

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4553t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC18F2458/2553/4458/4553

28/40/44-Pin High-Performance, Enhanced Flash, USB Microcontrollers with 12-Bit A/D and nanoWatt Technology

Universal Serial Bus Features:

- USB V2.0 Compliant
- · Low Speed (1.5 Mb/s) and Full Speed (12 Mb/s)
- Supports Control, Interrupt, Isochronous and Bulk Transfers
- Supports up to 32 Endpoints (16 bidirectional)
- 1-Kbyte Dual Access RAM for USB
- On-Chip USB Transceiver with On-Chip Voltage Regulator
- · Interface for Off-Chip USB Transceiver
- Streaming Parallel Port (SPP) for USB Streaming Transfers (40/44-pin devices only)

Power-Managed Modes:

- Run: CPU On, Peripherals On
- Idle: CPU Off, Peripherals On
- Sleep: CPU Off, Peripherals Off
- Idle mode Currents Down to 5.8 μA Typical
- Sleep mode Currents Down to 0.1 μA Typical
- Timer1 Oscillator: 1.1 μA Typical, 32 kHz, 2V
- Watchdog Timer: 2.1 µA Typical
- Two-Speed Oscillator Start-up

Special Microcontroller Features:

- C Compiler Optimized Architecture with Optional Extended Instruction Set
- 100,000 Erase/Write Cycle Enhanced Flash Program Memory Typical
- 1,000,000 Erase/Write Cycle Data EEPROM Memory Typical
- Flash/Data EEPROM Retention: > 40 Years
- Self-Programmable under Software Control
- · Priority Levels for Interrupts
- 8 x 8 Single-Cycle Hardware Multiplier
- Extended Watchdog Timer (WDT):
- Programmable period from 41 ms to 131s
- Programmable Code Protection
- Single-Supply 5V In-Circuit Serial Programming™ (ICSP™) via Two Pins
- In-Circuit Debug (ICD) via Two Pins
- Optional Dedicated ICD/ICSP Port (44-pin TQFP package only)
- Wide Operating Voltage Range (2.0V to 5.5V)

Flexible Oscillator Structure:

- Four Crystal modes, Including High-Precision PLL for USB
- Two External Clock modes, up to 48 MHz
- · Internal Oscillator Block:
 - 8 user-selectable frequencies, from 31 kHz to 8 MHz
 - User-tunable to compensate for frequency drift
- Secondary Oscillator using Timer1 @ 32 kHz
- Dual Oscillator Options allow Microcontroller and USB module to Run at Different Clock Speeds
- Fail-Safe Clock Monitor:
 - Allows for safe shutdown if any clock stops

Peripheral Highlights:

- · High-Current Sink/Source: 25 mA/25 mA
- Three External Interrupts
- Four Timer modules (Timer0 to Timer3)
- Up to 2 Capture/Compare/PWM (CCP) modules:
 Capture is 16-bit, max. resolution 5.2 ns (Tcy/16)
 - Compare is 16-bit, max. resolution 83.3 ns (TCY)
 PWM output: PWM resolution is 1 to 10-bits
- Enhanced Capture/Compare/PWM (ECCP) module:
 - Multiple output modes
 - Selectable polarity
 - Programmable dead time
 - Auto-shutdown and auto-restart
- Enhanced USART module:
 - LIN bus support
- Master Synchronous Serial Port (MSSP) module supporting 3-wire SPI (all 4 modes) and I²C[™] Master and Slave modes
- 12-Bit, up to 13-Channel Analog-to-Digital Converter module (A/D) with Programmable Acquisition Time
- Dual Analog Comparators with Input Multiplexing

Note:	This	document	is	supple	emente	d by
	the "P	IC18F2455/	255	0/4455	/4550	Data
	Sheet	" (DS3963	32).	See	Section	on 1.0
	"Devi	ce Overviev	∧" .			

Device	Prog	ram Memory	Data Memory			42 84			MSSP		RT	p.	T :
	Flash (bytes)	# Single-Word Instructions	SRAM (bytes)	EEPROM (bytes)	I/O	А/D (ch)	(PWM)	SPP	SPI	Master I ² C™	EUSA	Corr	8/16-Bit
PIC18F2458	24K	12288		256	24	10	2/0	No	v	Y	1	2	1/3
PIC18F2553	32K	16384	2049		24								
PIC18F4458	24K	12288	2040	250	25	13	1/1	Yes	T				
PIC18F4553	32K	16384			35								

1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

•	PIC18F2458	 PIC18F4458
---	------------	--------------------------------

• PIC18F2553 • PIC18F4553

Note: This data sheet documents only the devices' features and specifications that are in addition to the features and specifications of the PIC18F2455/2550/4455/4550 devices. For information on the features and specifications shared by the PIC18F2458/2553/4458/4553 and PIC18F2455/2550/4455/4550 devices see the "PIC18F2455/2550/4455/4550 Data Sheet" (DS39632).

