

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4553-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

28/40/44-Pin High-Performance, Enhanced Flash, USB Microcontrollers with 12-Bit A/D and nanoWatt Technology

Universal Serial Bus Features:

- USB V2.0 Compliant
- · Low Speed (1.5 Mb/s) and Full Speed (12 Mb/s)
- Supports Control, Interrupt, Isochronous and Bulk Transfers
- Supports up to 32 Endpoints (16 bidirectional)
- 1-Kbyte Dual Access RAM for USB
- On-Chip USB Transceiver with On-Chip Voltage Regulator
- · Interface for Off-Chip USB Transceiver
- Streaming Parallel Port (SPP) for USB Streaming Transfers (40/44-pin devices only)

Power-Managed Modes:

- Run: CPU On, Peripherals On
- Idle: CPU Off, Peripherals On
- Sleep: CPU Off, Peripherals Off
- Idle mode Currents Down to 5.8 μA Typical
- Sleep mode Currents Down to 0.1 μA Typical
- Timer1 Oscillator: 1.1 μA Typical, 32 kHz, 2V
- Watchdog Timer: 2.1 µA Typical
- Two-Speed Oscillator Start-up

Special Microcontroller Features:

- C Compiler Optimized Architecture with Optional Extended Instruction Set
- 100,000 Erase/Write Cycle Enhanced Flash Program Memory Typical
- 1,000,000 Erase/Write Cycle Data EEPROM Memory Typical
- Flash/Data EEPROM Retention: > 40 Years
- Self-Programmable under Software Control
- · Priority Levels for Interrupts
- 8 x 8 Single-Cycle Hardware Multiplier
- Extended Watchdog Timer (WDT):
- Programmable period from 41 ms to 131s
- Programmable Code Protection
- Single-Supply 5V In-Circuit Serial Programming™ (ICSP™) via Two Pins
- In-Circuit Debug (ICD) via Two Pins
- Optional Dedicated ICD/ICSP Port (44-pin TQFP package only)
- Wide Operating Voltage Range (2.0V to 5.5V)

Flexible Oscillator Structure:

- Four Crystal modes, Including High-Precision PLL for USB
- Two External Clock modes, up to 48 MHz
- · Internal Oscillator Block:
 - 8 user-selectable frequencies, from 31 kHz to 8 MHz
 - User-tunable to compensate for frequency drift
- Secondary Oscillator using Timer1 @ 32 kHz
- Dual Oscillator Options allow Microcontroller and USB module to Run at Different Clock Speeds
- Fail-Safe Clock Monitor:
 - Allows for safe shutdown if any clock stops

Peripheral Highlights:

- · High-Current Sink/Source: 25 mA/25 mA
- Three External Interrupts
- Four Timer modules (Timer0 to Timer3)
- Up to 2 Capture/Compare/PWM (CCP) modules:
 Capture is 16-bit, max. resolution 5.2 ns (Tcy/16)
 - Compare is 16-bit, max. resolution 83.3 ns (TCY)
 PWM output: PWM resolution is 1 to 10-bits
- Enhanced Capture/Compare/PWM (ECCP) module:
 - Multiple output modes
 - Selectable polarity
 - Programmable dead time
 - Auto-shutdown and auto-restart
- Enhanced USART module:
 - LIN bus support
- Master Synchronous Serial Port (MSSP) module supporting 3-wire SPI (all 4 modes) and I²C[™] Master and Slave modes
- 12-Bit, up to 13-Channel Analog-to-Digital Converter module (A/D) with Programmable Acquisition Time
- Dual Analog Comparators with Input Multiplexing

Note:	This	document	is	supple	emente	d by
	the "P	PIC18F2455	/255	0/4455	/4550	Data
	Sheet	" (DS3963	32).	See	Section	on 1.0
	"Devi	ce Overvie	w" .			

	Prog	ram Memory	Data			12-Bit	12-Bit CCP/ECCP		M	SSP	RT	p.	Timoro	
Device	Flash (bytes)	# Single-Word Instructions	SRAM (bytes)			А/D (ch)	(PWM)	SPP	SPI	Master I ² C™	EUSA	Com	Timers 8/16-Bit	
PIC18F2458	24K	12288		256	24	24	10	2/0	No					
PIC18F2553	32K	16384	2048			256		10	2/0	INU	v	V	1	
PIC18F4458	24K	12288	2040		256 35	13	1/1	Yes	T	ř	1	2	1/3	
PIC18F4553	32K	16384				13								

