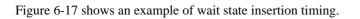


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	H8S/2000
Core Size	16-Bit
Speed	13MHz
Connectivity	SCI, SmartCard
Peripherals	DMA, POR, PWM, WDT
Number of I/O	87
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	128-BFQFP
Supplier Device Package	128-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/d12352f13v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

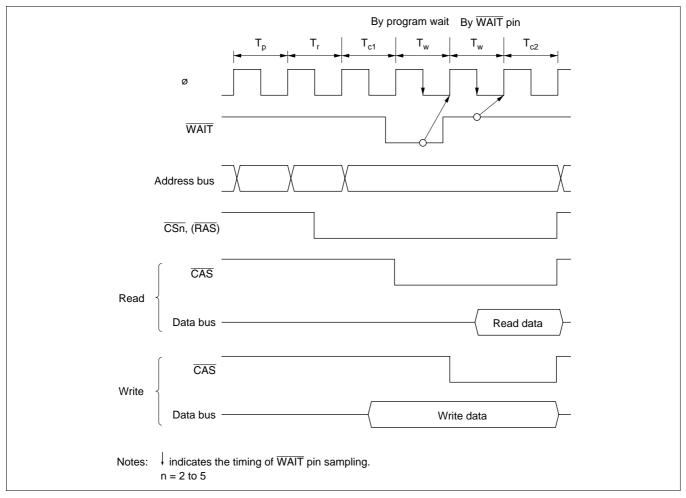


Figure 6-17 Example of Wait State Insertion Timing (CW2 = 1, 8-Bit Area Setting for Entire Space)

6.5.9 Byte Access Control

When DRAM with a $\times 16$ configuration is connected, the 2-CAS system can be used for the control signals required for byte access.

When the CW2 bit is cleared to 0 in MCR, the 2-CAS system is selected. Figure 6-18 shows the control timing in the 2-CAS system, and figure 6-19 shows an example 2-CAS system DRAM connection.

When only DRAM with a ×8 configuration is connected, set the CW2 bit to 1 in MCR.

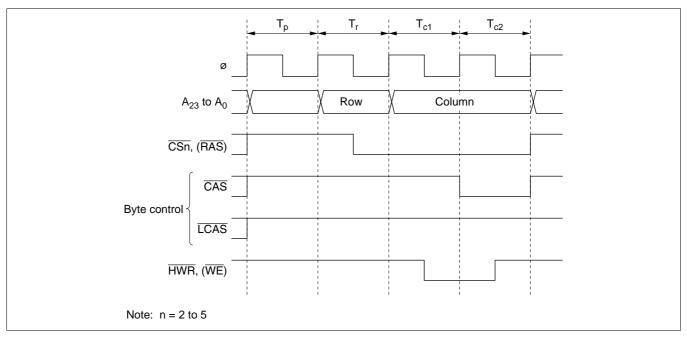


Figure 6-18 2-CAS System Control Timing (Upper Byte Write Access)

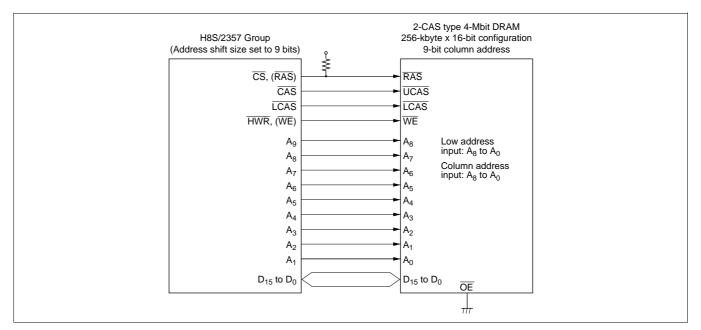


Figure 6-19 Example of 2-CAS System Connection

7.5.3 Idle Mode

Idle mode can be specified by setting the RPE bit and DTIE bit in DMACR to 1. In idle mode, one byte or word is transferred in response to a single transfer request, and this is executed the number of times specified in ETCR.

One address is specified by MAR, and the other by IOAR. The transfer direction can be specified by the DTDIR bit in DMACR.

Table 7-7 summarizes register functions in idle mode.

