

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	24KB (12K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4458-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

28/40/44-Pin High-Performance, Enhanced Flash, USB Microcontrollers with 12-Bit A/D and nanoWatt Technology

Universal Serial Bus Features:

- USB V2.0 Compliant
- · Low Speed (1.5 Mb/s) and Full Speed (12 Mb/s)
- Supports Control, Interrupt, Isochronous and Bulk Transfers
- Supports up to 32 Endpoints (16 bidirectional)
- 1-Kbyte Dual Access RAM for USB
- On-Chip USB Transceiver with On-Chip Voltage Regulator
- · Interface for Off-Chip USB Transceiver
- Streaming Parallel Port (SPP) for USB Streaming Transfers (40/44-pin devices only)

Power-Managed Modes:

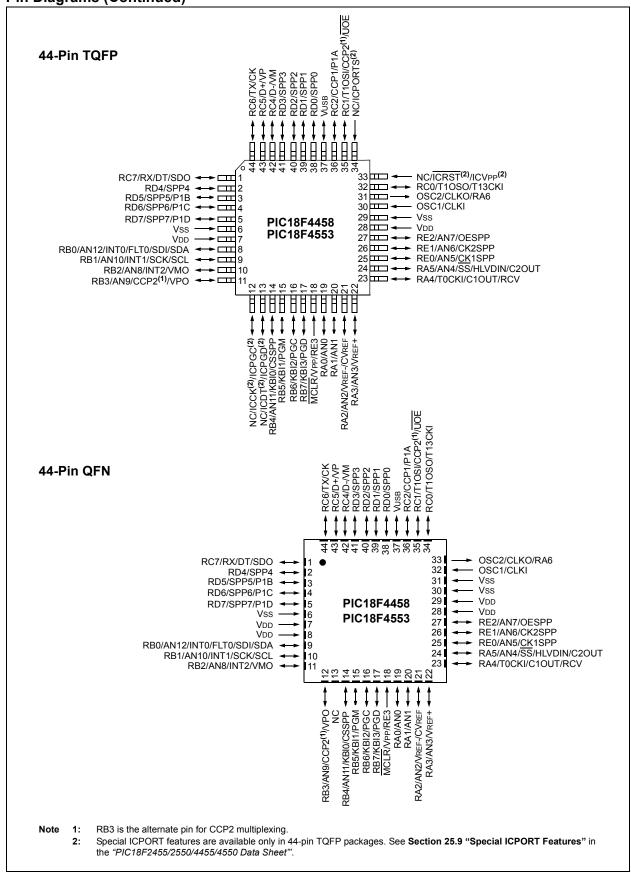
- · Run: CPU On, Peripherals On
- · Idle: CPU Off, Peripherals On
- · Sleep: CPU Off, Peripherals Off
- Idle mode Currents Down to 5.8 μA Typical
- Sleep mode Currents Down to 0.1 μ A Typical
- Timer1 Oscillator: 1.1 μA Typical, 32 kHz, 2V
- Watchdog Timer: 2.1 μA Typical
- · Two-Speed Oscillator Start-up

Special Microcontroller Features:

- C Compiler Optimized Architecture with Optional Extended Instruction Set
- 100,000 Erase/Write Cycle Enhanced Flash Program Memory Typical
- 1,000,000 Erase/Write Cycle Data EEPROM Memory Typical
- Flash/Data EEPROM Retention: > 40 Years
- Self-Programmable under Software Control
- · Priority Levels for Interrupts
- 8 x 8 Single-Cycle Hardware Multiplier
- Extended Watchdog Timer (WDT):
 - Programmable period from 41 ms to 131s
- Programmable Code Protection
- Single-Supply 5V In-Circuit Serial Programming™ (ICSP™) via Two Pins
- In-Circuit Debug (ICD) via Two Pins
- Optional Dedicated ICD/ICSP Port (44-pin TQFP package only)
- Wide Operating Voltage Range (2.0V to 5.5V)

Flexible Oscillator Structure:

- Four Crystal modes, Including High-Precision PLL for USB
- · Two External Clock modes, up to 48 MHz
- · Internal Oscillator Block:
 - 8 user-selectable frequencies, from 31 kHz to 8 MHz
 - User-tunable to compensate for frequency drift
- · Secondary Oscillator using Timer1 @ 32 kHz
- Dual Oscillator Options allow Microcontroller and USB module to Run at Different Clock Speeds
- · Fail-Safe Clock Monitor:
 - Allows for safe shutdown if any clock stops