Table of Contents

1.0	Device Overview	. 7
2.0	12-Bit Analog-to-Digital Converter (A/D) Module	21
3.0	Special Features of the CPU	31
4.0	Electrical Characteristics	33
5.0	Packaging Information	37
Apper	ndix A: Revision History	39
Appei	ndix B: Device Differences	39
Apper	ndix C: Migration From Mid-Range to Enhanced Devices	40
Apper	ndix D: Migration From High-End to Enhanced Devices	40
Index		41
The N	licrochip Web Site	43
Custo	mer Change Notification Service	43
Custo	mer Support	43
Read	er Response	44
Produ	er Response	45

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- · Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

• PIC18F2458 •	PIC18F4458
----------------	------------

• PIC18F2553 • PIC18F4553

Note: This data sheet documents only the devices' features and specifications that are in addition to the features and specifications of the PIC18F2455/2550/4455/4550 devices. For information on the features and specifications shared by the PIC18F2458/2553/4458/4553 and PIC18F2455/2550/4455/4550 devices see the "PIC18F2455/2550/4455/4550 Data Sheet" (DS39632).

The PIC18F4553 family of devices offers the advantages of all PIC18 microcontrollers – namely, high computational performance at an economical price – with the addition of high-endurance, Enhanced Flash program memory. In addition to these features, the PIC18F4553 family introduces design enhancements that make these microcontrollers a logical choice for many high-performance, power sensitive applications.

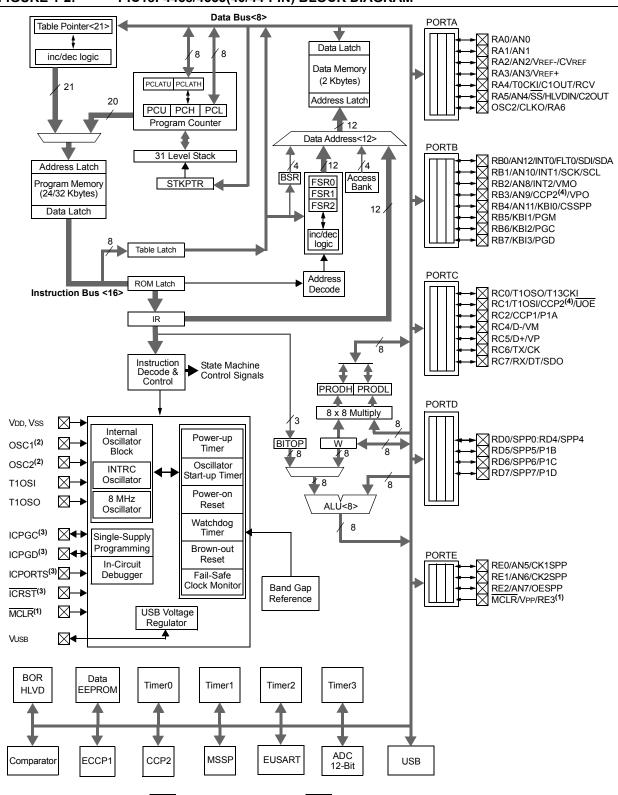
1.1 Special Features

 12-Bit A/D Converter: The PIC18F4553 family implements a 12-bit A/D Converter. The A/D Converter incorporates programmable acquisition time. This allows for a channel to be selected and a conversion to be initiated, without waiting for a sampling period and thus, reducing code overhead.

1.2 Details on Individual Family Members

The PIC18F2458/2553/4458/4553 devices are available in 28-pin and 40/44-pin packages. Block diagrams for the two groups are shown in Figure 1-1 and Figure 1-2.

The devices are differentiated from each other in the following ways:


- 1. Flash program memory (24 Kbytes for PIC18FX458 devices, 32 Kbytes for PIC18FX553).
- 2. A/D channels (10 for 28-pin devices, 13 for 40-pin and 44-pin devices).
- I/O ports (3 bidirectional ports and 1 input only port on 28-pin devices, 5 bidirectional ports on 40-pin and 44-pin devices).
- CCP and Enhanced CCP implementation (28-pin devices have two standard CCP modules, 40-pin and 44-pin devices have one standard CCP module and one ECCP module).
- 5. Streaming Parallel Port (present only on 40/44-pin devices).

All other features for devices in this family are identical. These are summarized in Table 1-1.

The pinouts for all devices are listed in Table 1-2 and Table 1-3.

