

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	24KB (12K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2458t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, Keeloq, Keeloq logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, PIC³² logo, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

QUALITY MANAGEMENT SYSTEM

CERTIFIED BY DNV

ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

PIC18F2458PIC18F4458PIC18F2553PIC18F4553

Note: This data sheet documents only the devices' features and specifications that are in addition to the features and specifications of the PIC18F2455/2550/4455/4550 devices. For information on the features and specifications shared by the PIC18F2458/2553/4458/4553 and PIC18F2455/2550/4455/4550 devices see the "PIC18F2455/2550/4455/4550 Data Sheet" (DS39632).

The PIC18F4553 family of devices offers the advantages of all PIC18 microcontrollers – namely, high computational performance at an economical price – with the addition of high-endurance, Enhanced Flash program memory. In addition to these features, the PIC18F4553 family introduces design enhancements that make these microcontrollers a logical choice for many high-performance, power sensitive applications.

1.1 Special Features

 12-Bit A/D Converter: The PIC18F4553 family implements a 12-bit A/D Converter. The A/D Converter incorporates programmable acquisition time. This allows for a channel to be selected and a conversion to be initiated, without waiting for a sampling period and thus, reducing code overhead.

1.2 Details on Individual Family Members

The PIC18F2458/2553/4458/4553 devices are available in 28-pin and 40/44-pin packages. Block diagrams for the two groups are shown in Figure 1-1 and Figure 1-2.

The devices are differentiated from each other in the following ways:

- Flash program memory (24 Kbytes for PIC18FX458 devices, 32 Kbytes for PIC18FX553).
- 2. A/D channels (10 for 28-pin devices, 13 for 40-pin and 44-pin devices).
- 3. I/O ports (3 bidirectional ports and 1 input only port on 28-pin devices, 5 bidirectional ports on 40-pin and 44-pin devices).
- 4. CCP and Enhanced CCP implementation (28-pin devices have two standard CCP modules, 40-pin and 44-pin devices have one standard CCP module and one ECCP module).
- 5. Streaming Parallel Port (present only on 40/44-pin devices).

All other features for devices in this family are identical. These are summarized in Table 1-1.

The pinouts for all devices are listed in Table 1-2 and Table 1-3

Members of the PIC18F4553 family are available as both standard and low-voltage devices. Standard devices with Enhanced Flash memory, designated with an "F" in the part number (such as PIC18F2458), accommodate an operating VDD range of 4.2V to 5.5V. Low-voltage parts, designated by "LF" (such as PIC18LF2458), function over an extended VDD range of 2.0V to 5.5V.

TABLE 1-1: DEVICE FEATURES

Features	PIC18F2458	PIC18F2553	PIC18F4458	PIC18F4553
Operating Frequency	DC – 48 MHz			
Program Memory (Bytes)	24576	32768	24576	32768
Program Memory (Instructions)	12288	16384	12288	16384
Data Memory (Bytes)	2048	2048	2048	2048
Data EEPROM Memory (Bytes)	256	256	256	256
Interrupt Sources	19	19	20	20
I/O Ports	Ports A, B, C, (E)	Ports A, B, C, (E)	Ports A, B, C, D, E	Ports A, B, C, D, E
Timers	4	4	4	4
Capture/Compare/PWM Modules	2	2	1	1
Enhanced Capture/ Compare/PWM Modules	0	0	1	1
Serial Communications	MSSP, Enhanced USART	MSSP, Enhanced USART	MSSP, Enhanced USART	MSSP, Enhanced USART
Universal Serial Bus (USB) Module	1	1	1	1
Streaming Parallel Port (SPP)	No	No	Yes	Yes
12-Bit Analog-to-Digital Converter Module	10 Input Channels	10 Input Channels	13 Input Channels	13 Input Channels
Comparators	2	2	2	2
Resets (and Delays)	POR, BOR, WDT, RESET Instruction, Stack Full, Stack Underflow, MCLR (optional), (PWRT, OST)	POR, BOR, WDT, RESET Instruction, Stack Full, Stack Underflow, MCLR (optional), (PWRT, OST)	POR, BOR, WDT, RESET Instruction, Stack Full, Stack Underflow, MCLR (optional), (PWRT, OST)	POR, BOR, WDT, RESET Instruction, Stack Full, Stack Underflow, MCLR (optional), (PWRT, OST)
Programmable High/ Low-Voltage Detect	Yes	Yes	Yes	Yes
Programmable Brown-out Reset	Yes	Yes	Yes	Yes
Instruction Set	75 Instructions; 83 with Extended Instruction Set Enabled			
Packages	28-Pin SPDIP 28-Pin SOIC	28-Pin SPDIP 28-Pin SOIC	40-Pin PDIP 44-Pin QFN 44-Pin TQFP	40-Pin PDIP 44-Pin QFN 44-Pin TQFP
Corresponding Devices with 10-Bit A/D	PIC18F2455	PIC18F2550	PIC18F4455	PIC18F4550

