

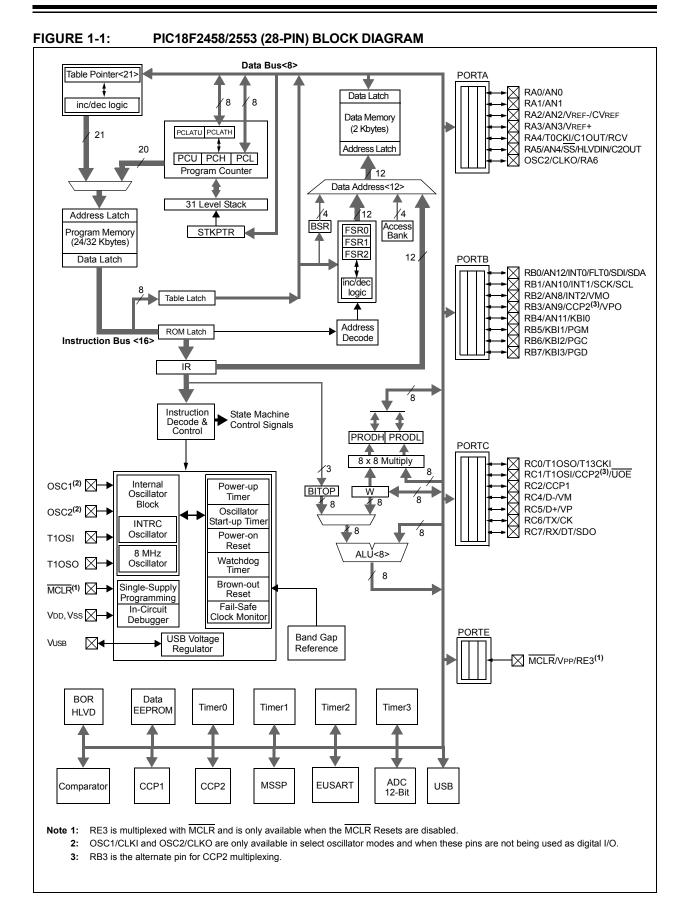
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	24KB (12K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2458-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features	PIC18F2458	PIC18F2553	PIC18F4458	PIC18F4553
Operating Frequency	DC – 48 MHz			
Program Memory (Bytes)	24576	32768	24576	32768
Program Memory (Instructions)	12288	16384	12288	16384
Data Memory (Bytes)	2048	2048	2048	2048
Data EEPROM Memory (Bytes)	256	256	256	256
Interrupt Sources	19	19	20	20
I/O Ports	Ports A, B, C, (E)	Ports A, B, C, (E)	Ports A, B, C, D, E	Ports A, B, C, D, E
Timers	4	4	4	4
Capture/Compare/PWM Modules	2	2	1	1
Enhanced Capture/ Compare/PWM Modules	0	0	1	1
Serial Communications	MSSP, Enhanced USART	MSSP, Enhanced USART	MSSP, Enhanced USART	MSSP, Enhanced USART
Universal Serial Bus (USB) Module	1	1	1	1
Streaming Parallel Port (SPP)	No	No	Yes	Yes
12-Bit Analog-to-Digital Converter Module	10 Input Channels	10 Input Channels	13 Input Channels	13 Input Channels
Comparators	2	2	2	2
Resets (and Delays)	POR, BOR, WDT, RESET Instruction, Stack Full, Stack Underflow, MCLR (optional), (PWRT, OST)	POR, BOR, WDT, RESET Instruction, Stack Full, Stack Underflow, MCLR (optional), (PWRT, OST)	POR, BOR, WDT, RESET Instruction, Stack Full, Stack Underflow, MCLR (optional), (PWRT, OST)	POR, BOR, WDT, RESET Instruction, Stack Full, Stack Underflow, MCLR (optional), (PWRT, OST)
Programmable High/ Low-Voltage Detect	Yes	Yes	Yes	Yes
Programmable Brown-out Reset	Yes	Yes	Yes	Yes
Instruction Set	75 Instructions; 83 with Extended Instruction Set Enabled			
Packages	28-Pin SPDIP 28-Pin SOIC	28-Pin SPDIP 28-Pin SOIC	40-Pin PDIP 44-Pin QFN 44-Pin TQFP	40-Pin PDIP 44-Pin QFN 44-Pin TQFP
Corresponding Devices with 10-Bit A/D	PIC18F2455	PIC18F2550	PIC18F4455	PIC18F4550