Peripheral Highlights:

- · High-Current Sink/Source: 25 mA/25 mA
- Three External Interrupts
- Four Timer modules (Timer0 to Timer3)
- Up to 2 Capture/Compare/PWM (CCP) modules:
 - Capture is 16-bit, max. resolution 5.2 ns (Tcy/16)
- Compare is 16-bit, max. resolution 83.3 ns (Tcy)
- PWM output: PWM resolution is 1 to 10-bits
- Enhanced Capture/Compare/PWM (ECCP) module:
 - Multiple output modes
 - Selectable polarity
 - Programmable dead time
 - Auto-shutdown and auto-restart
- · Enhanced USART module:
 - LIN bus support
- Master Synchronous Serial Port (MSSP) module supporting 3-wire SPI (all 4 modes) and I²C™ Master and Slave modes
- 12-Bit, up to 13-Channel Analog-to-Digital Converter module (A/D) with Programmable Acquisition Time
- Dual Analog Comparators with Input Multiplexing

Note: This document is supplemented by the "PIC18F2455/2550/4455/4550 Data Sheet" (DS39632). See Section 1.0 "Device Overview".

	Prog	ram Memory	Data	Memory		12-Bit	CCD/ECCD		М	SSP	RT	ō.	Timoro		
Device	Flash (bytes)	# Single-Word Instructions	SRAM (bytes)	EEPROM (bytes)	I/O	A/D (ch)	CCP/ECCP (PWM)	SPP	SPI	Master I ² C™	EUSA	Com	Timers 8/16-Bit		
PIC18F2458	24K	12288			24	10	2/0	No							
PIC18F2553	32K	16384	2048	256	24	24	24	10	2/0	INO	V	V	4	2	1/3
PIC18F4458	24K	12288	2040	250	256		4.44	Yes	1	Y	'		1/3		
PIC18F4553	32K	16384			35	13	1/1	res							

Pin Diagrams (Continued)

Table of Contents

1.0	Device Overview	7
2.0	12-Bit Analog-to-Digital Converter (A/D) Module	21
3.0	Special Features of the CPU	31
4.0	Electrical Characteristics	
5.0	Packaging Information	37
Appe	endix A: Revision History	39
Appe	endix B: Device Differences	39
	endix C: Migration From Mid-Range to Enhanced Devices	
Appe	endix D: Migration From High-End to Enhanced Devices	40
	<	
The I	Microchip Web Site	43
Custo	omer Change Notification Service	43
Custo	omer Support	43
	der Response	
	uct Identification System	

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Frrata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- · Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

PIC18F2458PIC18F4458PIC18F2553PIC18F4553

Note: This data sheet documents only the devices' features and specifications that are in addition to the features and specifications of the PIC18F2455/2550/4455/4550 devices. For information on the features and specifications shared by the PIC18F2458/2553/4458/4553 and PIC18F2455/2550/4455/4550 devices see the "PIC18F2455/2550/4455/4550 Data Sheet" (DS39632).

The PIC18F4553 family of devices offers the advantages of all PIC18 microcontrollers – namely, high computational performance at an economical price – with the addition of high-endurance, Enhanced Flash program memory. In addition to these features, the PIC18F4553 family introduces design enhancements that make these microcontrollers a logical choice for many high-performance, power sensitive applications.

1.1 Special Features

 12-Bit A/D Converter: The PIC18F4553 family implements a 12-bit A/D Converter. The A/D Converter incorporates programmable acquisition time. This allows for a channel to be selected and a conversion to be initiated, without waiting for a sampling period and thus, reducing code overhead.

1.2 Details on Individual Family Members

The PIC18F2458/2553/4458/4553 devices are available in 28-pin and 40/44-pin packages. Block diagrams for the two groups are shown in Figure 1-1 and Figure 1-2.