TABLE 1-2: PIC18F2458/2553 PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Number SPDIP, SOIC	Pin Type	Buffer Type	Description
RB0/AN12/INT0/FLT0/	21			PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.
SDI/SDA RB0 AN12 INT0 FLT0 SDI SDA RB1/AN10/INT1/SCK/	22	I/O 	TTL Analog ST ST ST ST	Digital I/O. Analog input 12. External interrupt 0. PWM Fault input (CCP1 module). SPI data in. I ² C™ data I/O.
SCL RB1 AN10 INT1 SCK SCL		I/O I I I/O I/O	TTL Analog ST ST ST	Digital I/O. Analog input 10. External interrupt 1. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C mode.
RB2/AN8/INT2/VMO RB2 AN8 INT2 VMO	23	I/O I I O	TTL Analog ST —	Digital I/O. Analog input 8. External interrupt 2. External USB transceiver VMO output.
RB3/AN9/CCP2/VPO RB3 AN9 CCP2 ⁽¹⁾ VPO	24	I/O I I/O O	TTL Analog ST —	Digital I/O. Analog input 9. Capture 2 input/Compare 2 output/PWM 2 output. External USB transceiver VPO output.
RB4/AN11/KBI0 RB4 AN11 KBI0	25	I/O I I	TTL Analog TTL	Digital I/O. Analog input 11. Interrupt-on-change pin.
RB5/KBI1/PGM RB5 KBI1 PGM	26	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. Low-Voltage ICSP™ Programming enable pin.
RB6/KBI2/PGC RB6 KBI2 PGC	27	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming clock pin.
RB7/KBI3/PGD RB7 KBI3 PGD	28	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.

Legend: TTL = TTL compatible input

CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels

= Input

O = Output

P = Power

Note 1: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.

2: Default assignment for CCP2 when CCP2MX Configuration bit is set.

TABLE 1-3: PIC18F4458/4553 PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pi	Pin Number			Buffer	Description
Pin Name	PDIP	QFN	TQFP	Туре	Type	Description
						PORTA is a bidirectional I/O port.
RA0/AN0 RA0 AN0	2	19	19	I/O I	TTL Analog	Digital I/O. Analog input 0.
RA1/AN1 RA1 AN1	3	20	20	I/O I	TTL Analog	Digital I/O. Analog input 1.
RA2/AN2/VREF-/ CVREF RA2 AN2 VREF- CVREF	4	21	21	I/O I I O	TTL Analog Analog Analog	Digital I/O. Analog input 2. A/D reference voltage (low) input. Analog comparator reference output.
RA3/AN3/VREF+ RA3 AN3 VREF+	5	22	22	I/O I I	TTL Analog Analog	Digital I/O. Analog input 3. A/D reference voltage (high) input.
RA4/T0CKI/C1OUT/ RCV RA4 T0CKI C1OUT RCV	6	23	23	I/O I O I	ST ST — TTL	Digital I/O. Timer0 external clock input. Comparator 1 output. External USB transceiver RCV input.
RA5/AN4/SS/ HLVDIN/C2OUT RA5 AN4 SS HLVDIN C2OUT	7	24	24	I/O 	TTL Analog TTL Analog —	Digital I/O. Analog input 4. SPI slave select input. High/Low-Voltage Detect input. Comparator 2 output.
SS HLVDIN	_	_	_		Analog TTL	Analog input 4. SPI slave select input. High/Low-Voltage Detect input.

Legend: TTL = TTL compatible input

CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels
O = Output

I = Input P = Power

Note 1: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.