Members of the PIC18F4553 family are available as both standard and low-voltage devices. Standard devices with Enhanced Flash memory, designated with an "F" in the part number (such as PIC18F2458), accommodate an operating VDD range of 4.2V to 5.5V. Low-voltage parts, designated by "LF" (such as PIC18LF2458), function over an extended VDD range of 2.0V to 5.5V.

FIGURE 1-2: PIC18F4458/4553(40/44-PIN) BLOCK DIAGRAM

Note 1: RE3 is multiplexed with $\overline{\text{MCLR}}$ and is only available when the $\overline{\text{MCLR}}$ Resets are disabled.

2: OSC1/CLKI and OSC2/CLKO are only available in select oscillator modes and when these pins are not being used as digital I/O.

- 3: These pins are only available on 44-pin TQFP packages under certain conditions.
- **4:** RB3 is the alternate pin for CCP2 multiplexing.

	Pin Number	Pin	Buffer	Description			
Pin Name	SPDIP, SOIC	Туре	Туре	Description			
				PORTC is a bidirectional I/O port.			
RC0/T1OSO/T13CKI	11						
RC0		I/O	ST	Digital I/O.			
T1OSO		0	_	Timer1 oscillator output.			
T13CKI		I	ST	Timer1/Timer3 external clock input.			
RC1/T1OSI/CCP2/UOE	12						
RC1		I/O	ST	Digital I/O.			
T10SI		1	CMOS	Timer1 oscillator input.			
CCP2 ⁽²⁾		I/O	ST	Capture 2 input/Compare 2 output/PWM2 output.			
UOE		—	—	External USB transceiver OE output.			
RC2/CCP1	13						
RC2		I/O	ST	Digital I/O.			
CCP1		I/O	ST	Capture 1 input/Compare 1 output/PWM1 output.			
RC4/D-/VM	15						
RC4		1	TTL	Digital input.			
D-		I/O		USB differential minus line (input/output).			
VM		Ī	TTL	External USB transceiver VM input.			
RC5/D+/VP	16			· ·			
RC5	10		TTL	Digital input.			
D+		I/O		USB differential plus line (input/output).			
VP		0	TTL	External USB transceiver VP input.			
RC6/TX/CK	17						
RC6		I/O	ST	Digital I/O.			
TX		0	_	EUSART asynchronous transmit.			
CK		1/0	ST	EUSART synchronous clock (see RX/DT).			
RC7/RX/DT/SDO	18						
RC7		I/O	ST	Digital I/O.			
RX			ST	EUSART asynchronous receive.			
DT		I/O	ST	EUSART synchronous data (see TX/CK).			
SDO		0	—	SPI data out.			
RE3	_		_	See MCLR/VPP/RE3 pin.			
Vusb	14			Internal USB transceiver power supply.			
		0	_	When the internal USB regulator is enabled, VUSB is the			
				regulator output.			
		Р	—	When the internal USB regulator is disabled, VUSB is the			
				power input for the USB transceiver.			
Vss	8, 19	Р	—	Ground reference for logic and I/O pins.			
Vdd	20	Р	—	Positive supply for logic and I/O pins.			
Legend: TTL = TTL cor ST = Schmitt	npatible in Trigger in			CMOS = CMOS compatible input or output evels I = Input			

TABLE 1-2: PIC18F2458/2553 PINOUT I/O DESCRIPTIONS (CONTINUED)

O = Output

= Power

Note 1: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.

2: Default assignment for CCP2 when CCP2MX Configuration bit is set.

Din Nama	Pin Number			Pin	Buffer	Description			
Pin Name	PDIP	QFN	TQFP	Туре	Туре	Description			
						PORTA is a bidirectional I/O port.			
RA0/AN0 RA0 AN0	2	19	19	I/O I	TTL Analog	Digital I/O. Analog input 0.			
RA1/AN1 RA1 AN1	3	20	20	I/O I	TTL Analog	Digital I/O. Analog input 1.			
RA2/AN2/Vref-/ CVref	4	21	21						
RA2 AN2 VREF- CVREF				I/O I I O	TTL Analog Analog Analog	Digital I/O. Analog input 2. A/D reference voltage (low) input. Analog comparator reference output.			
RA3/AN3/VREF+ RA3 AN3 VREF+	5	22	22	I/O I I	TTL Analog Analog	Digital I/O. Analog input 3. A/D reference voltage (high) input.			
RA4/T0CKI/C1OUT/ RCV	6	23	23						
RA4 T0CKI C1OUT RCV				I/O I O I	ST ST — TTL	Digital I/O. Timer0 external clock input. Comparator 1 output. External USB transceiver RCV input.			
RA5/AN4/ SS / HLVDIN/C2OUT	7	24	24						
RA5 AN4 SS HLVDIN C2OUT				I/O I I O	TTL Analog TTL Analog —	Digital I/O. Analog input 4. SPI slave select input. High/Low-Voltage Detect input. Comparator 2 output.			
RA6	—	—	—	_	—	See the OSC2/CLKO/RA6 pin.			
Legend: TTL = TTL c ST = Schm O = Outpu	itt Trigg			MOS le		CMOS = CMOS compatible input or output = Input P = Power			