The PIC18F4553 family of devices offers the advantages of all PIC18 microcontrollers – namely, high computational performance at an economical price – with the addition of high-endurance, Enhanced Flash program memory. In addition to these features, the PIC18F4553 family introduces design enhancements that make these microcontrollers a logical choice for many high-performance, power sensitive applications.

1.1 Special Features

 12-Bit A/D Converter: The PIC18F4553 family implements a 12-bit A/D Converter. The A/D Converter incorporates programmable acquisition time. This allows for a channel to be selected and a conversion to be initiated, without waiting for a sampling period and thus, reducing code overhead.

1.2 Details on Individual Family Members

The PIC18F2458/2553/4458/4553 devices are available in 28-pin and 40/44-pin packages. Block diagrams for the two groups are shown in Figure 1-1 and Figure 1-2.

The devices are differentiated from each other in the following ways:

- 1. Flash program memory (24 Kbytes for PIC18FX458 devices, 32 Kbytes for PIC18FX553).
- 2. A/D channels (10 for 28-pin devices, 13 for 40-pin and 44-pin devices).
- I/O ports (3 bidirectional ports and 1 input only port on 28-pin devices, 5 bidirectional ports on 40-pin and 44-pin devices).
- CCP and Enhanced CCP implementation (28-pin devices have two standard CCP modules, 40-pin and 44-pin devices have one standard CCP module and one ECCP module).
- 5. Streaming Parallel Port (present only on 40/44-pin devices).

All other features for devices in this family are identical. These are summarized in Table 1-1.

The pinouts for all devices are listed in Table 1-2 and Table 1-3.

Members of the PIC18F4553 family are available as both standard and low-voltage devices. Standard devices with Enhanced Flash memory, designated with an "F" in the part number (such as PIC18F2458), accommodate an operating VDD range of 4.2V to 5.5V. Low-voltage parts, designated by "LF" (such as PIC18LF2458), function over an extended VDD range of 2.0V to 5.5V.

Features	PIC18F2458	PIC18F2553	PIC18F4458	PIC18F4553
Operating Frequency	DC – 48 MHz			
Program Memory (Bytes)	24576	32768	24576	32768
Program Memory (Instructions)	12288	16384	12288	16384
Data Memory (Bytes)	2048	2048	2048	2048
Data EEPROM Memory (Bytes)	256	256	256	256
Interrupt Sources	19	19	20	20
I/O Ports	Ports A, B, C, (E)	Ports A, B, C, (E)	Ports A, B, C, D, E	Ports A, B, C, D, E
Timers	4	4	4	4
Capture/Compare/PWM Modules	2	2	1	1
Enhanced Capture/ Compare/PWM Modules	0	0	1	1
Serial Communications	MSSP, Enhanced USART	MSSP, Enhanced USART	MSSP, Enhanced USART	MSSP, Enhanced USART
Universal Serial Bus (USB) Module	1	1	1	1
Streaming Parallel Port (SPP)	No	No	Yes	Yes
12-Bit Analog-to-Digital Converter Module	10 Input Channels	10 Input Channels	13 Input Channels	13 Input Channels
Comparators	2	2	2	2
Resets (and Delays)	POR, BOR, WDT, RESET Instruction, Stack Full, Stack Underflow, MCLR (optional), (PWRT, OST)	POR, BOR, WDT, RESET Instruction, Stack Full, Stack Underflow, MCLR (optional), (PWRT, OST)	POR, BOR, WDT, RESET Instruction, Stack Full, Stack Underflow, MCLR (optional), (PWRT, OST)	POR, BOR, WDT, RESET Instruction, Stack Full, Stack Underflow, MCLR (optional), (PWRT, OST)
Programmable High/ Low-Voltage Detect	Yes	Yes	Yes	Yes
Programmable Brown-out Reset	Yes	Yes	Yes	Yes
Instruction Set	75 Instructions; 83 with Extended Instruction Set Enabled			
Packages	28-Pin SPDIP 28-Pin SOIC	28-Pin SPDIP 28-Pin SOIC	40-Pin PDIP 44-Pin QFN 44-Pin TQFP	40-Pin PDIP 44-Pin QFN 44-Pin TQFP
Corresponding Devices with 10-Bit A/D	PIC18F2455	PIC18F2550	PIC18F4455	PIC18F4550

TABLE 1-1: DEVICE FEATURES

Pin Namo	Pin Number	Pin	Buffer	Description
r in Name	SPDIP, SOIC	Туре	Туре	Description
MCLR/VPP/RE3 MCLR	1	I	ST	Master Clear (input) or programming voltage (input). Master Clear (Reset) input. This pin is an active-low Reset to the device.
VPP		Р		Programming voltage input.
RE3		Ι	ST	Digital input.
OSC1/CLKI OSC1 CLKI	9		Analog Analog	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. External clock source input. Always associated with pin function OSC1. (See OSC2/CLKO pin.)
OSC2/CLKO/RA6 OSC2	10	0	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.
CLKO		0	—	In select modes, OSC2 pin outputs CLKO which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
RA6		I/O	TTL	General purpose I/O pin.
Legend: TTL = TTL cor ST = Schmitt	npatible in Trigger int	put out with	CMOS le	CMOS = CMOS compatible input or output

TABLE 1-2: PIC18F2458/2553 PINOUT I/O DESCRIPTIONS

I = Input P = Power

O = Output

Note 1: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.