- 2: Default assignment for CCP2 when CCP2MX Configuration bit is set.
- **3:** These pins are No Connect unless the ICPRT Configuration bit is set. For NC/ICPORTS, the pin is No Connect unless ICPRT is set and the DEBUG Configuration bit is cleared.

TABLE 1-3: PIC18F4458/4553 PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pi	n Num	ber	Pin	Buffer	Description
PIII Name	PDIP	QFN	TQFP	Туре	Туре	Description
RB0/AN12/INT0/	33	9	8			PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.
FLT0/SDI/SDA RB0 AN12 INT0 FLT0 SDI SDA RB1/AN10/INT1/SCK/	34	10	9	I/O /O	TTL Analog ST ST ST ST	Digital I/O. Analog input 12. External interrupt 0. Enhanced PWM Fault input (ECCP1 module). SPI data in. I ² C™ data I/O.
SCL RB1 AN10 INT1 SCK SCL				I/O I I I/O I/O	TTL Analog ST ST ST	Digital I/O. Analog input 10. External interrupt 1. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C mode.
RB2/AN8/INT2/VMO RB2 AN8 INT2 VMO	35	11	10	I/O I I O	TTL Analog ST —	Digital I/O. Analog input 8. External interrupt 2. External USB transceiver VMO output.
RB3/AN9/CCP2/VPO RB3 AN9 CCP2 ⁽¹⁾ VPO	36	12	11	I/O I I/O O	TTL Analog ST —	Digital I/O. Analog input 9. Capture 2 input/Compare 2 output/PWM 2 output. External USB transceiver VPO output.
RB4/AN11/KBI0/CSSPP RB4 AN11 KBI0 CSSPP	37	14	14	I/O 	TTL Analog TTL —	Digital I/O. Analog input 11. Interrupt-on-change pin. SPP chip select control output.
RB5/KBI1/PGM RB5 KBI1 PGM	38	15	15	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. Low-Voltage ICSP™ Programming enable pin.
RB6/KBI2/PGC RB6 KBI2 PGC	39	16	16	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming clock pin.
RB7/KBI3/PGD RB7 KBI3 PGD	40	17	17	I/O /O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.

Legend: TTL = TTL compatible input

CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels
O = Output

I = Input P = Power

Note 1: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.

- 2: Default assignment for CCP2 when CCP2MX Configuration bit is set.
- 3: These pins are No Connect unless the ICPRT Configuration bit is set. For NC/ICPORTS, the pin is No Connect unless ICPRT is set and the DEBUG Configuration bit is cleared.

TABLE 1-3: PIC18F4458/4553 PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pi	n Num	ber	Pin	Buffer	Description
Pili Name	PDIP	QFN	TQFP	Туре	Type	Description
						PORTC is a bidirectional I/O port.
RC0/T10SO/T13CKI RC0 T10SO T13CKI	15	34	32	I/O O I	ST — ST	Digital I/O. Timer1 oscillator output. Timer1/Timer3 external clock input.
RC1/T1OSI/CCP2/ UOE	16	35	35			·
RC1 T1OSI CCP2 ⁽²⁾ UOE				I/O I I/O O	ST CMOS ST	Digital I/O. Timer1 oscillator input. Capture 2 input/Compare 2 output/PWM2 output. External USB transceiver OE output.
RC2/CCP1/P1A RC2 CCP1 P1A	17	36	36	I/O I/O O	ST ST TTL	Digital I/O. Capture 1 input/Compare 1 output/PWM1 output. Enhanced CCP1 PWM output, channel A.
RC4/D-/VM RC4 D- VM	23	42	42	 /O 	TTL — TTL	Digital input. USB differential minus line (input/output). External USB transceiver VM input.
RC5/D+/VP RC5 D+ VP	24	43	43	 /O 	TTL — TTL	Digital input. USB differential plus line (input/output). External USB transceiver VP input.
RC6/TX/CK RC6 TX CK	25	44	44	I/O O I/O	ST — ST	Digital I/O. EUSART asynchronous transmit. EUSART synchronous clock (see RX/DT).
RC7/RX/DT/SDO RC7 RX DT SDO	26	1	1	I/O I/O O	ST ST ST	Digital I/O. EUSART asynchronous receive. EUSART synchronous data (see TX/CK). SPI data out.