The devices are differentiated from each other in the following ways:

- Flash program memory (24 Kbytes for PIC18FX458 devices, 32 Kbytes for PIC18FX553).
- 2. A/D channels (10 for 28-pin devices, 13 for 40-pin and 44-pin devices).
- 3. I/O ports (3 bidirectional ports and 1 input only port on 28-pin devices, 5 bidirectional ports on 40-pin and 44-pin devices).
- 4. CCP and Enhanced CCP implementation (28-pin devices have two standard CCP modules, 40-pin and 44-pin devices have one standard CCP module and one ECCP module).
- 5. Streaming Parallel Port (present only on 40/44-pin devices).

All other features for devices in this family are identical. These are summarized in Table 1-1.

The pinouts for all devices are listed in Table 1-2 and Table 1-3

Members of the PIC18F4553 family are available as both standard and low-voltage devices. Standard devices with Enhanced Flash memory, designated with an "F" in the part number (such as PIC18F2458), accommodate an operating VDD range of 4.2V to 5.5V. Low-voltage parts, designated by "LF" (such as PIC18LF2458), function over an extended VDD range of 2.0V to 5.5V.

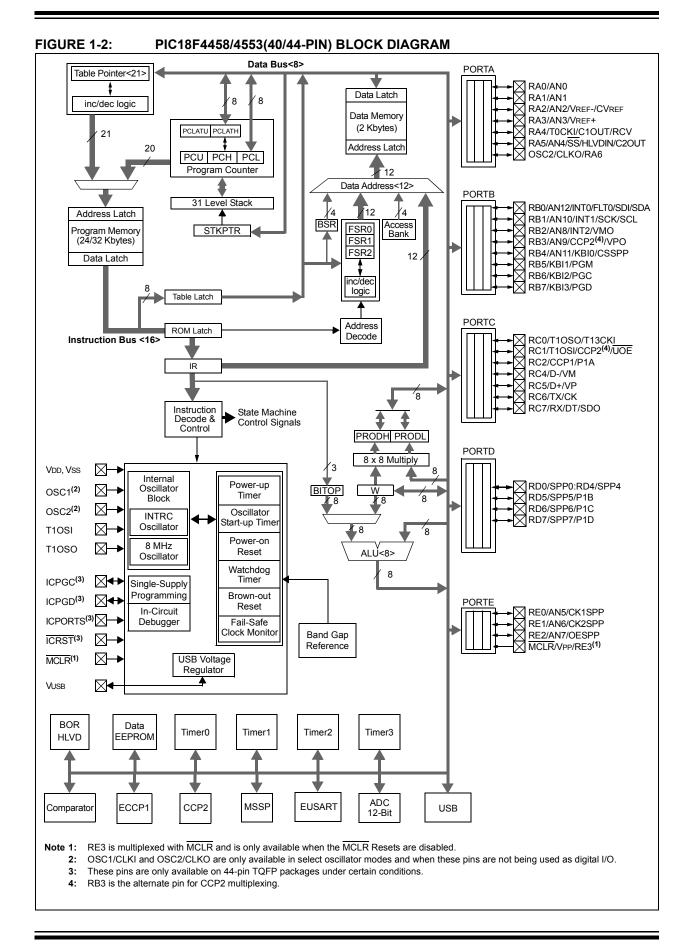


TABLE 1-2: PIC18F2458/2553 PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Number	Pin	Buffer	Description		
Fill Name	SPDIP, SOIC	Type	Туре	Bescription		
				PORTA is a bidirectional I/O port.		
RA0/AN0	2					
RA0		I/O	TTL	Digital I/O.		
AN0		I	Analog	Analog input 0.		
RA1/AN1	3					
RA1		I/O	TTL	Digital I/O.		
AN1		1	Analog	Analog input 1.		
RA2/AN2/VREF-/CVREF	4					
RA2		I/O	TTL	Digital I/O.		
AN2		I	Analog	Analog input 2.		
VREF-		I	Analog	A/D reference voltage (low) input.		
CVREF		0	Analog	Analog comparator reference output.		
RA3/AN3/VREF+	5					
RA3		I/O	TTL	Digital I/O.		
AN3		I	Analog	Analog input 3.		
VREF+		I	Analog	A/D reference voltage (high) input.		
RA4/T0CKI/C1OUT/RCV	6					
RA4		I/O	ST	Digital I/O.		
T0CKI		I	ST	Timer0 external clock input.		
C1OUT		0		Comparator 1 output.		
RCV		ı	TTL	External USB transceiver RCV input.		
RA5/AN4/SS/	7					
HLVDIN/C2OUT						
RA5		I/O	TTL	Digital I/O.		
AN4 SS		!	Analog	Analog input 4.		
SS HLVDIN		l I	TTL	SPI slave select input.		
C2OUT		0	Analog	High/Low-Voltage Detect input. Comparator 2 output.		
		U	_	·		
RA6	_	_	_	See the OSC2/CLKO/RA6 pin.		