Table 7-7 Register Functions in Idle Mode

		Fur	oction		
Register		DTDIR = 0	DTDIR = 1	Initial Setting	Operation
23	MAR	 Source address register 	Destination address register	Start address of transfer destination or transfer source	Fixed
23 15 H'FF	IOAR	Destination address register	Source address register	Start address of transfer source or transfer destination	Fixed
15	ETCR	Transfer co	unter	Number of transfers	Decremented every transfer; transfer ends when count reaches H'0000

Legend:

MAR: Memory address register IOAR: I/O address register ETCR: Transfer count register DTDIR:Data transfer direction bit

MAR specifies the start address of the transfer source or transfer destination as 24 bits. MAR is neither incremented nor decremented each time a byte or word is transferred.

IOAR specifies the lower 16 bits of the other address. The 8 bits above IOAR have a value of H'FF.

Figure 7-5 illustrates operation in idle mode.

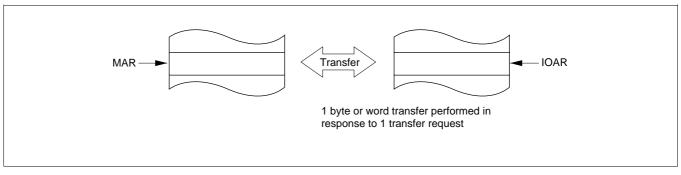
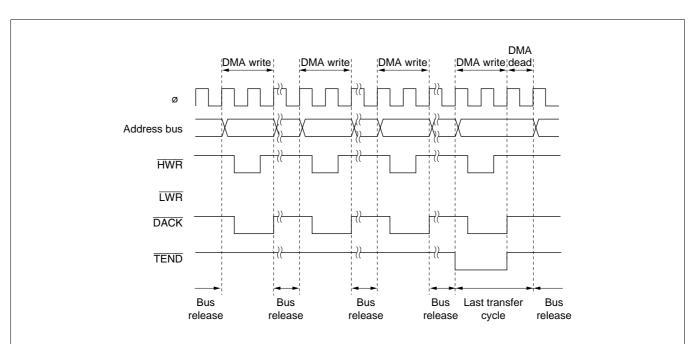



Figure 7-5 Operation in Idle Mode

Single Address Mode (Write): Figure 7-29 shows a transfer example in which TEND output is enabled and byte-size single address mode transfer (write) is performed from an external device to external 8-bit, 2-state access space.

Figure 7-29 Example of Single Address Mode (Byte Write) Transfer

Figure 7-30 shows a transfer example in which TEND output is enabled and word-size single address mode transfer (write) is performed from an external device to external 8-bit, 2-state access space.

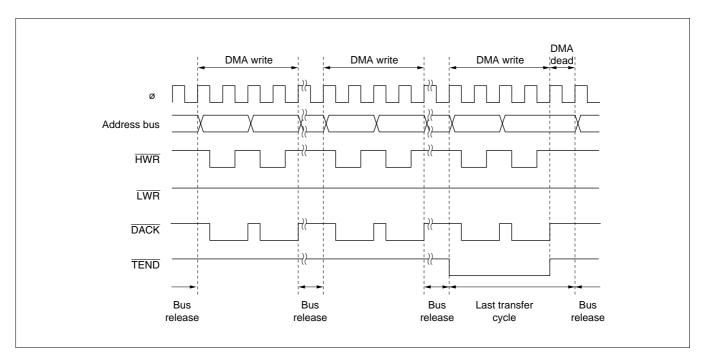


Figure 7-30 Example of Single Address Mode (Word Write) Transfer

A one-byte or one-word transfer is performed for one transfer request, and after the transfer the bus is released. While the bus is released one or more bus cycles are inserted by the CPU or DTC.

Section 9 I/O Ports

9.1 Overview

The H8S/2357 Group has 12 I/O ports (ports 1, 2, 3, 5, 6, and A to G), and one input-only port (port 4).

Table 9-1 summarizes the port functions. The pins of each port also have other functions.

Each port includes a data direction register (DDR) that controls input/output (not provided for the input-only port), a data register (DR) that stores output data, and a port register (PORT) used to read the pin states.

Ports A to E have a on-chip pull-up MOS function, and in addition to DR and DDR, have a MOS input pull-up control register (PCR) to control the on/off state of MOS input pull-up.

Port 3 and port A include an open-drain control register (ODR) that controls the on/off state of the output buffer PMOS.