PIC18E4458/4553 PINOUT I/O DESCRIPTIONS (CONTINUED) TABLE 1-3

Note 1: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.

2: Default assignment for CCP2 when CCP2MX Configuration bit is set.

3: These pins are No Connect unless the ICPRT Configuration bit is set. For NC/ICPORTS, the pin is No Connect unless ICPRT is set and the DEBUG Configuration bit is cleared.

Din Nama	Pi	n Numl	ber	Pin Buffe	Buffer				
Pin Name	PDIP	QFN	TQFP	Туре	Туре	Description			
RB0/AN12/INT0/	33	9	8			PORTB is a bidirectional I/O port. PORTB can be soft- ware programmed for internal weak pull-ups on all inputs.			
FLT0/SDI/SDA RB0 AN12 INT0				I/O I I	TTL Analog ST	Digital I/O. Analog input 12. External interrupt 0.			
FLT0 SDI SDA RB1/AN10/INT1/SCK/	34	10	9	I I I/O	ST ST ST	Enhanced PWM Fault input (ECCP1 module). SPI data in. I ² C™ data I/O.			
SCL RB1 AN10	34	10	9	I/O I	TTL Analog	Digital I/O. Analog input 10.			
INT1 SCK SCL	05	44	10	 /0 /0	ST ST ST	External interrupt 1. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C mode.			
RB2/AN8/INT2/VMO RB2 AN8 INT2 VMO	35	11	10	I/O I I O	TTL Analog ST —	Digital I/O. Analog input 8. External interrupt 2. External USB transceiver VMO output.			
RB3/AN9/CCP2/VPO RB3 AN9 CCP2 ⁽¹⁾ VPO	36	12	11	I/O I I/O O	TTL Analog ST —	Digital I/O. Analog input 9. Capture 2 input/Compare 2 output/PWM 2 output. External USB transceiver VPO output.			
RB4/AN11/KBI0/CSSPP RB4 AN11 KBI0	37	14	14	I/O 	TTL Analog TTL	Digital I/O. Analog input 11. Interrupt-on-change pin.			
CSSPP RB5/KBI1/PGM RB5 KBI1 PGM	38	15	15	0 I/O I I/O	TTL TTL ST	SPP chip select control output. Digital I/O. Interrupt-on-change pin. Low-Voltage ICSP™ Programming enable pin.			
RB6/KBI2/PGC RB6 KBI2 PGC	39	16	16	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming clock pin.			
RB7/KBI3/PGD RB7 KBI3 PGD	40	17	17	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.			
Legend: TTL = TTL co ST = Schmi O = Outpu	tt Trigg t	er input	t with CI	VOS le	c evels I F	CMOS = CMOS compatible input or output = Input			

TABLE 1-3 PIC18E4458/4553 PINOUT I/O DESCRIPTIONS (CONTINUED)

2: Default assignment for CCP2 when CCP2MX Configuration bit is set.

3: These pins are No Connect unless the ICPRT Configuration bit is set. For NC/ICPORTS, the pin is No Connect unless ICPRT is set and the DEBUG Configuration bit is cleared.