Legend: TTL = TTL compatible input

CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels
O = Output

I = Input P = Power

Note 1: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.

2: Default assignment for CCP2 when CCP2MX Configuration bit is set.

TABLE 1-3: PIC18F4458/4553 PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pi	n Num	ber	Pin	Buffer	Description			
PIII Name	PDIP	QFN	TQFP	Туре	Туре	Description			
RB0/AN12/INT0/	33	9	8			PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.			
FLT0/SDI/SDA RB0 AN12 INT0 FLT0 SDI SDA RB1/AN10/INT1/SCK/	34	10	9	I/O /O	TTL Analog ST ST ST ST	Digital I/O. Analog input 12. External interrupt 0. Enhanced PWM Fault input (ECCP1 module). SPI data in. I ² C™ data I/O.			
SCL RB1 AN10 INT1 SCK SCL				I/O I I I/O I/O	TTL Analog ST ST ST	Digital I/O. Analog input 10. External interrupt 1. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C mode.			
RB2/AN8/INT2/VMO RB2 AN8 INT2 VMO	35	11	10	I/O I I O	TTL Analog ST —	Digital I/O. Analog input 8. External interrupt 2. External USB transceiver VMO output.			
RB3/AN9/CCP2/VPO RB3 AN9 CCP2 ⁽¹⁾ VPO	36	12	11	I/O I I/O O	TTL Analog ST —	Digital I/O. Analog input 9. Capture 2 input/Compare 2 output/PWM 2 output. External USB transceiver VPO output.			
RB4/AN11/KBI0/CSSPP RB4 AN11 KBI0 CSSPP	37	14	14	I/O 	TTL Analog TTL —	Digital I/O. Analog input 11. Interrupt-on-change pin. SPP chip select control output.			
RB5/KBI1/PGM RB5 KBI1 PGM	38	15	15	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. Low-Voltage ICSP™ Programming enable pin.			
RB6/KBI2/PGC RB6 KBI2 PGC	39	16	16	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming clock pin.			
RB7/KBI3/PGD RB7 KBI3 PGD	40	17	17	I/O /O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.			

Legend: TTL = TTL compatible input

CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels
O = Output

I = Input P = Power

Note 1: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.

- 2: Default assignment for CCP2 when CCP2MX Configuration bit is set.
- 3: These pins are No Connect unless the ICPRT Configuration bit is set. For NC/ICPORTS, the pin is No Connect unless ICPRT is set and the DEBUG Configuration bit is cleared.

TABLE 1-3: PIC18F4458/4553 PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pi	n Num	ber	Pin	Buffer	Description
Pili Name	PDIP	QFN	TQFP	Туре	Type	Description
						PORTC is a bidirectional I/O port.
RC0/T10SO/T13CKI RC0 T10SO T13CKI	15	34	32	I/O O I	ST — ST	Digital I/O. Timer1 oscillator output. Timer1/Timer3 external clock input.
RC1/T1OSI/CCP2/ UOE	16	35	35			
RC1 T1OSI CCP2 ⁽²⁾ UOE				I/O I I/O O	ST CMOS ST —	Digital I/O. Timer1 oscillator input. Capture 2 input/Compare <u>2 o</u> utput/PWM2 output. External USB transceiver OE output.
RC2/CCP1/P1A RC2 CCP1 P1A	17	36	36	I/O I/O O	ST ST TTL	Digital I/O. Capture 1 input/Compare 1 output/PWM1 output. Enhanced CCP1 PWM output, channel A.
RC4/D-/VM RC4 D- VM	23	42	42	 	TTL — TTL	Digital input. USB differential minus line (input/output). External USB transceiver VM input.
RC5/D+/VP RC5 D+ VP	24	43	43	I I/O I	TTL — TTL	Digital input. USB differential plus line (input/output). External USB transceiver VP input.
RC6/TX/CK RC6 TX CK	25	44	44	I/O O I/O	ST — ST	Digital I/O. EUSART asynchronous transmit. EUSART synchronous clock (see RX/DT).
RC7/RX/DT/SDO RC7 RX DT SDO	26	1	1	I/O I I/O O	ST ST ST	Digital I/O. EUSART asynchronous receive. EUSART synchronous data (see TX/CK). SPI data out.