Legend: TTL = TTL compatible input

CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels

= Input

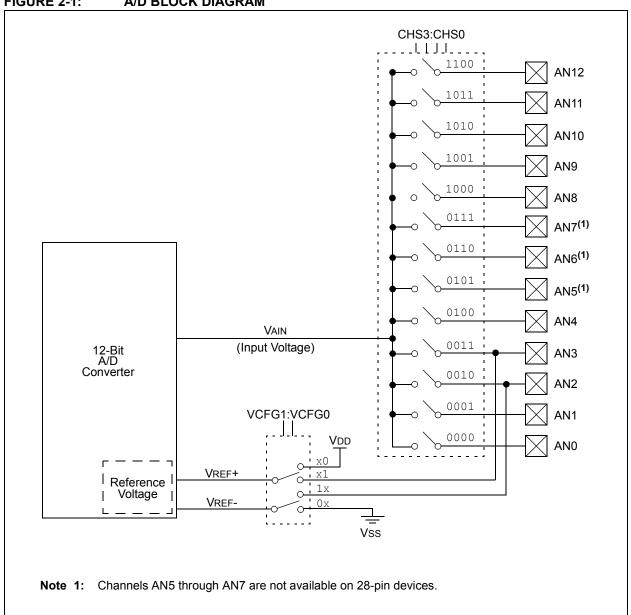
O = Output

P = Power

Note 1: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.

- 2: Default assignment for CCP2 when CCP2MX Configuration bit is set.
 - 3: These pins are No Connect unless the ICPRT Configuration bit is set. For NC/ICPORTS, the pin is No Connect unless ICPRT is set and the DEBUG Configuration bit is cleared.

The analog reference voltage is software selectable to either the device's positive and negative supply voltage (VDD and Vss), or the voltage level on the RA3/AN3/ VREF+ and RA2/AN2/VREF-/CVREF pins.


The A/D Converter has a unique feature of being able to operate while the device is in Sleep mode. To operate in Sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

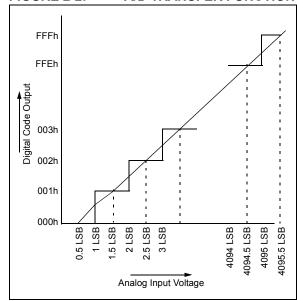
The output of the sample and hold is the input into the Converter, which generates the result via successive approximation.

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off and any conversion in progress is aborted.

Each port pin associated with the A/D Converter can be configured as an analog input or as a digital I/O. The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH:ADRESL register pair, the GO/DONE bit (ADCON0 register) is cleared and the A/D Interrupt Flag bit, ADIF, is set. The block diagram of the A/D module is shown in Figure 2-1.

FIGURE 2-1: A/D BLOCK DIAGRAM

The value in the ADRESH:ADRESL registers is unknown following Power-on and Brown-out Resets, and is not affected by any other Reset.


After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see **Section 2.1** "A/D Acquisition Requirements". After this acquisition time has elapsed, the A/D conversion can be started. An acquisition time can be programmed to occur between setting the GO/DONE bit and the actual start of the conversion.

The following steps should be followed to perform an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins, voltage reference and digital I/O (ADCON1)
 - · Select A/D input channel (ADCON0)
 - · Select A/D acquisition time (ADCON2)
 - · Select A/D conversion clock (ADCON2)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
 - · Clear ADIF bit
 - · Set ADIE bit
 - · Set GIE bit
- 3. Wait the required acquisition time (if required).
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0 register)

- 5. Wait for A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared OR
 - · Waiting for the A/D interrupt
- Read A/D Result registers (ADRESH:ADRESL); clear bit ADIF, if required.
- For next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2 TAD is required before the next acquisition starts.

FIGURE 2-3: ANALOG INPUT MODEL

2.1 A/D Acquisition Requirements

For the A/D Converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 2-3. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω . After the analog input channel is selected (changed), the channel must be sampled for at least the minimum acquisition time before starting a conversion.

Note: When the conversion is started, the holding capacitor is disconnected from the

input pin.

To calculate the minimum acquisition time, Equation 2-1 may be used. This equation assumes that 1/2 LSb error is used (4096 steps for the 12-bit A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Example 2-3 shows the calculation of the minimum required acquisition time, TACQ. This calculation is based on the following application system assumptions:

CHOLD = 25 pF Rs = 2.5 kΩ Conversion Error \leq 1/2 LSb

VDD = $3V \rightarrow Rss = 4 k\Omega$ Temperature = 85°C (system max.)