TABLE 1-1: DEVICE FEATURES

Pin Name	Pin Number SPDIP, SOIC	Pin Type	Description	
				PORTA is a bidirectional I/O port.
RA0/AN0	2			
RA0	_	I/O	TTL	Digital I/O.
AN0		I	Analog	Analog input 0.
RA1/AN1	3			
RA1	, , , , , , , , , , , , , , , , , , ,	I/O	TTL	Digital I/O.
AN1		I	Analog	Analog input 1.
RA2/AN2/VREF-/CVREF	4		Ū	
RA2		I/O	TTL	Digital I/O.
AN2			Analog	Analog input 2.
VREF-		I	Analog	A/D reference voltage (low) input.
CVREF		0	Analog	Analog comparator reference output.
RA3/AN3/VREF+	5			
RA3	Ŭ	I/O	TTL	Digital I/O.
AN3		I	Analog	Analog input 3.
VREF+		I	Analog	A/D reference voltage (high) input.
RA4/T0CKI/C1OUT/RCV	6			
RA4		I/O	ST	Digital I/O.
TOCKI		I	ST	Timer0 external clock input.
C1OUT		0	_	Comparator 1 output.
RCV		I	TTL	External USB transceiver RCV input.
RA5/AN4/SS/	7			
HLVDIN/C2OUT	-			
RA5		I/O	TTL	Digital I/O.
AN4		Ι	Analog	Analog input 4.
SS		I	TTL	SPI slave select input.
HLVDIN		I	Analog	High/Low-Voltage Detect input.
C2OUT		0	—	Comparator 2 output.
RA6	_	_	—	See the OSC2/CLKO/RA6 pin.
Legend: TTL = TTL cor	npatible in	put		CMOS = CMOS compatible input or output
	Trigger inp		CMOS le	
O = Output				P = Power

TABLE 1-2: PIC18F2458/2553 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.

2: Default assignment for CCP2 when CCP2MX Configuration bit is set.

	Pin Number	Pin	Buffer	Description				
Pin Name	SPDIP, SOIC	Туре	Туре	Description				
				PORTC is a bidirectional I/O port.				
RC0/T1OSO/T13CKI	11							
RC0		I/O	ST	Digital I/O.				
T1OSO		0	_	Timer1 oscillator output.				
T13CKI		I	ST	Timer1/Timer3 external clock input.				
RC1/T1OSI/CCP2/UOE	12							
RC1		I/O	ST	Digital I/O.				
T10SI		1	CMOS	Timer1 oscillator input.				
CCP2 ⁽²⁾		I/O	ST	Capture 2 input/Compare 2 output/PWM2 output.				
UOE		—	—	External USB transceiver OE output.				
RC2/CCP1	13							
RC2		I/O	ST	Digital I/O.				
CCP1		I/O	ST	Capture 1 input/Compare 1 output/PWM1 output.				
RC4/D-/VM	15							
RC4		1	TTL	Digital input.				
D-		I/O		USB differential minus line (input/output).				
VM		Ī	TTL	External USB transceiver VM input.				
RC5/D+/VP	16			· ·				
RC5	10		TTL	Digital input.				
D+		I/O		USB differential plus line (input/output).				
VP		0	TTL	External USB transceiver VP input.				
RC6/TX/CK	17							
RC6		I/O	ST	Digital I/O.				
TX		0	_	EUSART asynchronous transmit.				
CK		1/0	ST	EUSART synchronous clock (see RX/DT).				
RC7/RX/DT/SDO	18							
RC7		I/O	ST	Digital I/O.				
RX			ST	EUSART asynchronous receive.				
DT		I/O	ST	EUSART synchronous data (see TX/CK).				
SDO		0	—	SPI data out.				
RE3	_		_	See MCLR/VPP/RE3 pin.				
Vusb	14			Internal USB transceiver power supply.				
		0	_	When the internal USB regulator is enabled, VUSB is the				
				regulator output.				
		Р	—	When the internal USB regulator is disabled, VUSB is the				
				power input for the USB transceiver.				
Vss	8, 19	Р	—	Ground reference for logic and I/O pins.				
Vdd	20	Р	—	Positive supply for logic and I/O pins.				
Legend: TTL = TTL cor ST = Schmitt	npatible in Trigger in			CMOS = CMOS compatible input or output evels I = Input				

TABLE 1-2: PIC18F2458/2553 PINOUT I/O DESCRIPTIONS (CONTINUED)

O = Output

= Power

Note 1: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.