Ports 1, and A to F can drive a single TTL load and 90 pF capacitive load, and ports 2, 3, 5, 6, and G can drive a single TTL load and 30 pF capacitive load. All the I/O ports can drive a Darlington transistor when in output mode. Ports 1, A, B, and C can drive an LED (10 mA sink current).

Port 2, and pins 6_4 to 6_7 and A_4 to A_7 , are Schmitt-triggered inputs.

For block diagrams of the ports see Appendix C, I/O Port Block Diagrams.

9.7.3 Pin Functions

Port 6 pins also function as interrupt input pins ($\overline{IRQ0}$ to $\overline{IRQ3}$), DMAC I/O pins ($\overline{DREQ0}$, $\overline{TEND0}$, $\overline{DREQ1}$, and $\overline{TEND1}$), and bus control output pins ($\overline{CS4}$ to $\overline{CS7}$). Port 6 pin functions are shown in table 9-12.

Pin	Selection Meth	od and Pin Fur	nctions			
P6 ₇ /IRQ3/CS7	The pin function	is switched as	shown below ac	cording to bit P	67DDR.	
	Mode	Мос	le 7*	Modes	4 to 6*	
	P67DDR	0	1	0	1	
	Pin function	P67 input pin	P67 output pin	P67 input pin	CS7 output pir	
			IRQ3 interru	upt input pin		
	Note: * Modes 6	and 7 are prov	rided in the on-cl	hip ROM versio	n only.	
P6 ₆ /IRQ2/CS6	The pin function	is switched as	shown below ac	cording to bit P	66DDR.	
	Mode	Мос	le 7*	Modes	4 to 6*	
	P66DDR	0	1	0	1	
	Pin function	P6 ₆ input pin	P66 output pin	P6 ₆ input pin	CS6 output pi	
			IRQ2 interru	upt input pin		
	Note: * Modes 6	6 and 7 are prov	rided in the on-cl	hip ROM versio	n only.	
P6₅/IRQ1	The pin function	is switched as	shown below ac	cording to bit P	65DDR.	
	P65DDR		0		1	
	Pin function	P6₅ in	put pin	P6₅ ou	tput pin	
			IRQ1 interru	upt input pin		
P6 ₄ /IRQ0	The pin function	is switched as	shown below ac	cording to bit P	64DDR.	
	P64DDR		0		1	
	Pin function	P6 ₄ in	put pin	P6 ₄ ou	tput pin	
			IRQ0 interru	upt input pin		

Table 9-12Port 6 Pin Functions

9.13.2 Register Configuration

Table 9-23 shows the port F register configuration.

Table 9-23Port F Registers

Name	Abbreviation	R/W	Initial Value	Address *1
Port F data direction register	PFDDR	W	H'80/H'00* ²	H'FEBE
Port F data register	PFDR	R/W	H'00	H'FF6E
Port F register	PORTF	R	Undefined	H'FF5E

Notes: 1. Lower 16 bits of the address.

2. Initial value depends on the mode.

Port F Data Direction Register (PFDDR)

Bit	:	7	6	5	4	3	2	1	0
		PF7DDR	PF6DDR	PF5DDR	PF4DDR	PF3DDR	PF2DDR	PF1DDR	PF0DDR
Mode 7									
Initial value	э:	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W
Modes 4 to 6									
Initial value	э:	1	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

PFDDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port F. PFDDR cannot be read; if it is, an undefined value will be read.

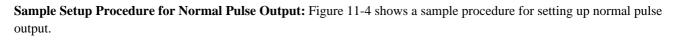
PFDDR is initialized by a power-on reset, and in hardware standby mode, to H'80 in modes 4 to 6, and to H'00 in mode 7. It retains its prior state after a manual reset*, and in software standby mode. The OPE bit in SBYCR is used to select whether the bus control output pins retain their output state or become high-impedance when a transition is made to software standby mode.

Note: * Manual reset is only supported in the H8S/2357 ZTAT.

• Mode 7*

Setting a PFDDR bit to 1 makes the corresponding port F pin PF_6 to PF_0 an output port, or in the case of pin PF_7 , the ϕ output pin. Clearing the bit to 0 makes the pin an input port.

Note: * Modes 6 and 7 are provided in the on-chip ROM version only.


• Modes 4 to 6*

Pin PF₇ functions as the ϕ output pin when the corresponding PFDDR bit is set to 1, and as an input port when the bit is cleared to 0.