2: Default assignment for CCP2 when CCP2MX Configuration bit is set.

Din Norra	Pin Number Pin		Buffer	Deceritére
Pin Name	SPDIP, SOIC	Туре	Туре	Description
				PORTC is a bidirectional I/O port.
RC0/T1OSO/T13CKI	11	1/0	OT	
T10S0		0	51	Digital I/O. Timer1 oscillator output
T13CKI		I	ST	Timer1/Timer3 external clock input.
RC1/T1OSI/CCP2/UOE	12			
RC1		I/O	ST	Digital I/O.
110SI			CMOS	Limer1 oscillator input.
			-	External USB transceiver OE output.
RC2/CCP1	13			
RC2		I/O	ST	Digital I/O.
CCP1		I/O	ST	Capture 1 input/Compare 1 output/PWM1 output.
RC4/D-/VM	15		TTI	Digital input
D-		и ИО	· · · L	USB differential minus line (input/output)
VM		1	TTL	External USB transceiver VM input.
RC5/D+/VP	16			
RC5		I	TTL	Digital input.
D+		I/O	 	USB differential plus line (input/output).
	47	0	IIL	External USB transceiver VP input.
RC6/TX/CK	17	1/0	ST	Digital I/O
TX		0	_	EUSART asynchronous transmit.
СК		I/O	ST	EUSART synchronous clock (see RX/DT).
RC7/RX/DT/SDO	18			
RC7		I/O	ST	Digital I/O.
RX			ST	EUSART asynchronous receive.
SDO		0	51	SPI data out.
RE3	_	_		See MCLR/VPP/RE3 pin.
VUSB	14			Internal USB transceiver power supply.
		0	—	When the internal USB regulator is enabled, VUSB is the
		Б		regulator output.
		r -	_	power input for the USB transceiver.
Vss	8, 19	Р		Ground reference for logic and I/O pins.
Vdd	20	Р	_	Positive supply for logic and I/O pins.
Legend: TTL = TTL cor	npatible in			CMOS = CMOS compatible input or output

TABLE 1-2: PIC18F2458/2553 PINOUT I/O DESCRIPTIONS (CONTINUED)

O = Output

= Power

Note 1: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.

2: Default assignment for CCP2 when CCP2MX Configuration bit is set.

Din Nome	Pi	n Numl	ber	Pin Buffer		Description				
	PDIP	QFN	TQFP	Туре	Туре	Description				
MCLR/VPP/RE3 MCLR	1	18	18	I	ST	Master Clear (input) or programming voltage (input). Master Clear (Reset) input. This pin is an active-low Reset to the device.				
RE3				P I	ST	Digital input.				
OSC1/CLKI OSC1 CLKI	13	32	30	 	Analog Analog	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. External clock source input. Always associated with pin function OSC1. (See OSC2/CLKO pin.)				
OSC2/CLKO/RA6 OSC2	14	33	31	0	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.				
CLKO				0	_	In RC mode, OSC2 pin outputs CLKO which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.				
RA6				I/O	TTL	General purpose I/O pin.				
Legend: TTL = TTL c	ompatib	le inpu	t		C	CMOS = CMOS compatible input or output				

TABLE 1-3: PIC18F4458/4553 PINOUT I/O DESCRIPTIONS

ST = Schmitt Trigger input with CMOS levels I 0 = Output

- = Input = Power Ρ

Note 1: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.

2: Default assignment for CCP2 when CCP2MX Configuration bit is set.

3: These pins are No Connect unless the ICPRT Configuration bit is set. For NC/ICPORTS, the pin is No Connect unless ICPRT is set and the DEBUG Configuration bit is cleared.