2: Default assignment for CCP2 when CCP2MX Configuration bit is set.

Pin Name	Pin Number			Pin	Buffer	Description
Pin Name	PDIP	QFN	TQFP	Туре	Туре	Description
MCLR/VPP/RE3 MCLR	1	18	18	I	ST	Master Clear (input) or programming voltage (input). Master Clear (Reset) input. This pin is an active-low Reset to the device.
VPP RE3				P I	ST	Programming voltage input. Digital input.
OSC1/CLKI OSC1 CLKI	13	32	30	 	Analog Analog	, , , , , , , , , , , , , , , , , , , ,
OSC2/CLKO/RA6 OSC2	14	33	31	0	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.
CLKO				0	_	In RC mode, OSC2 pin outputs CLKO which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
RA6				I/O	TTL	General purpose I/O pin.
Legend: TTL = TTL c	•					CMOS = CMOS compatible input or output

TABLE 1-3: PIC18F4458/4553 PINOUT I/O DESCRIPTIONS

ST = Schmitt Trigger input with CMOS levels I 0 = Output

- = Input = Power Ρ

Note 1: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.

2: Default assignment for CCP2 when CCP2MX Configuration bit is set.

3: These pins are No Connect unless the ICPRT Configuration bit is set. For NC/ICPORTS, the pin is No Connect unless ICPRT is set and the DEBUG Configuration bit is cleared.

Pin Name	Pi	n Num	ber	Pin	Buffer	Description
	PDIP	QFN	TQFP	Туре	Туре	Description
						PORTC is a bidirectional I/O port.
RC0/T1OSO/T13CKI RC0	15	34	32	I/O	ST	Digital I/O.
T10S0				0		Timer1 oscillator output.
T13CKI				I	ST	Timer1/Timer3 external clock input.
RC1/T1OSI/CCP2/ UOE	16	35	35			
RC1				I/O	ST	Digital I/O.
T1OSI CCP2 ⁽²⁾				 /O	CMOS ST	Timer1 oscillator input.
				0	51	Capture 2 input/Compare 2 output/PWM2 output. External USB transceiver OE output.
RC2/CCP1/P1A	17	36	36	Ŭ		
RC2		00	00	I/O	ST	Digital I/O.
CCP1				I/O	ST	Capture 1 input/Compare 1 output/PWM1 output.
P1A				0	TTL	Enhanced CCP1 PWM output, channel A.
RC4/D-/VM	23	42	42			
RC4					TTL	Digital input.
D- VM				I/O I	TTL	USB differential minus line (input/output). External USB transceiver VM input.
RC5/D+/VP	24	43	43			
RC5	24	43	43	1	TTL	Digital input.
D+				I/O	_	USB differential plus line (input/output).
VP				Ι	TTL	External USB transceiver VP input.
RC6/TX/CK	25	44	44			
RC6				I/O	ST	Digital I/O.
TX CK				0 I/O	ST	EUSART asynchronous transmit. EUSART synchronous clock (see RX/DT).
RC7/RX/DT/SDO	26	1	1	1/0	51	EUSART Synchronous clock (see RADT).
RC7	20	1		I/O	ST	Digital I/O.
RX				1	ST	EUSART asynchronous receive.
DT				I/O	ST	EUSART synchronous data (see TX/CK).
SDO				0	—	SPI data out.
Legend: TTL = TTL o						CMOS = CMOS compatible input or output
	nitt Trigg	er inpu	t with CI	viOS le	vels I F	= Input P = Power
O = Outp	ui				F	

TABLE 1-3: PIC18F4458/4553 PINOUT I/O DESCRIPTIONS (CONTINUED)

O= OutputP= PowerNote 1:Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.

2: Default assignment for CCP2 when CCP2MX Configuration bit is set.

3: These pins are No Connect unless the ICPRT Configuration bit is set. For NC/ICPORTS, the pin is No Connect unless ICPRT is set and the DEBUG Configuration bit is cleared.