The input/output direction specified by PFDDR is ignored for pins PF_6 to PF_3 , which are automatically designated as bus control outputs (\overline{AS} , \overline{RD} , \overline{HWR} , and \overline{LWR}).

Pins PF_2 to PF_0 are designated as bus control input/output pins (\overline{LCAS} , \overline{WAIT} , \overline{BREQO} , \overline{BACK} , and \overline{BREQ}) by means of bus controller settings. At other times, setting a PFDDR bit to 1 makes the corresponding port F pin an output port, while clearing the bit to 0 makes the pin an input port.

11.3.3 Normal Pulse Output

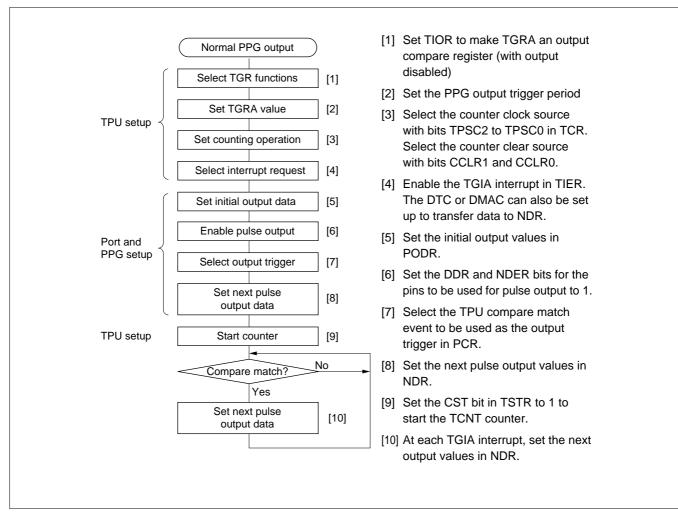


Figure 11-4 Setup Procedure for Normal Pulse Output (Example)

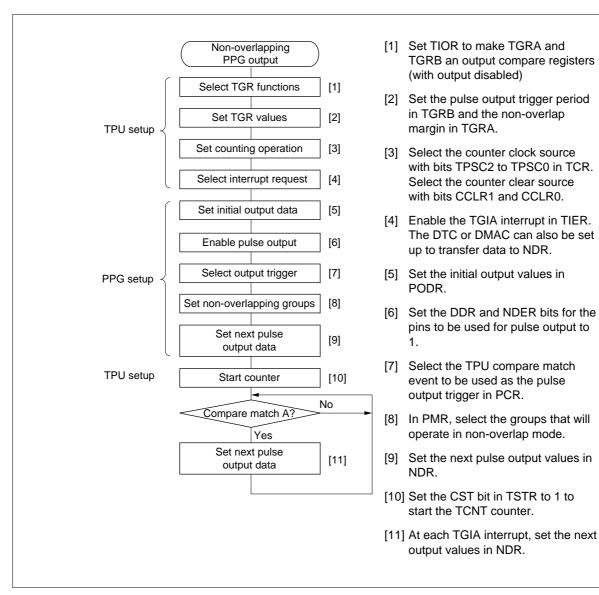


Figure 11-6 Setup Procedure for Non-Overlapping Pulse Output (Example)

Bit 0—Multiprocessor Bit Transfer (MPBT): When transmission is performed using multiprocessor format in asynchronous mode, MPBT stores the multiprocessor bit to be added to the transmit data.

The MPBT bit setting is invalid when multiprocessor format is not used, when not transmitting, and in clocked synchronous mode.

Bit 0 MPBT	Description	
0	Data with a 0 multiprocessor bit is transmitted	(Initial value)
1	Data with a 1 multiprocessor bit is transmitted	

14.2.8 Bit Rate Register (BRR)

Bit	:	7	6	5	4	3	2	1	0
Initial va	alue :	1	1	1	1	1	1	1	1
R/W	:	R/W							

BRR is an 8-bit register that sets the serial transfer bit rate in accordance with the baud rate generator operating clock selected by bits CKS1 and CKS0 in SMR.

BRR can be read or written to by the CPU at all times.

BRR is initialized to H'FF by a reset, and by putting the device in standby mode or module stop mode. In the H8S/2398, H8S/2394, H8S/2392, and H8S/2390, however, the value in BRR is initialized to H'FF by a reset, or in hardware standby mode, but BRR retains its current state when the device enters software standby mode or module stop mode.