-	Pi	n Num	ber	Pin E	Buffer	<u> </u>
Pin Name	PDIP	QFN	TQFP	Туре	Туре	Description
RB0/AN12/INT0/	33	9	8			PORTB is a bidirectional I/O port. PORTB can be soft- ware programmed for internal weak pull-ups on all inputs.
RB0 AN12 INT0 FLT0 SDI SDA				I/O I I I I/O	TTL Analog ST ST ST ST	Digital I/O. Analog input 12. External interrupt 0. Enhanced PWM Fault input (ECCP1 module). SPI data in. I ² C™ data I/O.
RB1/AN10/INT1/SCK/	34	10	9			
RB1 AN10 INT1 SCK SCL				I/O I I/O I/O	TTL Analog ST ST ST	Digital I/O. Analog input 10. External interrupt 1. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C mode.
RB2/AN8/INT2/VMO RB2 AN8 INT2 VMO	35	11	10	I/O I I O	TTL Analog ST —	Digital I/O. Analog input 8. External interrupt 2. External USB transceiver VMO output.
RB3/AN9/CCP2/VPO RB3 AN9 CCP2 ⁽¹⁾ VPO	36	12	11	I/O I I/O O	TTL Analog ST —	Digital I/O. Analog input 9. Capture 2 input/Compare 2 output/PWM 2 output. External USB transceiver VPO output.
RB4/AN11/KBI0/CSSPP RB4 AN11 KBI0 CSSPP	37	14	14	I/O I I O	TTL Analog TTL —	Digital I/O. Analog input 11. Interrupt-on-change pin. SPP chip select control output.
RB5/KBI1/PGM RB5 KBI1 PGM	38	15	15	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. Low-Voltage ICSP™ Programming enable pin.
RB6/KBI2/PGC RB6 KBI2 PGC	39	16	16	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming clock pin.
RB7/KBI3/PGD RB7 KBI3 PGD	40	17	17	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.
Legend: TTL = TTL co ST = Schmi O = Outpu	ompatik itt Trigg t	ole inpu er inpu	t t with Cl	MOS le	evels I F	CMOS = CMOS compatible input or output = Input P = Power
O = Outpu Note 1: Alternate ass	t ianmen	t for C(CP2 whe	n CCF	F P2MX Co	P = Power

TABLE 1-3 PIC18E4458/4553 PINOUT I/O DESCRIPTIONS (CONTINUED)

2: Default assignment for CCP2 when CCP2MX Configuration bit is set.

3: These pins are No Connect unless the ICPRT Configuration bit is set. For NC/ICPORTS, the pin is No Connect unless ICPRT is set and the DEBUG Configuration bit is cleared.

U-0	U-0		R/W-	0	R/W	/-0	R/\	V-0	R	2/W ⁽¹⁾		R/W	(1)	R/	′W ⁽¹⁾
_	—		VCFG	61	VCF	G0	PC	=G3	P	CFG2		PCFC	G1	PC	FG0
bit 7	·														bit 0
Legend:															
R = Readal	ble bit	N	/ = Writ	table b	it		U = U	nimple	mente	d bit, re	ead as	· '0'			
-n = Value a	at POR	'1	' = Bit i	is set			'0' = E	it is cle	eared		х	= Bit is	s unkr	nown	
bit 7-6	Unimpler	nenteo	l: Read	d as '0'											
bit 5	VCFG1: \	/oltage	Refere	ence C	onfigui	ration	bit (Vri	EF- SOU	ırce)						
	1 = VREF-	(AN2)													
	0 = V ss														
bit 4	VCFG0: \	/oltage	Refere	ence C	onfigu	ration	bit (Vri	EF+ SO	urce)						
	1 = VREFT	+ (AN3)												
	0 = VDD	0500			c			•							
DIT 3-0	PCFG3:P														
	PCFG3:	12	1	10	<u>6</u>	œ	7 ⁽²⁾	I6 ⁽²⁾	I5 ⁽²⁾	4	<u>.</u>	2	Ξ	o	
	PCFG0	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	
	0000 (1)	Α	Α	Α	А	Α	Α	Α	Α	Α	Α	А	Α	А	
	0001	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	1
	0010	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
	0011	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
	0100	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	А	Α	
	0101	D	D	D	Α	Α	Α	Α	Α	Α	Α	А	Α	Α	
	0110	D	D	D	D	Α	Α	Α	Α	Α	Α	А	Α	Α	
	0111 (1)	D	D	D	D	D	Α	А	A	A	A	А	А	А	
	1000	D	D	D	D	D	D	Α	Α	Α	Α	Α	А	Α	
	1001	D	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α	
	1010	D	D	D	D	D	D	D	D	Α	Α	Α	Α	Α	
	1011	D	D	D	D	D	D	D	D	D	Α	Α	Α	Α	
	1100	D	D	D	D	D	D	D	D	D	D	Α	Α	Α	
	1101	D	D	D	D	D	D	D	D	D	D	D	A	A	
	1110	D	D	D	D	D	D	D	D	D	D	D	D	A	
	1111	D	D	D	D	D	D	D	D	D	D	D	D	D]
	A = Analo	oa inpu	ıt				D = Di	aital I/0	С						

REGISTER 2-2: ADCON1: A/D CONTROL REGISTER 1

- **Note 1:** The Reset value of the PCFG bits depends on the value of the PBADEN Configuration bit. When PBADEN = 1, PCFG<3:0> = 0000; when PBADEN = 0, PCFG<3:0> = 0111.
 - 2: AN5 through AN7 are available only on 40-pin and 44-pin devices.