Din Nomo	Pi	n Numl	ber	Pin	Buffer	Description			
Pin Name	PDIP	QFN	TQFP	Туре	Туре	Description			
	8	25	25			PORTE is a bidirectional I/O port.			
RE0/AN5/CK1SPP RE0 AN5 CK1SPP	0	20	25	I/O I O	ST Analog —	Digital I/O. Analog input 5. SPP clock 1 output.			
RE1/AN6/CK2SPP RE1 AN6 CK2SPP	9	26	26	I/O I O	ST Analog —	Digital I/O. Analog input 6. SPP clock 2 output.			
RE2/AN7/OESPP RE2 AN7 OESPP	10	27	27	I/O I O	ST Analog —	Digital I/O. Analog input 7. SPP output enable output.			
RE3		_	—	_	—	See MCLR/VPP/RE3 pin.			
Vss	12, 31	6, 30, 31	6, 29	Ρ	_	Ground reference for logic and I/O pins.			
Vdd	11, 32	7, 8, 28, 29	7, 28	Ρ	—	Positive supply for logic and I/O pins.			
Vusb	18	37	37	O P	_	Internal USB transceiver power supply. When the internal USB regulator is enabled, VUSB is the regulator output. When the internal USB regulator is disabled, VUSB is the power input for the USB transceiver.			
NC/ICCK/ICPGC ⁽³⁾ ICCK ICPGC	—	_	12	I/O I/O	ST ST	No Connect or dedicated ICD/ICSP™ port clock. In-Circuit Debugger clock. ICSP programming clock.			
NC/ICDT/ICPGD ⁽³⁾ ICDT ICPGD	-		13	I/O I/O	ST ST	No Connect or dedicated ICD/ICSP port clock. In-Circuit Debugger data. ICSP programming data.			
NC/ <u>ICRST</u> /ICVPP ⁽³⁾ ICRST ICVPP	—		33	l P	_	No Connect or dedicated ICD/ICSP port Reset. Master Clear (Reset) input. Programming voltage input.			
NC/ICPORTS ⁽³⁾ ICPORTS	_		34	Ρ		No Connect or 28-pin device emulation. Enable 28-pin device emulation when connected to Vss.			
NC	_	13	_			No Connect.			
Legend: TTL = TTL of ST = Schn O = Outp	nitt Trigg			VOS le					

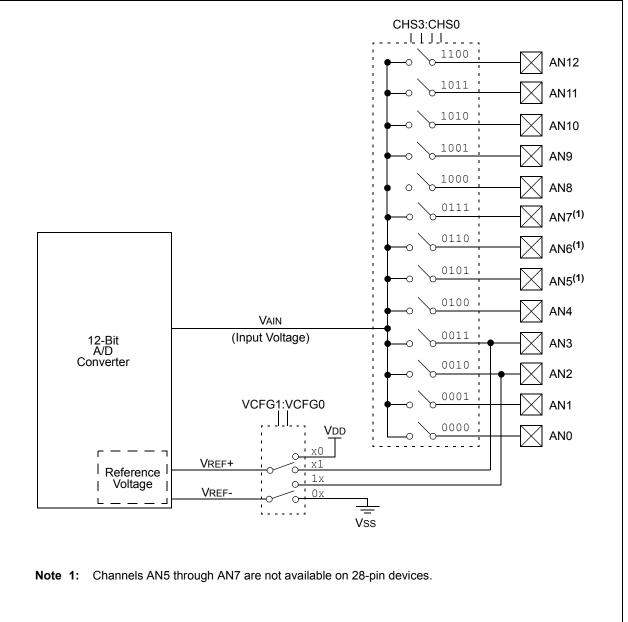
TABLE 1-3: PIC18F4458/4553 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.

2: Default assignment for CCP2 when CCP2MX Configuration bit is set.

3: These pins are No Connect unless the <u>ICPRT</u> Configuration bit is set. For NC/ICPORTS, the pin is No Connect unless ICPRT is set and the <u>DEBUG</u> Configuration bit is cleared.

The analog reference voltage is software selectable to either the device's positive and negative supply voltage (VDD and Vss), or the voltage level on the RA3/AN3/ VREF+ and RA2/AN2/VREF-/CVREF pins.