EQUATION 2-1: ACQUISITION TIME

```
TACQ = Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient
= TAMP + TC + TCOFF
```

EQUATION 2-2: A/D MINIMUM CHARGING TIME

```
\begin{array}{lll} V_{HOLD} & = & (V_{REF} - (V_{REF}/4096)) \bullet (1 - e^{(-T_C/C_{HOLD}(R_{IC} + R_{SS} + R_S))}) \\ or \\ T_C & = & -(C_{HOLD})(R_{IC} + R_{SS} + R_S) \ln(1/4096) \end{array}
```

EQUATION 2-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

```
TACQ
                    TAMP + TC + TCOFF
TAMP
                    0.2~\mu s
TCOFF
                    (Temp - 25^{\circ}C)(0.02 \mu s/^{\circ}C)
                    (85^{\circ}C - 25^{\circ}C)(0.02 \mu s/^{\circ}C)
                    1.2 us
Temperature coefficient is only required for temperatures > 25°C. Below 25°C, TCOFF = 0 \mus.
TC
                    -(CHOLD)(RIC + RSS + RS) ln(1/4096) \mu s
                    -(25 \text{ pF}) (1 \text{ k}\Omega + 4 \text{ k}\Omega + 2.5 \text{ k}\Omega) \ln(0.0002441) \,\mu\text{s}
                    1.56 \mu s
                    0.2 \mu s + 1.56 \mu s + 1.2 \mu s
TACO
                    2.96 us
```

2.2 Selecting and Configuring Acquisition Time

The ADCON2 register allows the user to select an acquisition time that occurs each time the GO/DONE bit is set. It also gives users the option to use an automatically determined acquisition time.

Acquisition time may be set with the ACQT2:ACQT0 bits (ADCON2<5:3>), which provides a range of 2 to 20 TAD. When the GO/DONE bit is set, the A/D module continues to sample the input for the selected acquisition time, then automatically begins a conversion. Since the acquisition time is programmed, there may be no need to wait for an acquisition time between selecting a channel and setting the GO/DONE bit.

Manual acquisition is selected when ACQT2:ACQT0 = 000. When the GO/DONE bit is set, sampling is stopped and a conversion begins. The user is responsible for ensuring the required acquisition time has passed between selecting the desired input channel and setting the GO/DONE bit. This option is also the default Reset state of the ACQT2:ACQT0 bits and is compatible with devices that do not offer programmable acquisition times.

In either case, when the conversion is completed, the GO/DONE bit is cleared, the ADIF flag is set and the A/D begins sampling the currently selected channel again. If an acquisition time is programmed, there is nothing to indicate if the acquisition time has ended or if the conversion has begun.

2.3 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 13 TAD per 12-bit conversion. The source of the A/D conversion clock is software selectable. There are seven possible options for TAD:

- 2 Tosc
- 4 Tosc
- 8 Tosc
- 16 Tosc
- 32 Tosc
- 64 Tosc
- · Internal RC Oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be as short as possible, but greater than the minimum TAD (see parameter 130 for more information).

Table 2-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

TABLE 2-1: TAD vs. DEVICE OPERATING FREQUENCIES

A/D Clock So	A/D Clock Source (TAD)					
Operation	ADCS2:ADCS0	Maximum Fosc				
2 Tosc	000	2.50 MHz				
4 Tosc	100	5.00 MHz				
8 Tosc	001	10.00 MHz				
16 Tosc	101	20.00 MHz				
32 Tosc	010	40.00 MHz				
64 Tosc	110	48.00 MHz				
RC ⁽¹⁾	x11	1.00 MHz ⁽²⁾				

- **Note 1:** The RC source has a typical TAD time of 2.5 μ s.
 - 2: For device frequencies above 1 MHz, the device must be in Sleep for the entire conversion or a Fosc divider should be used instead; otherwise, the A/D accuracy specification may not be met.

2.4 Operation in Power-Managed Modes

The selection of the automatic acquisition time and A/D conversion clock is determined in part by the clock source and frequency while in a power-managed mode.