The value in the ADRESH:ADRESL registers is unknown following Power-on and Brown-out Resets, and is not affected by any other Reset.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see **Section 2.1 "A/D Acquisition Requirements"**. After this acquisition time has elapsed, the A/D conversion can be started. An acquisition time can be programmed to occur between setting the GO/DONE bit and the actual start of the conversion.

The following steps should be followed to perform an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins, voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D acquisition time (ADCON2)
 - Select A/D conversion clock (ADCON2)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
 - · Clear ADIF bit
 - · Set ADIE bit
 - Set GIE bit
- 3. Wait the required acquisition time (if required).
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0 register)

- 5. Wait for A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared
 OR
 - Waiting for the A/D interrupt
- 6. Read A/D Result registers (ADRESH:ADRESL); clear bit ADIF, if required.
- 7. For next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2 TAD is required before the next acquisition starts.

FIGURE 2-2: A/D TRANSFER FUNCTION

2.4 Operation in Power-Managed Modes

The selection of the automatic acquisition time and A/D conversion clock is determined in part by the clock source and frequency while in a power-managed mode.

If the A/D is expected to operate while the device is in a power-managed mode, the ADCS2:ADCS0 bits in ADCON2 should be updated in accordance with the clock source to be used. The ACQT2:ACQT0 bits do not need to be adjusted as the ADCS2:ADCS0 bits adjust the TAD time for the new clock speed. After entering the mode, an A/D acquisition or conversion may be started. Once started, the device should continue to be clocked by the same clock source until the conversion has been completed.

If desired, the device may be placed into the corresponding Idle mode during the conversion. If the device clock frequency is less than 1 MHz, the A/D RC clock source should be selected.

Operation in Sleep mode requires the A/D FRC clock to be selected. If bits ACQT2:ACQT0 are set to '000' and a conversion is started, the conversion will be delayed one instruction cycle to allow execution of the SLEEP instruction and entry to Sleep mode. The IDLEN bit (OSCCON<7>) must have already been cleared prior to starting the conversion.

2.5 Configuring Analog Port Pins

The ADCON1, TRISA, TRISB and TRISE registers all configure the A/D port pins. The port pins needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS3:CHS0 bits and the TRIS bits.

- Note 1: When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level). Analog conversion on pins configured as digital pins can be performed. The voltage on the pin will be accurately converted.
 - 2: Analog levels on any pin defined as a digital input may cause the digital input buffer to consume current out of the device's specification limits.
 - 3: The PBADEN bit in Configuration Register 3H configures PORTB pins to reset as analog or digital pins by controlling how the PCFG3:PCFG0 bits in ADCON1 are reset.

2.6 A/D Conversions

Figure 2-4 shows the operation of the A/D Converter after the GO/DONE bit has been set and the ACQT2:ACQT0 bits are cleared. A conversion is started after the following instruction to allow entry into Sleep mode before the conversion begins.

Figure 2-5 shows the operation of the A/D Converter after the GO/DONE bit has been set and the ACQT2:ACQT0 bits are set to '010', and selecting a 4 TAD acquisition time before the conversion starts.

Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D Result register pair will NOT be updated with the partially completed A/D conversion sample. This means the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers). After the A/D conversion is completed or aborted, a 2 TcY wait is required before the next acquisition can be started. After this wait, acquisition on the selected channel is automatically started.

Note:	The GO/DONE bit should NOT be set in										
	the same instruction that turns on the A/D.										
	Code should wait at least 2 µs after										
	enabling the A/D before beginning an										
	acquisition and conversion cycle.										

2.7 Discharge

The discharge phase is used to initialize the value of the holding capacitor. The array is discharged before every sample. This feature helps to optimize the unity gain amplifier, as the circuit always needs to charge the capacitor array, rather than charge/discharge based on previous measure values.

FIGURE 2-4: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 000, TACQ = 0)

FIGURE 2-5: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD)