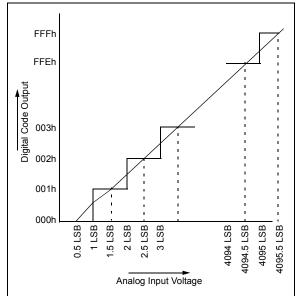

The A/D Converter has a unique feature of being able to operate while the device is in Sleep mode. To operate in Sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

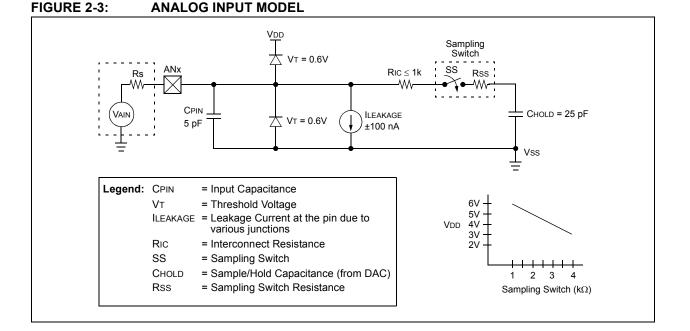
The output of the sample and hold is the input into the Converter, which generates the result via successive approximation.

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off and any conversion in progress is aborted.

Each port pin associated with the A/D Converter can be configured as an analog input or as a digital I/O. The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH:ADRESL register pair, the GO/DONE bit (ADCON0 register) is cleared and the A/D Interrupt Flag bit, ADIF, is set. The block diagram of the A/D module is shown in Figure 2-1.

The value in the ADRESH:ADRESL registers is unknown following Power-on and Brown-out Resets, and is not affected by any other Reset.


After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see **Section 2.1 "A/D Acquisition Requirements"**. After this acquisition time has elapsed, the A/D conversion can be started. An acquisition time can be programmed to occur between setting the GO/DONE bit and the actual start of the conversion.


The following steps should be followed to perform an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins, voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D acquisition time (ADCON2)
 - Select A/D conversion clock (ADCON2)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
 - · Clear ADIF bit
 - · Set ADIE bit
 - Set GIE bit
- 3. Wait the required acquisition time (if required).
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0 register)

- 5. Wait for A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared
 OR
 - Waiting for the A/D interrupt
- 6. Read A/D Result registers (ADRESH:ADRESL); clear bit ADIF, if required.
- 7. For next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2 TAD is required before the next acquisition starts.

FIGURE 2-2: A/D TRANSFER FUNCTION

2.4 Operation in Power-Managed Modes

The selection of the automatic acquisition time and A/D conversion clock is determined in part by the clock source and frequency while in a power-managed mode.

If the A/D is expected to operate while the device is in a power-managed mode, the ADCS2:ADCS0 bits in ADCON2 should be updated in accordance with the clock source to be used. The ACQT2:ACQT0 bits do not need to be adjusted as the ADCS2:ADCS0 bits adjust the TAD time for the new clock speed. After entering the mode, an A/D acquisition or conversion may be started. Once started, the device should continue to be clocked by the same clock source until the conversion has been completed.

If desired, the device may be placed into the corresponding Idle mode during the conversion. If the device clock frequency is less than 1 MHz, the A/D RC clock source should be selected.

Operation in Sleep mode requires the A/D FRC clock to be selected. If bits ACQT2:ACQT0 are set to '000' and a conversion is started, the conversion will be delayed one instruction cycle to allow execution of the SLEEP instruction and entry to Sleep mode. The IDLEN bit (OSCCON<7>) must have already been cleared prior to starting the conversion.

2.5 Configuring Analog Port Pins

The ADCON1, TRISA, TRISB and TRISE registers all configure the A/D port pins. The port pins needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

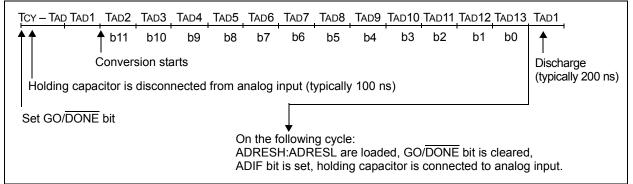
The A/D operation is independent of the state of the CHS3:CHS0 bits and the TRIS bits.