If the A/D is expected to operate while the device is in a power-managed mode, the ADCS2:ADCS0 bits in ADCON2 should be updated in accordance with the clock source to be used. The ACQT2:ACQT0 bits do not need to be adjusted as the ADCS2:ADCS0 bits adjust the TAD time for the new clock speed. After entering the mode, an A/D acquisition or conversion may be started. Once started, the device should continue to be clocked by the same clock source until the conversion has been completed.

If desired, the device may be placed into the corresponding Idle mode during the conversion. If the device clock frequency is less than 1 MHz, the A/D RC clock source should be selected.

Operation in Sleep mode requires the A/D FRC clock to be selected. If bits ACQT2:ACQT0 are set to '000' and a conversion is started, the conversion will be delayed one instruction cycle to allow execution of the SLEEP instruction and entry to Sleep mode. The IDLEN bit (OSCCON<7>) must have already been cleared prior to starting the conversion.

2.5 Configuring Analog Port Pins

The ADCON1, TRISA, TRISB and TRISE registers all configure the A/D port pins. The port pins needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS3:CHS0 bits and the TRIS bits.

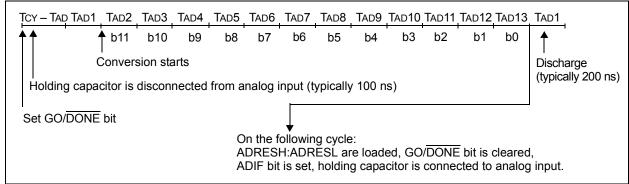
- Note 1: When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level). Analog conversion on pins configured as digital pins can be performed. The voltage on the pin will be accurately converted.
 - 2: Analog levels on any pin defined as a digital input may cause the digital input buffer to consume current out of the device's specification limits.
 - 3: The PBADEN bit in Configuration Register 3H configures PORTB pins to reset as analog or digital pins by controlling how the PCFG3:PCFG0 bits in ADCON1 are reset.

2.6 A/D Conversions

Figure 2-4 shows the operation of the A/D Converter after the GO/DONE bit has been set and the ACQT2:ACQT0 bits are cleared. A conversion is started after the following instruction to allow entry into Sleep mode before the conversion begins.

Figure 2-5 shows the operation of the A/D Converter after the GO/DONE bit has been set and the ACQT2:ACQT0 bits are set to '010', and selecting a 4 TAD acquisition time before the conversion starts.

Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D Result register pair will NOT be updated with the partially completed A/D conversion sample. This means the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers).


After the A/D conversion is completed or aborted, a 2 Tcy wait is required before the next acquisition can be started. After this wait, acquisition on the selected channel is automatically started.

Note: The GO/DONE bit should NOT be set in the same instruction that turns on the A/D. Code should wait at least 2 μs after enabling the A/D before beginning an acquisition and conversion cycle.

2.7 Discharge

The discharge phase is used to initialize the value of the holding capacitor. The array is discharged before every sample. This feature helps to optimize the unity gain amplifier, as the circuit always needs to charge the capacitor array, rather than charge/discharge based on previous measure values.

FIGURE 2-4: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 000, TACQ = 0)

FIGURE 2-5: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD)

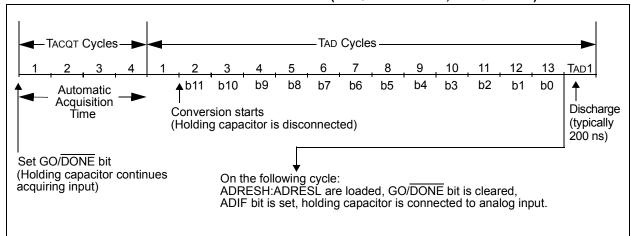


TABLE 4-1: A/D CONVERTER CHARACTERISTICS: PIC18F2458/2553/4458/4553 (INDUSTRIAL) PIC18LF2458/2553/4458/4553 (INDUSTRIAL)