Legend: TTL = TTL compatible input

CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels

= Input

O = Output

P = Power

Note 1: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.

- 2: Default assignment for CCP2 when CCP2MX Configuration bit is set.
 - 3: These pins are No Connect unless the ICPRT Configuration bit is set. For NC/ICPORTS, the pin is No Connect unless ICPRT is set and the DEBUG Configuration bit is cleared.

TABLE 1-3: PIC18F4458/4553 PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Number			Pin	Buffer	Description				
Pin Name	PDIP	QFN	TQFP	Туре	Туре	Description				
						PORTD is a bidirectional I/O port or a Streaming Parallel Port (SPP). PORTD can be software programmed for internal weak pull-ups on all inputs. These pins have TTL input buffers when the SPP module is enabled.				
RD0/SPP0 RD0 SPP0	19	38	38	I/O I/O	ST TTL	Digital I/O. Streaming Parallel Port data.				
RD1/SPP1 RD1 SPP1	20	39	39	I/O I/O	ST TTL	Digital I/O. Streaming Parallel Port data.				
RD2/SPP2 RD2 SPP2	21	40	40	I/O I/O	ST TTL	Digital I/O. Streaming Parallel Port data.				
RD3/SPP3 RD3 SPP3	22	41	41	I/O I/O	ST TTL	Digital I/O. Streaming Parallel Port data.				
RD4/SPP4 RD4 SPP4	27	2	2	I/O I/O	ST TTL	Digital I/O. Streaming Parallel Port data.				
RD5/SPP5/P1B RD5 SPP5 P1B	28	3	3	I/O I/O O	ST TTL	Digital I/O. Streaming Parallel Port data. ECCP1 PWM output, channel B.				
RD6/SPP6/P1C RD6 SPP6 P1C	29	4	4	I/O I/O O	ST TTL	Digital I/O. Streaming Parallel Port data. ECCP1 PWM output, channel C.				
RD7/SPP7/P1D RD7 SPP7 P1D	30	5	5	I/O I/O O	ST TTL —	Digital I/O. Streaming Parallel Port data. ECCP1 PWM output, channel D.				

Legend: TTL = TTL compatible input

CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels

= Input

= Output = Power

- Note 1: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.
 - 2: Default assignment for CCP2 when CCP2MX Configuration bit is set.
 - 3: These pins are No Connect unless the ICPRT Configuration bit is set. For NC/ICPORTS, the pin is No Connect unless ICPRT is set and the DEBUG Configuration bit is cleared.

2.0 12-BIT ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) Converter module has 10 inputs for the 28-pin devices and 13 for the 40-pin and 44-pin devices. This module allows conversion of an analog input signal to a corresponding 12-bit digital number.

The module has five registers:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)
- · A/D Control Register 2 (ADCON2)

The ADCON0 register, shown in Register 2-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 2-2, configures the functions of the port pins. The ADCON2 register, shown in Register 2-3, configures the A/D clock source, programmed acquisition time and justification.

REGISTER 2-1: ADCON0: A/D CONTROL REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON
bit 7							bit 0

 Legend:
 R = Readable bit
 W = Writable bit
 U = Unimplemented bit, read as '0'

 -n = Value at POR
 '1' = Bit is set
 '0' = Bit is cleared
 x = Bit is unknown

bit 7-6 **Unimplemented:** Read as '0'

bit 5-2 CHS3:CHS0: Analog Channel Select bits

0000 = Channel 0 (AN0)

0001 = Channel 1 (AN1)

0010 = Channel 2 (AN2)

0011 = Channel 3 (AN3)

0100 = Channel 4 (AN4)

0101 = Channel 5 (AN5)(1,2)

0110 = Channel 6 (AN6)(1,2)

0111 = Channel 7 (AN7)(1,2)

1000 = Channel 8 (AN8)

1001 = Channel 9 (AN9)

1010 = Channel 10 (AN10)

1011 = Channel 11 (AN11)