- Note 1: When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level). Analog conversion on pins configured as digital pins can be performed. The voltage on the pin will be accurately converted.
 - 2: Analog levels on any pin defined as a digital input may cause the digital input buffer to consume current out of the device's specification limits.
 - 3: The PBADEN bit in Configuration Register 3H configures PORTB pins to reset as analog or digital pins by controlling how the PCFG3:PCFG0 bits in ADCON1 are reset.

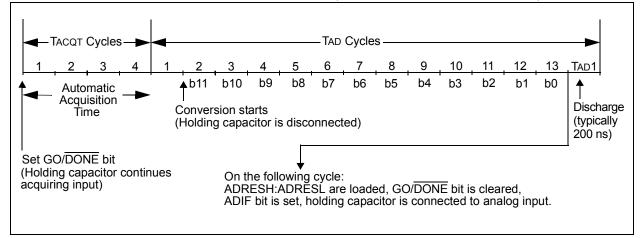
2.6 A/D Conversions

Figure 2-4 shows the operation of the A/D Converter after the GO/DONE bit has been set and the ACQT2:ACQT0 bits are cleared. A conversion is started after the following instruction to allow entry into Sleep mode before the conversion begins.

Figure 2-5 shows the operation of the A/D Converter after the GO/DONE bit has been set and the ACQT2:ACQT0 bits are set to '010', and selecting a 4 TAD acquisition time before the conversion starts.


Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D Result register pair will NOT be updated with the partially completed A/D conversion sample. This means the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers). After the A/D conversion is completed or aborted, a 2 TcY wait is required before the next acquisition can be started. After this wait, acquisition on the selected channel is automatically started.

Note:	The GO/DONE bit should NOT be set in										
	the same instruction that turns on the A/D.										
	Code should wait at least 2 μ s after										
	enabling the A/D before beginning an										
	acquisition and conversion cycle.										


2.7 Discharge

The discharge phase is used to initialize the value of the holding capacitor. The array is discharged before every sample. This feature helps to optimize the unity gain amplifier, as the circuit always needs to charge the capacitor array, rather than charge/discharge based on previous measure values.

FIGURE 2-4: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 000, TACQ = 0)

FIGURE 2-5: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD)

2.8 Use of the CCP2 Trigger

An A/D conversion can be started by the Special Event Trigger of the CCP2 module. This requires that the CCP2M3:CCP2M0 bits (CCP2CON<3:0>) be programmed as '1011' and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/ DONE bit will be set, starting the A/D acquisition and conversion, and the Timer1 (or Timer3) counter will be reset to zero. Timer1 (or Timer3) is reset to automatically repeat the A/D acquisition period with minimal software overhead (firmware must move ADRESH:ADRESL to the desired location). The appropriate analog input channel must be selected and the minimum acquisition period is either timed by the user, or an appropriate TACQ time selected before the Special Event Trigger sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), the Special Event Trigger will be ignored by the A/D module, but will still reset the Timer1 (or Timer3) counter.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:		
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	(4)		
PIR1	SPPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	(4)		
PIE1	SPPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	(4)		
IPR1	SPPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	(4)		
PIR2	OSCFIF	CMIF	USBIF	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	(4)		
PIE2	OSCFIE	CMIE	USBIE	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE	(4)		
IPR2	OSCFIP	CMIP	USBIP	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP	(4)		
ADRESH	ADRESH A/D Result Register High Byte										
ADRESL	A/D Result Register Low Byte										
ADCON0	_	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	21		
ADCON1	_	_	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	22		
ADCON2	ADFM	_	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0	23		
PORTA	_	RA6 ⁽²⁾	RA5	RA4	RA3	RA2	RA1	RA0	(4)		
TRISA	_	TRISA6 ⁽²⁾	PORTA Da	ta Direction (Control Reg	ister			(4)		
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	(4)		
TRISB	PORTB Dat	a Direction (Control Regi	ster					(4)		
LATB	PORTB Dat	a Latch Reg	ister (Read	and Write to	Data Latch))			(4)		
PORTE ⁽¹⁾	RDPU	—	_		RE3 ⁽³⁾	RE2 ⁽¹⁾	RE1 ⁽¹⁾	RE0 ⁽¹⁾	(4)		
TRISE ⁽¹⁾	—	—	—	—	—	TRISE2	TRISE1	TRISE0	(4)		
LATE ⁽¹⁾						PORTE Da	ta Latch Re	gister	(4)		

TABLE 2-2: REGISTERS ASSOCIATED WITH A/D OPERATION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: These registers and/or bits are not implemented on 28-pin devices and are read as '0'.