2.8 Use of the CCP2 Trigger

An A/D conversion can be started by the Special Event Trigger of the CCP2 module. This requires that the CCP2M3:CCP2M0 bits (CCP2CON<3:0>) be programmed as '1011' and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/ DONE bit will be set, starting the A/D acquisition and conversion, and the Timer1 (or Timer3) counter will be reset to zero. Timer1 (or Timer3) is reset to automatically repeat the A/D acquisition period with minimal software overhead (firmware must move ADRESH:ADRESL to the desired location). The appropriate analog input channel must be selected and the minimum acquisition period is either timed by the user, or an appropriate TACQ time selected before the Special Event Trigger sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), the Special Event Trigger will be ignored by the A/D module, but will still reset the Timer1 (or Timer3) counter.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:			
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	(4)			
PIR1	SPPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	(4)			
PIE1	SPPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	(4)			
IPR1	SPPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	(4)			
PIR2	OSCFIF	CMIF	USBIF	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	(4)			
PIE2	OSCFIE	CMIE	USBIE	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE	(4)			
IPR2	OSCFIP	CMIP	USBIP	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP	(4)			
ADRESH	A/D Result Register High Byte											
ADRESL	A/D Result	Register Lo	w Byte						(4)			
ADCON0	_	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	21			
ADCON1	_		VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	22			
ADCON2	ADFM		ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0	23			
PORTA	—	RA6 ⁽²⁾	RA5	RA4	RA3	RA2	RA1	RA0	(4)			
TRISA	_	TRISA6 ⁽²⁾	PORTA Da	ta Direction (Control Reg	ister			(4)			
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	(4)			
TRISB	PORTB Dat	ta Direction (Control Regi	ister					(4)			
LATB	PORTB Dat	ta Latch Reg	ister (Read	and Write to	Data Latch)			(4)			
PORTE ⁽¹⁾	RDPU	_	_	_	RE3 ⁽³⁾	RE2 ⁽¹⁾	RE1 ⁽¹⁾	RE0 ⁽¹⁾	(4)			
TRISE ⁽¹⁾	—	—	—			TRISE2	TRISE1	TRISE0	(4)			
LATE ⁽¹⁾	_		_	_	_	PORTE Da	ata Latch Re	gister	(4)			

TABLE 2-2: REGISTERS ASSOCIATED WITH A/D OPERATION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: These registers and/or bits are not implemented on 28-pin devices and are read as '0'.

2: RA6 and its associated latch and data direction bits are enabled as I/O pins based on oscillator configuration; otherwise, they are read as '0'.

3: RE3 port bit is available only as an input pin when the MCLRE Configuration bit is '0'.

4: For these Reset values, see the "PIC18F2455/2550/4455/4550 Data Sheet".

3.0 SPECIAL FEATURES OF THE CPU

Note:	For additional		details	s on	the	Con-	
	figur	ation	bit	s, r	efer	to	the
	"PIC	18F245	5/255	50/4455	/4550	Data S	Sheet",
	Sect	tion 25.′	l "Co	onfigura	ation E	Bits". I	Device
	ID in	formatio	n pre	esented	in this	sectio	n is for
	PIC1	18F2458	/255	3/4458/	4553 c	only.	

PIC18F2458/2553/4458/4553 devices include several features intended to maximize reliability and minimize cost through elimination of external components. These include:

DEVICE IDs

Device ID Registers

TABLE 3-1:

3.1 Device ID Registers

The Device ID registers are "read-only" registers. They identify the device type and revision to device programmers, and can be read by firmware using table reads.

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value
3FFFFEh	DEVID1	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	xxxx xxxx(1)
3FFFFFh	DEVID2	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	×××× ×××××(1)

Legend: x = unknown, u = unchanged

Note 1: See Register 3-1 and Register 3-2 for DEVID values. DEVID registers are read-only and cannot be programmed by the user.

PIC18F2458/2553/4458/4553

REGISTER 3-1: DEVID1: DEVICE ID REGISTER 1 FOR PIC18F2458/2553/4458/4553 DEVICES

R	R	R	R	R	R	R	R		
DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0		
bit 7							bit 0		
Legend:	Legend:								
R = Read-only	bit	P = Programm	nable bit	U = Unimpler	as '0'				
-n = Value when device is unprogrammed				u = Unchanged from programmed state					
bit 7-5 DEV2:DEV0: Device ID bits									
	See Register	3-2 for a comp	lete listing.						

	eccincigioter o z for a complete noting.
bit 4-0	REV3:REV0: Revision ID bits

These bits are used to indicate the device revision.

REGISTER 3-2: DEVID2: DEVICE ID REGISTER 2 FOR PIC18F2458/2553/4458/4553 DEVICES

R	R	R	R	R	R	R	R
DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3
bit 7							bit 0

Legend:

R = Read-only bit	P = Programmable bit	U = Unimplemented bit, read as '0'
-n = Value when device is unp	programmed	u = Unchanged from programmed state

bit 7-0 DEV10:DEV3: Device ID bits

DEV10:DEV3 (DEVID2<7:0>)	DEV2:DEV0 (DEVID1<7:5>)	Device
0010 1010	011	PIC18F2458
0010 1010	010	PIC18F2553
0010 1010	001	PIC18F4458
0010 1010	000	PIC18F4553

TABLE 4-1:A/D CONVERTER CHARACTERISTICS: PIC18F2458/2553/4458/4553 (INDUSTRIAL)PIC18LF2458/2553/4458/4553 (INDUSTRIAL)