As baud rate generator control is performed independently for each channel, different values can be set for each channel.

Table 14-3 shows sample BRR settings in asynchronous mode, and table 14-4 shows sample BRR settings in clocked synchronous mode.

 Table 14-3
 BRR Settings for Various Bit Rates (Asynchronous Mode)

		ø = 2 N	lHz	ø	= 2.0971	52 MHz	¢	ø = 2.4576	MHz		ø = 3 N	/IHz
Bit Rate (bit/s)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)
110	1	141	0.03	1	148	-0.04	1	174	-0.26	1	212	0.03
150	1	103	0.16	1	108	0.21	1	127	0.00	1	155	0.16
300	0	207	0.16	0	217	0.21	0	255	0.00	1	77	0.16
600	0	103	0.16	0	108	0.21	0	127	0.00	0	155	0.16
1200	0	51	0.16	0	54	-0.70	0	63	0.00	0	77	0.16
2400	0	25	0.16	0	26	1.14	0	31	0.00	0	38	0.16
4800	0	12	0.16	0	13	-2.48	0	15	0.00	0	19	-2.34
9600	0	6	_	0	6	-2.48	0	7	0.00	0	9	-2.34
19200	0	2	_	0	2	_	0	3	0.00	0	4	-2.34
31250	0	1	0.00	0	1	_	0	1	_	0	2	0.00
38400	0	1	_	0	1		0	1	0.00	_	—	_

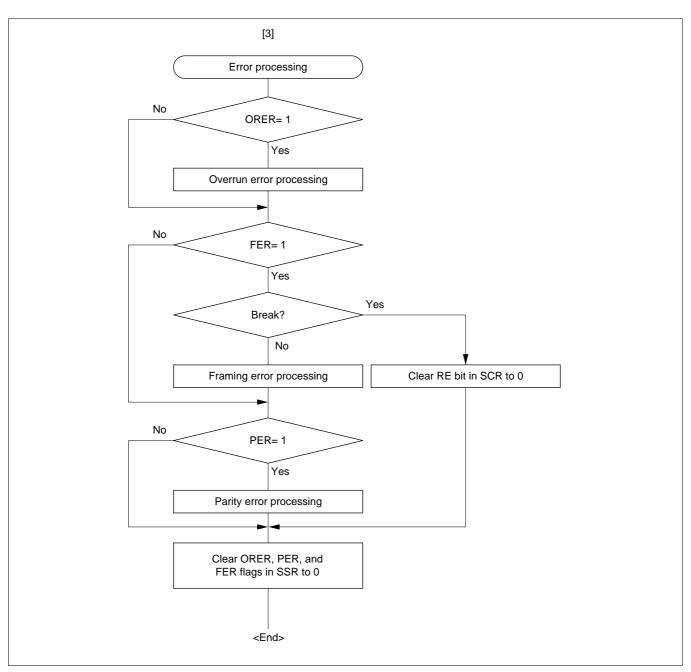


Figure 14-7 Sample Serial Reception Data Flowchart (cont)

• Serial data transmission (clocked synchronous mode) Figure 14-16 shows a sample flowchart for serial transmission.

The following procedure should be used for serial data transmission.

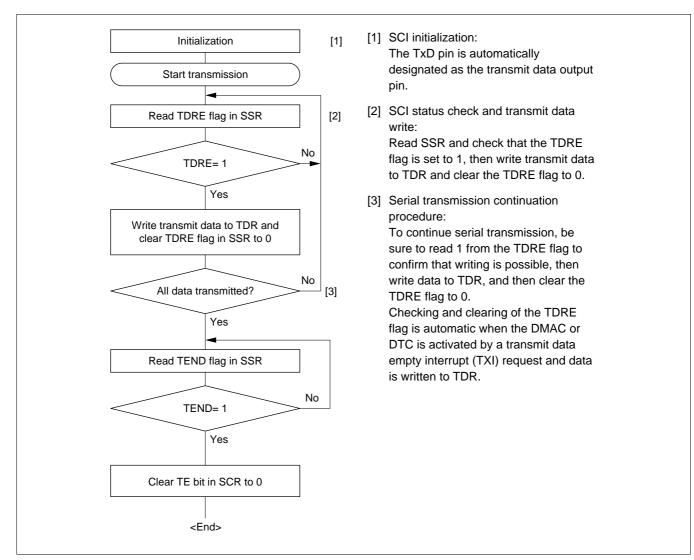
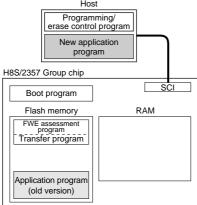
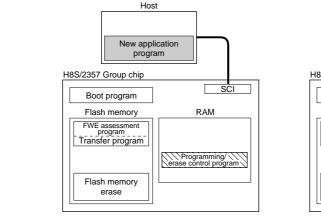
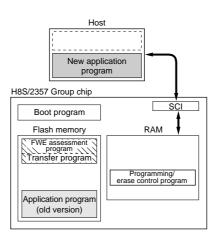