Pin Name	Pi	n Num	ber	Pin	Buffer	Description
	PDIP	QFN	TQFP	Туре	Туре	Description
						PORTC is a bidirectional I/O port.
RC0/T1OSO/T13CKI RC0	15	34	32	I/O	ST	Digital I/O.
T10S0				0		Timer1 oscillator output.
T13CKI				I	ST	Timer1/Timer3 external clock input.
RC1/T1OSI/CCP2/ UOE	16	35	35			
RC1				I/O	ST	Digital I/O.
T1OSI CCP2 ⁽²⁾				 /O	CMOS ST	Timer1 oscillator input.
				0	51	Capture 2 input/Compare 2 output/PWM2 output. External USB transceiver OE output.
RC2/CCP1/P1A	17	36	36	Ŭ		
RC2		00	00	I/O	ST	Digital I/O.
CCP1				I/O	ST	Capture 1 input/Compare 1 output/PWM1 output.
P1A				0	TTL	Enhanced CCP1 PWM output, channel A.
RC4/D-/VM	23	42	42			
RC4					TTL	Digital input.
D- VM				I/O I	TTL	USB differential minus line (input/output). External USB transceiver VM input.
RC5/D+/VP	24	43	43			
RC5	24	43	43	1	TTL	Digital input.
D+				I/O	_	USB differential plus line (input/output).
VP				Ι	TTL	External USB transceiver VP input.
RC6/TX/CK	25	44	44			
RC6				I/O	ST	Digital I/O.
TX CK				0 I/O	ST	EUSART asynchronous transmit. EUSART synchronous clock (see RX/DT).
RC7/RX/DT/SDO	26	1	1	1/0	51	EUSART Synchronous clock (see RADT).
RC7	20	1		I/O	ST	Digital I/O.
RX				1	ST	EUSART asynchronous receive.
DT				I/O	ST	EUSART synchronous data (see TX/CK).
SDO				0	—	SPI data out.
Legend: TTL = TTL o						CMOS = CMOS compatible input or output
	nitt Trigg	er inpu	t with CI	viOS le	vels I F	= Input P = Power
O = Outp	ui				F	

TABLE 1-3: PIC18F4458/4553 PINOUT I/O DESCRIPTIONS (CONTINUED)

O= OutputP= PowerNote 1:Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.

2: Default assignment for CCP2 when CCP2MX Configuration bit is set.

3: These pins are No Connect unless the ICPRT Configuration bit is set. For NC/ICPORTS, the pin is No Connect unless ICPRT is set and the DEBUG Configuration bit is cleared.

2.0 **12-BIT ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE**

The Analog-to-Digital (A/D) Converter module has 10 inputs for the 28-pin devices and 13 for the 40-pin and 44-pin devices. This module allows conversion of an analog input signal to a corresponding 12-bit digital number.

The module has five registers:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)
- A/D Control Register 2 (ADCON2)

The ADCON0 register, shown in Register 2-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 2-2, configures the functions of the port pins. The ADCON2 register, shown in Register 2-3, configures the A/D clock source, programmed acquisition time and justification.

REGISTER 2-1:	ADCON0: A/D CONTROL REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON
bit 7							bit 0
Legend:							
R = Readab		W = Writable		•	mented bit, rea		
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own
bit 7-6	Unimplemen	nted: Read as '	0'				
bit 5-2	CHS3:CHS0	: Analog Chanr	nel Select bits				
	0000 = Cha n	-					
	0001 = Chan	nel 1 (AN1)					
	0010 = Chan						
	0011 = Chan						
	0100 = Chan)				
		nel 5 (AN5) ^{(1,2}					
		nel 6 (AN6) ^{(1,2} nel 7 (AN7) ^{(1,2}					
	1000 = Cha n		,				
	1000 – Cha n						
		nel 10 (AN10)					
		nel 11 (AN11)					
		nel 12 AN12					
	1101 = Unim	plemented ⁽²⁾					
	1110 = Unim						
	1111 = Unim	•					
bit 1		VD Conversion	Status bit				
	When ADON						
		ersion in progr	ess				
	0 = A/D Idle						
bit 0	ADON: A/D (
		verter module is					
		/erter module is	haldesib s				

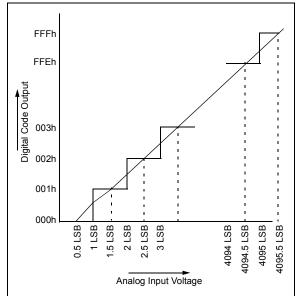
Performing a conversion on unimplemented channels will return a floating input measurement.

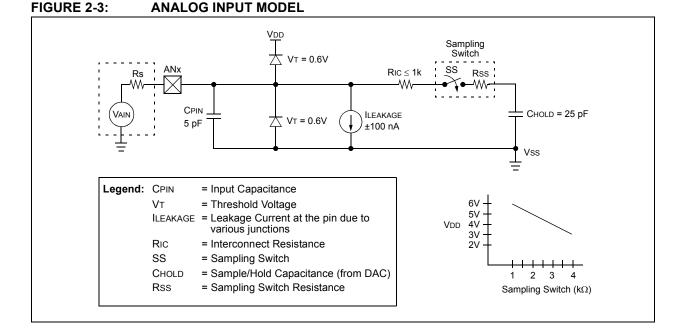
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	_	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0
bit 7							bit (
Logondi							
Legend: R = Readab	le hit	W = Writable	hit	U = Unimpler	mented bit, read	1 as '0'	
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 7	ADFM: A/D R 1 = Right justi 0 = Left justifi		Select bit				
bit 6	•	eu ted: Read as '	0'				
bit 5-3	-	T0: A/D Acquis		loct hits			
	111 = 20 TAD 110 = 16 TAD 101 = 12 TAD 100 = 8 TAD 011 = 6 TAD 010 = 4 TAD 001 = 2 TAD 000 = 0 TAD ⁽¹))					
bit 2-0	111 = Frc (cl 110 = Fosc/6 101 = Fosc/1 100 = Fosc/4	6 ock derived fro 2	om A/D RC os	cillator) ⁽¹⁾			