1100 = Channel 12 (AN12 1101 = Unimplemented⁽²⁾

1110 = Unimplemented⁽²⁾

1111 = Unimplemented(2)

bit 1 GO/DONE: A/D Conversion Status bit

When ADON = 1:

1 = A/D conversion in progress

0 = A/D Idle

bit 0 ADON: A/D On bit

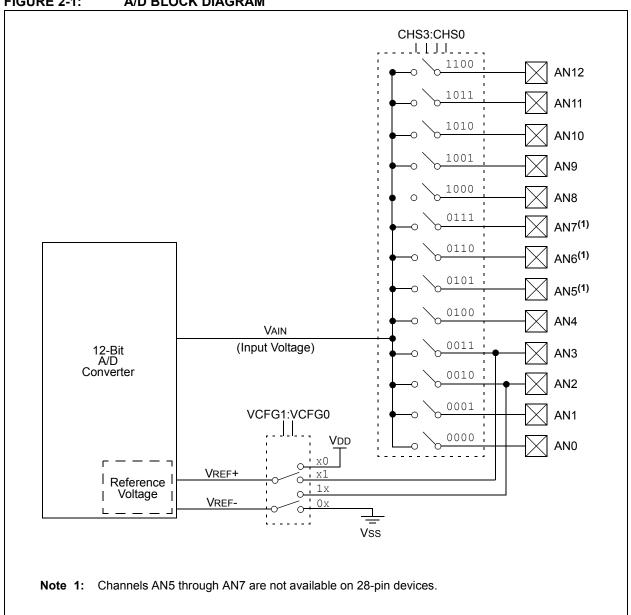
1 = A/D Converter module is enabled

0 = A/D Converter module is disabled

Note 1: These channels are not implemented on 28-pin devices.

Performing a conversion on unimplemented channels will return a floating input measurement.

The analog reference voltage is software selectable to either the device's positive and negative supply voltage (VDD and Vss), or the voltage level on the RA3/AN3/ VREF+ and RA2/AN2/VREF-/CVREF pins.


The A/D Converter has a unique feature of being able to operate while the device is in Sleep mode. To operate in Sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

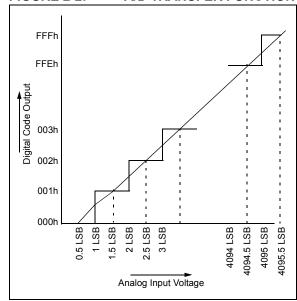
The output of the sample and hold is the input into the Converter, which generates the result via successive approximation.

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off and any conversion in progress is aborted.

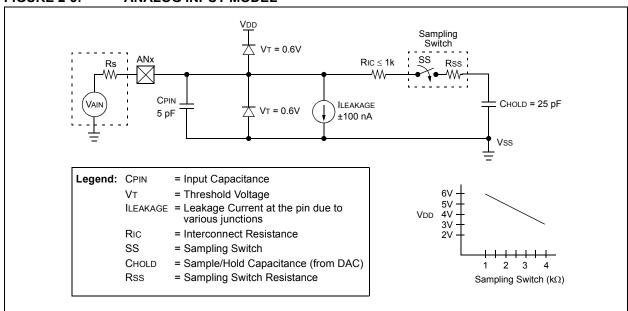
Each port pin associated with the A/D Converter can be configured as an analog input or as a digital I/O. The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH:ADRESL register pair, the GO/DONE bit (ADCON0 register) is cleared and the A/D Interrupt Flag bit, ADIF, is set. The block diagram of the A/D module is shown in Figure 2-1.

FIGURE 2-1: A/D BLOCK DIAGRAM

The value in the ADRESH:ADRESL registers is unknown following Power-on and Brown-out Resets, and is not affected by any other Reset.


After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see **Section 2.1** "A/D Acquisition Requirements". After this acquisition time has elapsed, the A/D conversion can be started. An acquisition time can be programmed to occur between setting the GO/DONE bit and the actual start of the conversion.

The following steps should be followed to perform an A/D conversion:


- 1. Configure the A/D module:
 - Configure analog pins, voltage reference and digital I/O (ADCON1)
 - · Select A/D input channel (ADCON0)
 - · Select A/D acquisition time (ADCON2)
 - · Select A/D conversion clock (ADCON2)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
 - · Clear ADIF bit
 - · Set ADIE bit
 - · Set GIE bit
- 3. Wait the required acquisition time (if required).
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0 register)

- 5. Wait for A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared OR
 - · Waiting for the A/D interrupt
- Read A/D Result registers (ADRESH:ADRESL); clear bit ADIF, if required.
- For next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2 TAD is required before the next acquisition starts.