2: RA6 and its associated latch and data direction bits are enabled as I/O pins based on oscillator configuration; otherwise, they are read as '0'.

3: RE3 port bit is available only as an input pin when the MCLRE Configuration bit is '0'.

4: For these Reset values, see the "PIC18F2455/2550/4455/4550 Data Sheet".

3.0 SPECIAL FEATURES OF THE CPU

Note:	For additional details on the Con-										
	figuration bits, refer to the										
	"PIC18F2455/2550/4455/4550 Data Sheet",										
	Section 25.1 "Configuration Bits". Device										
	ID information presented in this section is for										
	PIC18F2458/2553/4458/4553 only.										

PIC18F2458/2553/4458/4553 devices include several features intended to maximize reliability and minimize cost through elimination of external components. These include:

DEVICE IDs

Device ID Registers

TABLE 3-1:

3.1 Device ID Registers

The Device ID registers are "read-only" registers. They identify the device type and revision to device programmers, and can be read by firmware using table reads.

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value
3FFFFEh	DEVID1	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	xxxx xxxx(1)
3FFFFFh	DEVID2	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	xxxx xxxx(1)

Legend: x = unknown, u = unchanged

Note 1: See Register 3-1 and Register 3-2 for DEVID values. DEVID registers are read-only and cannot be programmed by the user.

REGISTER 3-1: DEVID1: DEVICE ID REGISTER 1 FOR PIC18F2458/2553/4458/4553 DEVICES

R	R	R	R	R	R	R	R			
DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0			
bit 7							bit 0			
Legend:										
R = Read-only	bit	P = Programm	nable bit	U = Unimplemented bit, read as '0'						
-n = Value whe	n device is unp	programmed		u = Unchang	ed from progran	nmed state				
bit 7-5	DEV2:DEV0:	Device ID bits								
	See Register	3-2 for a comp	lete listina							

	occ register o z for a complete listing.
bit 4-0	REV3:REV0: Revision ID bits
	The set bits and used to indicate the device set.

These bits are used to indicate the device revision.

REGISTER 3-2: DEVID2: DEVICE ID REGISTER 2 FOR PIC18F2458/2553/4458/4553 DEVICES

R	R	R	R	R	R	R	R
DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3
bit 7							bit 0

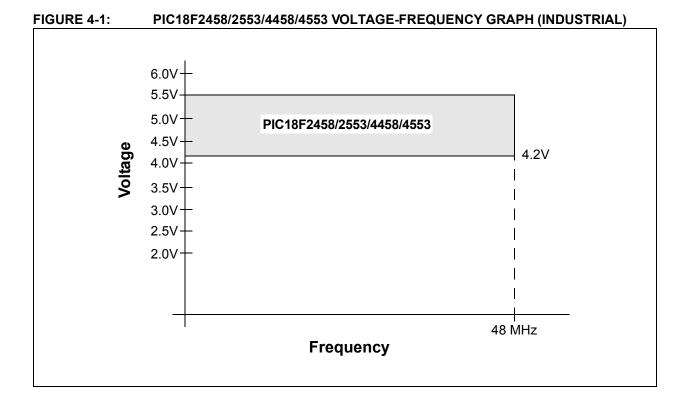
Legend:

R = Read-only bit	P = Programmable bit	U = Unimplemented bit, read as '0'
-n = Value when device is unprogrammed		u = Unchanged from programmed state

bit 7-0 DEV10:DEV3: Device ID bits

DEV10:DEV3 (DEVID2<7:0>)	DEV2:DEV0 (DEVID1<7:5>)	Device
0010 1010	011	PIC18F2458
0010 1010	010	PIC18F2553
0010 1010	001	PIC18F4458
0010 1010	000	PIC18F4553

4.0 ELECTRICAL CHARACTERISTICS


Absolute Maximum Ratings (†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	-0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0V to +13.25V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Input clamp current, Iк (Vi < 0 or Vi > VDD)	±20 mA
Output clamp current, loк (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports	200 mA

Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD $- \sum$ IOH} + \sum {(VDD - VOH) x IOH} + \sum (VOL x IOL)

2: Voltage spikes below Vss at the MCLR/VPP/RE3 pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR/VPP/ RE3 pin, rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

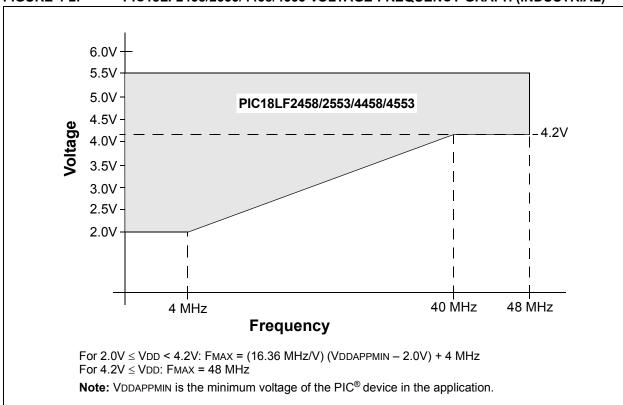


FIGURE 4-2: PIC18LF2458/2553/4458/4553 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)

5.0 PACKAGING INFORMATION

For packaging information, see the *"PIC18F2455/2550/4455/4550 Data Sheet"* (DS39632).

APPENDIX A: REVISION HISTORY

Revision A (May 2007)

Original data sheet for the PIC18F2458/2553/4458/ 4553 devices.

Revision B (June 2007)

Changes to Figure 4-2: PIC18LF2458/2553/4458/4553 Voltage-Frequency Graph (Industrial).

Revision C (October 2009)

Removed "Preliminary" marking.

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices listed in this data sheet are shown in Table B-1.

Features	PIC18F2458	PIC18F2553	PIC18F4458	PIC18F4553
Program Memory (Bytes)	24576	32768	24576	32768
Program Memory (Instructions)	12288	16384	12288	16384
Interrupt Sources	19	19	20	20
I/O Ports	Ports A, B, C, (E)	Ports A, B, C, (E)	Ports A, B, C, D, E	Ports A, B, C, D, E
Capture/Compare/PWM Modules	2	2	1	1
Enhanced Capture/Compare/ PWM Modules	0	0	1	1
Parallel Communications (SPP)	No	No	Yes	Yes
12-Bit Analog-to-Digital Module	10 Input Channels	10 Input Channels	13 Input Channels	13 Input Channels
Packages	28-Pin SPDIP 28-Pin SOIC	28-Pin SPDIP 28-Pin SOIC	40-Pin PDIP 44-Pin TQFP 44-Pin QFN	40-Pin PDIP 44-Pin TQFP 44-Pin QFN

TABLE B-1:DEVICE DIFFERENCES

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	x <u>xx xxx</u>	Examples:
Device	Temperature Package Pattern Range	 a) PIC18LF4553-I/P 301 = Industrial temp., PDIP package, Extended VDD limits, QTP pattern #301. b) PIC18LF2458-I/SO = Industrial temp., SOIC
Device	PIC18F2458/2553 ⁽¹⁾ , PIC18F4458/4553 ⁽¹⁾ , PIC18F2458/2553T ⁽²⁾ , PIC18F4458/4553T ⁽²⁾ ; VDD range 4.2V to 5.5V PIC18LF2458/2553 ⁽¹⁾ , PIC18LF4458/4553T ⁽¹⁾ , PIC18LF2458/2553T ⁽²⁾ , PIC18LF4458/4553T ⁽²⁾ ; VDD range 2.0V to 5.5V	 package, Extended VDD limits. c) PIC18F4458-I/P = Industrial temp., PDIP package, normal VDD limits.
Temperature Range	I = -40° C to $+85^{\circ}$ C (Industrial) E = -40° C to $+125^{\circ}$ C (Extended)	
Package	PT = TQFP (Thin Quad Flatpack) SO = SOIC SP = Skinny PDIP P = PDIP ML = QFN	Note 1:F=Standard Voltage RangeLF=Wide Voltage Range2:T=In tape and reel TQFP packages only.
Pattern	QTP, SQTP, Code or Special Requirements (blank otherwise)	