REGISTER 2-3: ADCON2: A/D CONTROL REGISTER 2

Note 1: If the A/D FRC clock source is selected, a delay of one TcY (instruction cycle) is added before the A/D clock starts. This allows the SLEEP instruction to be executed before starting a conversion.

The value in the ADRESH:ADRESL registers is unknown following Power-on and Brown-out Resets, and is not affected by any other Reset.


After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see **Section 2.1 "A/D Acquisition Requirements"**. After this acquisition time has elapsed, the A/D conversion can be started. An acquisition time can be programmed to occur between setting the GO/DONE bit and the actual start of the conversion.


The following steps should be followed to perform an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins, voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D acquisition time (ADCON2)
 - Select A/D conversion clock (ADCON2)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
 - · Clear ADIF bit
 - · Set ADIE bit
 - Set GIE bit
- 3. Wait the required acquisition time (if required).
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0 register)

- 5. Wait for A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared
 OR
 - Waiting for the A/D interrupt
- 6. Read A/D Result registers (ADRESH:ADRESL); clear bit ADIF, if required.
- 7. For next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2 TAD is required before the next acquisition starts.

FIGURE 2-2: A/D TRANSFER FUNCTION

2.1 A/D Acquisition Requirements

For the A/D Converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 2-3. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω . After the analog input channel is selected (changed), the channel must be sampled for at least the minimum acquisition time before starting a conversion.

Note:	When	the	conversion	is	started,	the
	holding	, capa	acitor is disco	nne	ected from	the
	input p	in.				

EQUATION 2-1: ACQUISITION TIME

To calculate the minimum acquisition time, Equation 2-1 may be used. This equation assumes that 1/2 LSb error is used (4096 steps for the 12-bit A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Example 2-3 shows the calculation of the minimum required acquisition time, TACQ. This calculation is based on the following application system assumptions:

CHOLD	=	25 pF
Rs	=	2.5 kΩ
Conversion Error	\leq	1/2 LSb
Vdd	=	$3V \rightarrow Rss = 4 \ k\Omega$
Temperature	=	85°C (system max.)

TACQ = Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient = TAMP + TC + TCOFF

EQUATION 2-2: A/D MINIMUM CHARGING TIME

VHOLD	=	$(\text{VREF} - (\text{VREF}/4096)) \bullet (1 - e^{(-\text{TC/CHOLD}(\text{Ric} + \text{Rss} + \text{Rs}))})$
or		
TC	=	-(CHOLD)(RIC + RSS + RS) ln(1/4096)

EQUATION 2-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

TACQ	=	TAMP + TC + TCOFF
TAMP	=	0.2 μs
TCOFF	=	(Temp – 25°C)(0.02 μs/°C) (85°C – 25°C)(0.02 μs/°C) 1.2 μs
Tempera	ture c	oefficient is only required for temperatures > 25°C. Below 25°C, TCOFF = 0 μ s.
Тс	=	-(CHOLD)(RIC + RSS + RS) $\ln(1/4096) \mu s$ -(25 pF) (1 k Ω + 4 k Ω + 2.5 k Ω) $\ln(0.0002441) \mu s$ 1.56 μs
Tacq	=	0.2 μs + 1.56 μs + 1.2 μs 2.96 μs

2.4 Operation in Power-Managed Modes

The selection of the automatic acquisition time and A/D conversion clock is determined in part by the clock source and frequency while in a power-managed mode.

If the A/D is expected to operate while the device is in a power-managed mode, the ADCS2:ADCS0 bits in ADCON2 should be updated in accordance with the clock source to be used. The ACQT2:ACQT0 bits do not need to be adjusted as the ADCS2:ADCS0 bits adjust the TAD time for the new clock speed. After entering the mode, an A/D acquisition or conversion may be started. Once started, the device should continue to be clocked by the same clock source until the conversion has been completed.