Param No.	Sym	Characteristic	Min	Тур	Max	Units		Conditions
A01	NR	Resolution	_	_	12	bit		ΔV REF $\geq 3.0V$
A03	EIL	Integral Linearity Error	_	±1	±2.0	LSB	VDD = 3.0V	$\Delta VREF \ge 3.0V$
			_	_	±2.0	LSB	VDD = 5.0V	
A04	EDL	Differential Linearity Error	_	±1	+1.5/-1.0	LSB	VDD = 3.0V	$\Delta VREF \ge 3.0V$
			_	_	+1.5/-1.0	LSB	VDD = 5.0V	
A06	Eoff	Offset Error	_	±1	±5	LSB	VDD = 3.0V	$\Delta VREF \ge 3.0V$
			_	_	±3	LSB	VDD = 5.0V	
A07	Egn	Gain Error	_	±1	±1.25	LSB	VDD = 3.0V	$\Delta VREF \ge 3.0V$
			_	_	±2.00	LSB	VDD = 5.0V	
A10	_	Monotonicity	Gı	uarantee	d ⁽¹⁾	_		VSS ≤ VAIN ≤ VREF
A20	ΔVREF	Reference Voltage Range (VREFH – VREFL)	3	_	VDD – VSS	V		For 12-bit resolution
A21	VREFH	Reference Voltage High	Vss + 3.0V	_	VDD + 0.3V	V		For 12-bit resolution
A22	VREFL	Reference Voltage Low	Vss - 0.3V	_	VDD - 3.0V	V		For 12-bit resolution
A25	Vain	Analog Input Voltage	VREFL	_	VREFH	V		
A30	ZAIN	Recommended Impedance of Analog Voltage Source	_	_	2.5	kΩ		
A50	IREF	VREF Input Current ⁽²⁾	_	_	5 150	μA μA		During VAIN acquisition. During A/D conversion cycle.

Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

^{2:} VREFH current is from the RA3/AN3/VREF+ pin or VDD, whichever is selected as the VREFH source.

VREFL current is from the RA2/AN2/VREF-/CVREF pin or VSS, whichever is selected as the VREFL source.

FIGURE 4-3: A/D CONVERSION TIMING

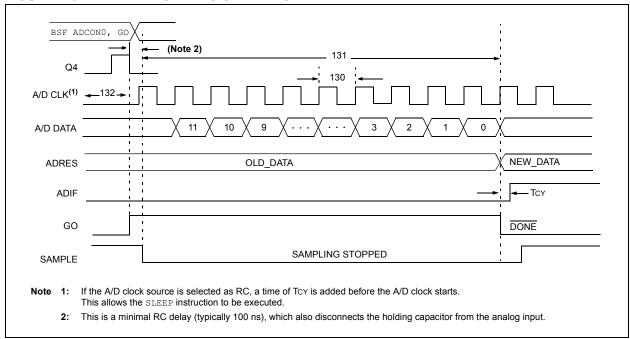


TABLE 4-2: A/D CONVERSION REQUIREMENTS

Param No.	Symbol	Characte	Min	Max	Units	Conditions	
110.			1				
130	TAD	A/D Clock Period	PIC18FXXXX	8.0	12.5 ⁽¹⁾	μS	Tosc based, VREF $\geq 3.0V$
			PIC18 LF XXXX	1.4	25.0 ⁽¹⁾	μS	V _{DD} = 3.0V;
							Tosc based, VREF full range
			PIC18FXXXX	_	1	μS	A/D RC mode
			PIC18 LF XXXX	_	3	μS	VDD = 3.0V; A/D RC mode
131	TCNV	Conversion Time		13	14	TAD	
		(not including acquisition	on time) ⁽²⁾				
132	TACQ	Acquisition Time ⁽³⁾	1.4	_	μS		
135	Tswc	Switching Time from Co	_	(Note 4)			
137	TDIS	Discharge Time		0.2	_	μS	

Note 1: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.

- 2: ADRES registers may be read on the following TcY cycle.
- 3: The time for the holding capacitor to acquire the "New" input voltage when the voltage changes full scale after the conversion (VDD to Vss or Vss to VDD). The source impedance (Rs) on the input channels is 50Ω.
- 4: On the following cycle of the device clock.

5.0 PACKAGING INFORMATION

For packaging information, see the "PIC18F2455/2550/4455/4550 Data Sheet" (DS39632).

NOTES:

APPENDIX C: MIGRATION FROM MID-RANGE TO ENHANCED DEVICES

A detailed discussion of the differences between the mid-range MCU devices (i.e., PIC16CXXX) and the enhanced devices (i.e., PIC18FXXX) is provided in AN716, "Migrating Designs from PIC16C74A/74B to PIC18C442". The changes discussed, while device specific, are generally applicable to all mid-range to enhanced device migrations.