FIGURE 2-3: ANALOG INPUT MODEL

2.4 Operation in Power-Managed Modes

The selection of the automatic acquisition time and A/D conversion clock is determined in part by the clock source and frequency while in a power-managed mode.

If the A/D is expected to operate while the device is in a power-managed mode, the ADCS2:ADCS0 bits in ADCON2 should be updated in accordance with the clock source to be used. The ACQT2:ACQT0 bits do not need to be adjusted as the ADCS2:ADCS0 bits adjust the TAD time for the new clock speed. After entering the mode, an A/D acquisition or conversion may be started. Once started, the device should continue to be clocked by the same clock source until the conversion has been completed.

If desired, the device may be placed into the corresponding Idle mode during the conversion. If the device clock frequency is less than 1 MHz, the A/D RC clock source should be selected.

Operation in Sleep mode requires the A/D FRC clock to be selected. If bits ACQT2:ACQT0 are set to '000' and a conversion is started, the conversion will be delayed one instruction cycle to allow execution of the SLEEP instruction and entry to Sleep mode. The IDLEN bit (OSCCON<7>) must have already been cleared prior to starting the conversion.

2.5 Configuring Analog Port Pins

The ADCON1, TRISA, TRISB and TRISE registers all configure the A/D port pins. The port pins needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS3:CHS0 bits and the TRIS bits.

- Note 1: When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level). Analog conversion on pins configured as digital pins can be performed. The voltage on the pin will be accurately converted.
 - 2: Analog levels on any pin defined as a digital input may cause the digital input buffer to consume current out of the device's specification limits.
 - 3: The PBADEN bit in Configuration Register 3H configures PORTB pins to reset as analog or digital pins by controlling how the PCFG3:PCFG0 bits in ADCON1 are reset.

3.0 SPECIAL FEATURES OF THE CPU

Note: For additional details on the Configuration bits, refer to the "PIC18F2455/2550/4455/4550 Data Sheet", Section 25.1 "Configuration Bits". Device ID information presented in this section is for PIC18F2458/2553/4458/4553 only.

PIC18F2458/2553/4458/4553 devices include several features intended to maximize reliability and minimize cost through elimination of external components. These include:

· Device ID Registers

3.1 Device ID Registers

The Device ID registers are "read-only" registers. They identify the device type and revision to device programmers, and can be read by firmware using table reads.

TABLE 3-1: DEVICE IDs

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value
3FFFEh	DEVID1	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	xxxx xxxx(1)
3FFFFFh	DEVID2	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	XXXX XXXX(1)

Legend: x = unknown, u = unchanged

Note 1: See Register 3-1 and Register 3-2 for DEVID values. DEVID registers are read-only and cannot be programmed by the user.

FIGURE 4-3: A/D CONVERSION TIMING

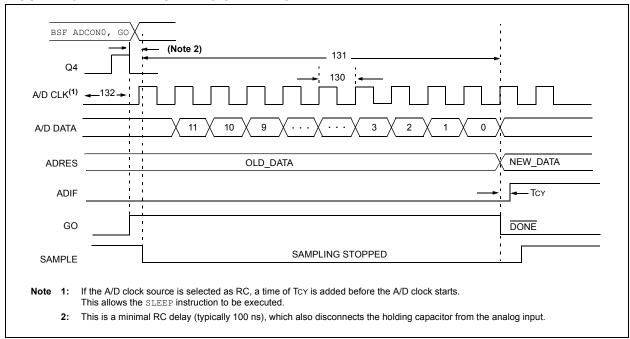


TABLE 4-2: A/D CONVERSION REQUIREMENTS

Param No.	Symbol	Characte	eristic	Min	Max	Units	Conditions
110.			1				
130	TAD	A/D Clock Period	PIC18FXXXX	8.0	12.5 ⁽¹⁾	μS	Tosc based, VREF $\geq 3.0V$
			PIC18 LF XXXX	1.4	25.0 ⁽¹⁾	μS	V _{DD} = 3.0V;
							Tosc based, VREF full range
			PIC18FXXXX	_	1	μS	A/D RC mode
			PIC18 LF XXXX	_	3	μS	VDD = 3.0V; A/D RC mode
131	TCNV	Conversion Time		13	14	TAD	
		(not including acquisition	on time) ⁽²⁾				
132	TACQ	Acquisition Time ⁽³⁾		1.4	_	μS	
135	Tswc	Switching Time from Co	onvert → Sample	_	(Note 4)		
137	TDIS	Discharge Time		0.2	_	μS	

Note 1: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.