If desired, the device may be placed into the corresponding Idle mode during the conversion. If the device clock frequency is less than 1 MHz, the A/D RC clock source should be selected.

Operation in Sleep mode requires the A/D FRC clock to be selected. If bits ACQT2:ACQT0 are set to '000' and a conversion is started, the conversion will be delayed one instruction cycle to allow execution of the SLEEP instruction and entry to Sleep mode. The IDLEN bit (OSCCON<7>) must have already been cleared prior to starting the conversion.

2.5 Configuring Analog Port Pins

The ADCON1, TRISA, TRISB and TRISE registers all configure the A/D port pins. The port pins needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS3:CHS0 bits and the TRIS bits.

- Note 1: When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level). Analog conversion on pins configured as digital pins can be performed. The voltage on the pin will be accurately converted.
 - 2: Analog levels on any pin defined as a digital input may cause the digital input buffer to consume current out of the device's specification limits.
 - The PBADEN bit in Configuration Register 3H configures PORTB pins to reset as analog or digital pins by controlling how the PCFG3:PCFG0 bits in ADCON1 are reset.

2.8 Use of the CCP2 Trigger

An A/D conversion can be started by the Special Event Trigger of the CCP2 module. This requires that the CCP2M3:CCP2M0 bits (CCP2CON<3:0>) be programmed as '1011' and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/ DONE bit will be set, starting the A/D acquisition and conversion, and the Timer1 (or Timer3) counter will be reset to zero. Timer1 (or Timer3) is reset to automatically repeat the A/D acquisition period with minimal software overhead (firmware must move ADRESH:ADRESL to the desired location). The appropriate analog input channel must be selected and the minimum acquisition period is either timed by the user, or an appropriate TACQ time selected before the Special Event Trigger sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), the Special Event Trigger will be ignored by the A/D module, but will still reset the Timer1 (or Timer3) counter.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	(4)
PIR1	SPPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	(4)
PIE1	SPPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	(4)
IPR1	SPPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	(4)
PIR2	OSCFIF	CMIF	USBIF	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	(4)
PIE2	OSCFIE	CMIE	USBIE	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE	(4)
IPR2	OSCFIP	CMIP	USBIP	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP	(4)
ADRESH	A/D Result Register High Byte							(4)	
ADRESL	A/D Result	Register Lov	w Byte						(4)
ADCON0	_	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	21
ADCON1	_	_	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	22
ADCON2	ADFM	_	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0	23
PORTA	_	RA6 ⁽²⁾	RA5	RA4	RA3	RA2	RA1	RA0	(4)
TRISA	_	TRISA6 ⁽²⁾	PORTA Da	PORTA Data Direction Control Register				(4)	
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	(4)
TRISB	PORTB Data Direction Control Register						(4)		
LATB	PORTB Data Latch Register (Read and Write to Data Latch)						(4)		
PORTE ⁽¹⁾	RDPU	—	_		RE3 ⁽³⁾	RE2 ⁽¹⁾	RE1 ⁽¹⁾	RE0 ⁽¹⁾	(4)
TRISE ⁽¹⁾	—	—	—	—	—	TRISE2	TRISE1	TRISE0	(4)
LATE ⁽¹⁾						PORTE Da	ta Latch Reg	gister	(4)

TABLE 2-2: REGISTERS ASSOCIATED WITH A/D OPERATION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: These registers and/or bits are not implemented on 28-pin devices and are read as '0'.

2: RA6 and its associated latch and data direction bits are enabled as I/O pins based on oscillator configuration; otherwise, they are read as '0'.

3: RE3 port bit is available only as an input pin when the MCLRE Configuration bit is '0'.

4: For these Reset values, see the "PIC18F2455/2550/4455/4550 Data Sheet".

4.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings (†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	-0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0V to +13.25V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Input clamp current, Iк (Vi < 0 or Vi > VDD)	±20 mA
Output clamp current, loк (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports	200 mA

Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD $- \sum$ IOH} + \sum {(VDD - VOH) x IOH} + \sum (VOL x IOL)

2: Voltage spikes below Vss at the MCLR/VPP/RE3 pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR/VPP/ RE3 pin, rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 4-1:A/D CONVERTER CHARACTERISTICS: PIC18F2458/2553/4458/4553 (INDUSTRIAL)PIC18LF2458/2553/4458/4553 (INDUSTRIAL)