This Application Note is available as Literature Number DS00716.

APPENDIX D: MIGRATION FROM HIGH-END TO ENHANCED DEVICES

A detailed discussion of the migration pathway and differences between the high-end MCU devices (i.e., PIC17CXXX) and the enhanced devices (i.e., PIC18FXXX) is provided in AN726, "PIC17CXXX to PIC18CXXX Migration".

This Application Note is available as Literature Number DS00726.

INDEX

A	M	
A/D21	Microchip Internet Web Site	43
A/D Converter Interrupt, Configuring25	Migration from High-End to Enhanced Devices	
Acquisition Requirements26	Migration from Mid-Range to Enhanced Devices	
ADCON0 Register21		
ADCON1 Register21	Р	
ADCON2 Register21	Packaging Information	37
ADRESH Register21, 24	Pin Functions	
ADRESL Register21	MCLR/VPP/RE3	11
Analog Port Pins, Configuring28	MCLR/VPP/RE3	15
Associated Registers30	NC/ICCK/ICPGC	20
Calculating the Minimum Required Acquisition Time . 26	NC/ICDT/ICPGD	20
Configuring the Module25	NC/ICPORTS	
Conversion Clock (TAD)27	NC/ICRST/ICVPP	
Conversion Status (GO/DONE Bit)24	OSC1/CLKI 1	1, 15
Conversions29	OSC2/CLKO/RA61	1, 15
Converter Characteristics35	RA0/AN01	2, 16
Discharge29	RA1/AN11	,
Operation in Power-Managed Modes28	RA2/AN2/VREF-/CVREF1	,
Selecting and Configuring Acquisition Time27	RA3/AN3/VREF+1	
Special Event Trigger (CCP)30	RA4/T0CK <u>I/C</u> 1OUT/RCV1	
Use of the CCP2 Trigger30	RA5/AN4/SS/HLVDIN/C2OUT1	2, 16
Absolute Maximum Ratings	RB0/AN12/INT0/FLT0/SDI/SDA1	3, 17
ADCON0 Register21	RB1/AN10/INT1/SCK/SCL1	3, 17
GO/DONE Bit24	RB2/AN8/INT2/VMO1	3, 17
ADCON1 Register21	RB3/AN9/CCP2/VPO1	3, 17
ADCON2 Register21	RB4/AN11/KBI0	13
ADRESH Register21	RB4/AN11/KBI0/CSSPP	17
ADRESL Register21, 24	RB5/KBI1/PGM1	3, 17
Analog-to-Digital Converter. See A/D.	RB6/KBI2/PGC1	3, 17
_	RB7/KBI3/PGD1	
В	RC0/T10S0/T13C <u>KI</u> 14	
Block Diagrams	RC1/T1OSI/CCP2/UOE1	
A/D24	RC2/CCP1	14
Analog Input Model25	RC2/CCP1/P1A	18
PIC18F2458/25539	RC4/D-/VM1	
PIC18F4458/455310	RC5/D+/VP1	4, 18
С	RC6/TX/CK 14	,
	RC7/RX/DT/SDO1	4, 18
Compare (CCP Module)	RD0/SPP0	
Special Event Trigger30	RD1/SPP1	
Customer Change Notification Service43	RD2/SPP2	
Customer Notification Service43	RD3/SPP3	
Customer Support43	RD4/SPP4	
D	RD5/SPP5/P1B	
	RD6/SPP6/P1C	
Device Differences	RD7/SPP7/P1D	
Device ID Registers	RE0/AN5/CK1SPP	
Device Overview	RE1/AN6/CK2SPP	
Other Special Features7	RE2/AN7/OESPP	20
E	VDD	4, 20
	Vss1	, -
Electrical Characteristics	Vusb1	4, 20
Equations A/D Acquisition Time	Pinout I/O Descriptions	
A/D Acquisition Time	PIC18F2458/2553	11
A/D Minimum Charging Time	PIC18F4458/4553	15
Errata6	Power-Managed Modes	
I	and A/D Operation	28
•	R	
Internet Address		
Interrupt Sources	Reader Response	44
A/D Conversion Complete	Registers	
	ADCON0 (A/D Control 0)	21

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- · Technical Support
- · Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com