Param No.	Sym	Characteristic	Min	Тур	Мах	Units		Conditions
A01	NR	Resolution		—	12	bit		$\Delta V \text{REF} \geq 3.0 V$
A03	EIL	Integral Linearity Error		±1	±2.0	LSB	VDD = 3.0V	$\Delta V \text{Ref} \geq 3.0 V$
			_	—	±2.0	LSB	VDD = 5.0V	
A04	Edl	Differential Linearity Error	_	±1	+1.5/-1.0	LSB	VDD = 3.0V	$\Delta V \text{Ref} \geq 3.0 V$
				—	+1.5/-1.0	LSB	VDD = 5.0V	
A06	EOFF	Offset Error		±1	±5	LSB	VDD = 3.0V	$\Delta V \text{Ref} \geq 3.0 V$
			_	—	±3	LSB	VDD = 5.0V	
A07	Egn	Gain Error		±1	±1.25	LSB	VDD = 3.0V	$\Delta V \text{Ref} \geq 3.0 V$
			_	—	±2.00	LSB	VDD = 5.0V	
A10	_	Monotonicity	Gu	Guaranteed ⁽¹⁾		_		$VSS \leq VAIN \leq VREF$
A20	$\Delta VREF$	Reference Voltage Range (VREFH – VREFL)	3	_	Vdd - Vss	V		For 12-bit resolution
A21	Vrefh	Reference Voltage High	Vss + 3.0V	—	VDD + 0.3V	V		For 12-bit resolution
A22	Vrefl	Reference Voltage Low	Vss – 0.3V	—	Vdd - 3.0V	V		For 12-bit resolution
A25	VAIN	Analog Input Voltage	VREFL	—	VREFH	V		
A30	Zain	Recommended Impedance of Analog Voltage Source	_	—	2.5	kΩ		
A50	IREF	VREF Input Current ⁽²⁾	_	_	5	μA		During VAIN acquisition.
			—	—	150	μA		During A/D conversion cycle.

Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

2: VREFH current is from the RA3/AN3/VREF+ pin or VDD, whichever is selected as the VREFH source. VREFL current is from the RA2/AN2/VREF-/CVREF pin or VSS, whichever is selected as the VREFL source.

PIC18F2458/2553/4458/4553

Param No.	Symbol	Characteristic		Min	Мах	Units	Conditions
130	Tad	A/D Clock Period	PIC18FXXXX	0.8	12.5 ⁽¹⁾	μS	Tosc based, VREF \geq 3.0V
			PIC18LFXXXX	1.4	25.0 ⁽¹⁾	μS	VDD = 3.0V; Tosc based, VREF full range
			PIC18FXXXX	—	1	μS	A/D RC mode
			PIC18 LF XXXX	—	3	μS	VDD = 3.0V; A/D RC mode
131	TCNV	Conversion Time (not including acquisition	13	14	Tad		
132	TACQ	Acquisition Time ⁽³⁾		1.4	—	μS	
135	Tswc	Switching Time from Convert \rightarrow Sample		_	(Note 4)		
137	TDIS	Discharge Time		0.2	_	μS	

Note 1: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.

2: ADRES registers may be read on the following TCY cycle.

3: The time for the holding capacitor to acquire the "New" input voltage when the voltage changes full scale after the conversion (VDD to Vss or Vss to VDD). The source impedance (Rs) on the input channels is 50Ω.

4: On the following cycle of the device clock.

APPENDIX A: REVISION HISTORY

Revision A (May 2007)

Original data sheet for the PIC18F2458/2553/4458/ 4553 devices.

Revision B (June 2007)

Changes to Figure 4-2: PIC18LF2458/2553/4458/4553 Voltage-Frequency Graph (Industrial).

Revision C (October 2009)

Removed "Preliminary" marking.

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices listed in this data sheet are shown in Table B-1.

Features	PIC18F2458	PIC18F2553	PIC18F4458	PIC18F4553
Program Memory (Bytes)	24576	32768	24576	32768
Program Memory (Instructions)	12288	16384	12288	16384
Interrupt Sources	19	19	20	20
I/O Ports	Ports A, B, C, (E)	Ports A, B, C, (E)	Ports A, B, C, D, E	Ports A, B, C, D, E
Capture/Compare/PWM Modules	2	2	1	1
Enhanced Capture/Compare/ PWM Modules	0	0	1	1
Parallel Communications (SPP)	No	No	Yes	Yes
12-Bit Analog-to-Digital Module	10 Input Channels	10 Input Channels	13 Input Channels	13 Input Channels
Packages	28-Pin SPDIP 28-Pin SOIC	28-Pin SPDIP 28-Pin SOIC	40-Pin PDIP 44-Pin TQFP 44-Pin QFN	40-Pin PDIP 44-Pin TQFP 44-Pin QFN

TABLE B-1:DEVICE DIFFERENCES

APPENDIX C: MIGRATION FROM MID-RANGE TO ENHANCED DEVICES

A detailed discussion of the differences between the mid-range MCU devices (i.e., PIC16CXXX) and the enhanced devices (i.e., PIC18FXXX) is provided in *AN716, "Migrating Designs from PIC16C74A/74B to PIC18C442"*. The changes discussed, while device specific, are generally applicable to all mid-range to enhanced device migrations.