Param No.	Sym	Characteristic	Min	Тур	Max	Units	Conditions	
A01	NR	Resolution	-	—	12	bit		$\Delta V \text{REF} \geq 3.0 V$
A03	EIL	Integral Linearity Error	_	±1	±2.0	LSB	VDD = 3.0V	$\Delta VREF \ge 3.0V$
			_	_	±2.0	LSB	VDD = 5.0V	
A04	Edl	Differential Linearity Error	_	±1	+1.5/-1.0	LSB	VDD = 3.0V	$\Delta VREF \ge 3.0V$
			_		+1.5/-1.0	LSB	VDD = 5.0V	
A06	EOFF	Offset Error	_	±1	±5	LSB	VDD = 3.0V	$\Delta V \text{REF} \geq 3.0 V$
			_	_	±3	LSB	VDD = 5.0V	
A07	Egn	Gain Error	_	±1	±1.25	LSB	VDD = 3.0V	$\Delta \text{VREF} \geq 3.0 \text{V}$
			_	_	±2.00	LSB	VDD = 5.0V	
A10	—	Monotonicity	Gu	uarantee	d ⁽¹⁾	—		$Vss \leq Vain \leq Vref$
A20	$\Delta VREF$	Reference Voltage Range (VREFH – VREFL)	3	—	Vdd – Vss	V		For 12-bit resolution
A21	Vrefh	Reference Voltage High	Vss + 3.0V	_	VDD + 0.3V	V		For 12-bit resolution
A22	Vrefl	Reference Voltage Low	Vss – 0.3V		VDD - 3.0V	V		For 12-bit resolution
A25	VAIN	Analog Input Voltage	VREFL		VREFH	V		
A30	Zain	Recommended Impedance of Analog Voltage Source	_	—	2.5	kΩ		
A50	IREF	VREF Input Current ⁽²⁾		_	5 150	μΑ μΑ		During VAIN acquisition. During A/D conversion cycle.

Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

2: VREFH current is from the RA3/AN3/VREF+ pin or VDD, whichever is selected as the VREFH source. VREFL current is from the RA2/AN2/VREF-/CVREF pin or VSS, whichever is selected as the VREFL source.

5.0 PACKAGING INFORMATION

For packaging information, see the *"PIC18F2455/2550/4455/4550 Data Sheet"* (DS39632).

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
From	: Name	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Appli	ication (optional):	
Wou	ld you like a reply?YN	
Devi	ce: PIC18F2458/2553/4458/4553	Literature Number: DS39887C
Ques	stions:	
1. V	What are the best features of this doc	ument?
_		
_		
2. H	How does this document meet your ha	ardware and software development needs?
-		
- -	De very find the expenientian of this de	
3. E	Do you find the organization of this do	cument easy to follow ? If hot, why?
-		
4. V	What additions to the document do yo	ou think would enhance the structure and subject?
_		
_		
5. V	What deletions from the document co	uld be made without affecting the overall usefulness?
_		
-		
6. I	s there any incorrect or misleading in	formation (what and where)?
-		
	low would you improve this do	540
7. H	How would you improve this documer	ι <i>ι</i> (
-		
-		

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	x <u>xx xxx</u>	Examples:
Device	Temperature Package Pattern Range	 a) PIC18LF4553-I/P 301 = Industrial temp., PDIP package, Extended VDD limits, QTP pattern #301. b) PIC18LF2458-I/SO = Industrial temp., SOIC
Device	PIC18F2458/2553 ⁽¹⁾ , PIC18F4458/4553 ⁽¹⁾ , PIC18F2458/2553T ⁽²⁾ , PIC18F4458/4553T ⁽²⁾ ; VDD range 4.2V to 5.5V PIC18LF2458/2553 ⁽¹⁾ , PIC18LF4458/4553T ⁽¹⁾ , PIC18LF2458/2553T ⁽²⁾ , PIC18LF4458/4553T ⁽²⁾ ; VDD range 2.0V to 5.5V	 package, Extended VDD limits. c) PIC18F4458-I/P = Industrial temp., PDIP package, normal VDD limits.
Temperature Range	I = -40° C to $+85^{\circ}$ C (Industrial) E = -40° C to $+125^{\circ}$ C (Extended)	
Package	PT = TQFP (Thin Quad Flatpack) SO = SOIC SP = Skinny PDIP P = PDIP ML = QFN	Note 1:F=Standard Voltage RangeLF=Wide Voltage Range2:T=In tape and reel TQFP packages only.
Pattern	QTP, SQTP, Code or Special Requirements (blank otherwise)	