- 2: ADRES registers may be read on the following TcY cycle.
- 3: The time for the holding capacitor to acquire the "New" input voltage when the voltage changes full scale after the conversion (VDD to Vss or Vss to VDD). The source impedance (Rs) on the input channels is 50Ω.
- 4: On the following cycle of the device clock.

NOTES:

APPENDIX C: MIGRATION FROM MID-RANGE TO ENHANCED DEVICES

A detailed discussion of the differences between the mid-range MCU devices (i.e., PIC16CXXX) and the enhanced devices (i.e., PIC18FXXX) is provided in AN716, "Migrating Designs from PIC16C74A/74B to PIC18C442". The changes discussed, while device specific, are generally applicable to all mid-range to enhanced device migrations.

This Application Note is available as Literature Number DS00716.

APPENDIX D: MIGRATION FROM HIGH-END TO ENHANCED DEVICES

A detailed discussion of the migration pathway and differences between the high-end MCU devices (i.e., PIC17CXXX) and the enhanced devices (i.e., PIC18FXXX) is provided in AN726, "PIC17CXXX to PIC18CXXX Migration".

This Application Note is available as Literature Number DS00726.

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

RE:	Reader Response
Froi	Name
Арр	lication (optional):
Wo	ıld you like a reply?YN
Dev	ice: PIC18F2458/2553/4458/4553 Literature Number: DS39887C
Que	stions:
1.	What are the best features of this document?
2.	How does this document meet your hardware and software development needs?
3.	Do you find the organization of this document easy to follow? If not, why?
4.	What additions to the document do you think would enhance the structure and subject?
5.	What deletions from the document could be made without affecting the overall usefulness?
6.	Is there any incorrect or misleading information (what and where)?
7.	How would you improve this document?

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device	X /XX XXX Temperature Package Pattern Range	Examples: a) PIC18LF4553-I/P 301 = Industrial temp., PDIP package, Extended VDD limits, QTP pattern #301. b) PIC18LF2458-I/SO = Industrial temp., SOIC
Device	PIC18F2458/2553 ⁽¹⁾ , PIC18F4458/4553 ⁽¹⁾ , PIC18F2458/2553T ⁽²⁾ , PIC18F4458/4553T ⁽²⁾ ; VDD range 4.2V to 5.5V PIC18LF2458/2553 ⁽¹⁾ , PIC18LF4458/4553 ⁽¹⁾ , PIC18LF2458/2553T ⁽²⁾ , PIC18LF4458/4553T ⁽²⁾ ; VDD range 2.0V to 5.5V	package, Extended VpD limits. c) PIC18F4458-I/P = Industrial temp., PDIP package, normal VpD limits.
Temperature Range	I = -40°C to +85°C (Industrial) E = -40°C to +125°C (Extended)	
Package	PT = TQFP (Thin Quad Flatpack) SO = SOIC SP = Skinny PDIP P = PDIP ML = QFN	Note 1: F = Standard Voltage Range LF = Wide Voltage Range 2: T = In tape and reel TQFP packages only.
Pattern	QTP, SQTP, Code or Special Requirements (blank otherwise)	

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://support.microchip.com

Web Address: www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca. IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara

Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto

Mississauga, Ontario,

Canada

Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2401-1200

Fax: 852-2401-3431

Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Hong Kong SAR

Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan

Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xiamen

Tel: 86-592-2388138 Fax: 86-592-2388130

China - Xian

Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Zhuhai

Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore

Tel: 91-80-3090-4444 Fax: 91-80-3090-4080

India - New Delhi

Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama

Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu

Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur

Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang

Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila

Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu

Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung

Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei

Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok

Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen

Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid

Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 **UK - Wokingham**

Tel: 44-118-921-5869 Fax: 44-118-921-5820

03/26/09