This Application Note is available as Literature Number DS00716.

APPENDIX D: MIGRATION FROM HIGH-END TO ENHANCED DEVICES

A detailed discussion of the migration pathway and differences between the high-end MCU devices (i.e., PIC17CXXX) and the enhanced devices (i.e., PIC18FXXX) is provided in *AN726, "PIC17CXXX to PIC18CXXX Migration"*.

This Application Note is available as Literature Number DS00726.

INDEX

Α	
A/D	
A/D Converter Interrupt. Configuring	
Acquisition Requirements	
ADCON0 Register	
ADCON1 Register	
ADCON2 Register	21
ADRESH Register	21, 24
ADRESL Register	21
Analog Port Pins, Configuring	
Associated Registers	
Calculating the Minimum Required Acquisition	Time . 26
Configuring the Module	25
Conversion Clock (TAD)	
Conversion Status (GO/DONE Bit)	24
Conversions	
Converter Characteristics	35
Discharge	29
Operation in Power-Managed Modes	
Selecting and Configuring Acquisition Time	27
Special Event Trigger (CCP)	
Use of the CCP2 Trigger	
Absolute Maximum Ratings	33
ADCON0 Register	21
GO/DONE Bit	24
ADCON1 Register	21
ADCON2 Register	21
ADRESH Register	21
ADRESL Register	21, 24
Analog-to-Digital Converter. See A/D.	

В

Block Diagrams

- J	
A/D	
Analog Input Model	
PIC18F2458/2553	9
PIC18F4458/4553	10

С

Compare (CCP Module)	
Special Event Trigger	30
Customer Change Notification Service	43
Customer Notification Service	43
Customer Support	43

D

Device Differences	
Device ID Registers	31
Device Overview	7
Other Special Features	7

Е

Electrical Characteristics	
A/D Acquisition Time	
A/D Minimum Charging Time	
Errata	6
I	
Internet Address	43
Interrupt Sources	
A/D Conversion Complete	25

Μ

Microchip Internet Web Site	43
Migration from High-End to Enhanced Devices	40
Migration from Mid-Range to Enhanced Devices	40
D	
P	
Packaging Information	37
Pin Functions	
MCLR/VPP/RE3	11
MCLR/VPP/RE3	15
NC/ICCK/ICPGC	20
	20
	20
	20
	20
USC1/CLKI 11,	15
OSC2/CLKO/RA6 11,	15
RA0/AN0 12,	16
RA1/AN1 12,	16
RA2/AN2/VREF-/CVREF12,	16
RA3/AN3/VREF+ 12,	16
RA4/T0CKI/C1OUT/RCV 12,	16
RA5/AN4/SS/HLVDIN/C2OUT	16
RB0/AN12/INT0/FLT0/SDI/SDA 13	17
PB1/AN10/INT1/SCK/SCI 13	17
RB1/AN10/INT1/SCR/SCL	17
RB2/AN0/IN12/VIVIO	17
RB3/AN9/CCP2/VPO	17
RB4/AN11/KBI0	13
RB4/AN11/KBI0/CSSPP	17
RB5/KBI1/PGM 13,	17
RB6/KBI2/PGC 13,	17
RB7/KBI3/PGD13,	17
RC0/T10S0/T13CKI	18
RC1/T1OSI/CCP2/UOE 14	18
PC2/CCP1	11
	10
	10
RC4/D-/VMI	10
RC5/D+/VP	18
RC6/TX/CK 14,	18
RC7/RX/DT/SDO 14,	18
RD0/SPP0	19
RD1/SPP1	19
RD2/SPP2	19
RD3/SPP3	19
RD4/SPP4	19
RD5/SPP5/P1B	19
RD6/SPP6/P1C	19
RD7/SPP7/P1D	10
	20
	20
RE1/AN0/UK25PP	20
REZ/AN//UESPP	20
VDD 14,	20
Vss 14,	20
VUSB 14,	20
Pinout I/O Descriptions	
PIC18F2458/2553	11
PIC18F4458/4553	15
Power-Managed Modes	
and A/D Operation	28
	-0
R	
Reader Response	44
Pagistare	
ADCONIO (A/D Control 0)	24
	∠ I

PIC18F2458/2553/4458/4553

ADCON1 (A/D Control 1)
S
Special Features of the CPU
т
Timing Diagrams
A/D Conversion36
Timing Diagrams and Specifications
A/D Conversion Requirements
W
WWW Address
WWW, On-Line Support6