Figure 14-16 Sample Serial Transmission Flowchart


• User program mode

Initial state


 Initial state
 The FWE assessment program that confirms that the FWE pin has been driven high, and (2) the program that will transfer the programming/ erase control program to on-chip RAM should be written into the flash memory by the user beforehand. (3) The programming/erase control program should be prepared in the host or in the flash memory.

 Flash memory initialization The programming/erase program in RAM is executed, and the flash memory is initialized (to H'FF). Erasing can be performed in block units, but not in byte units.

2. Programming/erase control program transfer When the FWE pin is driven high, user software confirms this fact, executes the transfer program in the flash memory, and transfers the programming/erase control program to RAM.

 Writing new application program Next, the new application program in the host is written into the erased flash memory blocks. Do not write to unerased blocks.

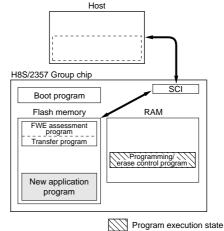


Figure 19-10 User Program Mode (Example)

19.6.4 Pin Configuration

The flash memory is controlled by means of the pins shown in table 19-10.

Table 19-10 Flash Memory Pins

Pin NameAbbreviationI/OResetRESInputFlash write enableFWEInputMode 2MD2Input	I/O	Function	
ResetRESIrFlash write enableFWEIr	Input	Reset	
Flash write enable	FWE	Input	Flash program/erase protection by hardware
Mode 2	MD ₂	Input	Sets MCU operating mode
Mode 1	MD ₁	Input	Sets MCU operating mode
Mode 0	MD _o	Input	Sets MCU operating mode
Port 66	P66	Input	Sets MCU operating mode in programmer mode
Port 65	P65	Input	Sets MCU operating mode in programmer mode
Port 64	P64	Input	Sets MCU operating mode in programmer mode
Transmit data	TxD1	Output	Serial transmit data output
Receive data	RxD1	Input	Serial receive data input

19.6.5 Register Configuration

The registers used to control the on-chip flash memory when enabled are shown in table 19-11. In order for these registers to be accessed, the FLSHE bit must be set to 1 in SYSCR2 (except RAMER).

Table 19-11 Flash Memory Registers

Register Name	Abbreviation	R/W	Initial Value	Address*1
Flash memory control register 1	FLMCR1*6	R/W*3	H'00* ⁴	H'FFC8* ²
Flash memory control register 2	FLMCR2*6	R/W*3	H'00* ⁵	H'FFC9* ²
Erase block register 1	EBR1* ⁶	R/W*3	H'00* ⁵	H'FFCA* ²
Erase block register 2	EBR2* ⁶	R/W*3	H'00* ⁵	H'FFCB* ²
System control register 2	SYSCR2*7	R/W	H'00	H'FF42
RAM emulation register	RAMER	R/W	H'00	H'FEDB

Notes: 1. Lower 16 bits of the address.

2. Flash memory registers are selected by the FLSHE bit in system control register 2 (SYSCR2).

3. In modes in which the on-chip flash memory is disabled, a read will return H'00, and writes are invalid. Writes are also disabled when the FWE bit is cleared to 0 in FLMCR1.

- 4. When a high level is input to the FWE pin, the initial value is H'80.
- 5. When a low level is input to the FWE pin, or if a high level is input and the SWE bit in FLMCR1 is not set, these registers are initialized to H'00.
- 6. FLMCR1, FLMCR2, EBR1, and EBR2 are 8-bit registers. Only byte accesses are valid for these registers, the access requiring 2 states.
- 7. SYSCR2 is available only in the F-ZTAT version. In the masked ROM and ZTAT versions, this register cannot be written to and will return an undefined value if read.

