTA9	PTA11	PTA14	PTA15	RESET_b	L
м	PGA1_DP/ ADC1_DP0/ ADC0_DP3	PGA1_DM/ ADC1_DM0/ ADC0_DM3	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18	PTE24	NC	EXTAL32	XTAL32	PTA5	PTA10	VSS	PTA19	PTA18	м
ļ	1	2	3	4	5	6	7	8	9	10	11	12	I

Figure 28. K10 144 MAPBGA Pinout Diagram

9 Revision History

The following table provides a revision history for this document.

 Table 49.
 Revision History

Rev. No.	Date	Substantial Changes
1	11/2010	Initial public revision

Table continues on the next page...

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductors products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claims alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

 $\label{eq:FreescaleTM} Freescale TM and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.$

© 2011–2013 Freescale Semiconductor, Inc.

Document Number: K10P144M100SF2 Rev. 7, 02/2013