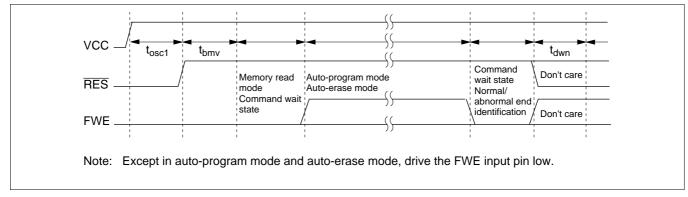


Figure 19-32 Oscillation Stabilization Time, Programmer Mode Setup Time, and Power Supply Fall Sequence

19.13.10 Notes on Memory Programming

- When programming addresses which have previously been programmed, carry out auto-erasing before autoprogramming.
- When performing programming using PROM mode on a chip that has been programmed/erased in an on-board programming mode, auto-erasing is recommended before carrying out auto-programming.
- Notes: 1. The flash memory is initially in the erased state when the device is shipped by Renesas Technology. For other chips for which the erasure history is unknown, it is recommended that auto-erasing be executed to check and supplement the initialization (erase) level.
 - 2. Auto-programming should be performed once only on the same address block.

19.14 Flash Memory Programming and Erasing Precautions

Precautions concerning the use of on-board programming mode, the RAM emulation function, and PROM mode are summarized below.

Use the specified voltages and timing for programming and erasing: Applied voltages in excess of the rating can permanently damage the device. Use a PROM programmer that supports Renesas Technology microcomputer device types with 128-kbyte on-chip flash memory.

Do not select the HN28F101 setting for the PROM programmer, and only use the specified socket adapter. Incorrect use will result in damaging the device.

Powering on and off (see figures 19-33 to 19-35): Do not apply a high level to the FWE pin until V_{CC} has stabilized. Also, drive the FWE pin low before turning off V_{CC} .

When applying or disconnecting V_{CC} , fix the FWE pin low and place the flash memory in the hardware protection state.

The power-on and power-off timing requirements should also be satisfied in the event of a power failure and subsequent recovery.

FWE application/disconnection (see figures 19-33 to 19-35): FWE application should be carried out when MCU operation is in a stable condition. If MCU operation is not stable, fix the FWE pin low and set the protection state.

The following points must be observed concerning FWE application and disconnection to prevent unintentional programming or erasing of flash memory:

• Apply FWE when the V_{CC} voltage has stabilized within its rated voltage range. Apply FWE when oscillation has stabilized (after the elapse of the oscillation settling time).

• In boot mode, apply and disconnect FWE during a reset.

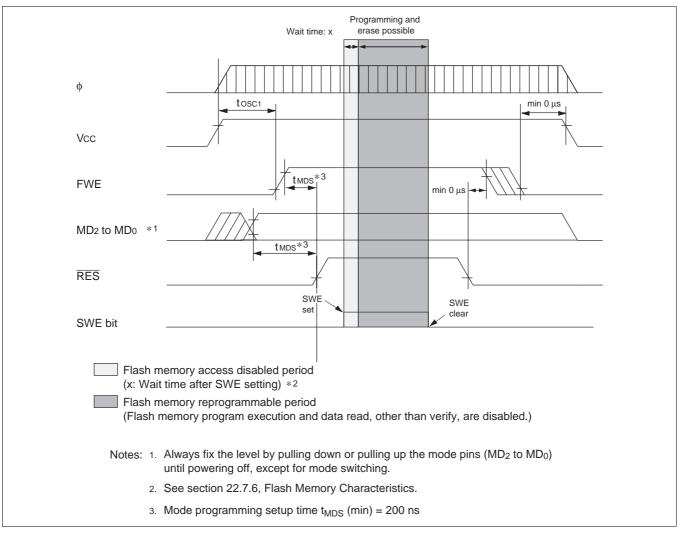


Figure 19-33 Powering On/Off Timing (Boot Mode)

22.1.2 DC Characteristics

Table 22-2 lists the DC characteristics.

Table 22-3 lists the permissible output currents.

Table 22-2DC Characteristics

Conditions: $V_{CC} = 5.0 \text{ V} \pm 10\%$, $AV_{CC} = 5.0 \text{ V} \pm 10\%$, $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}^{*1}$, Ta = -20 to $+75^{\circ}$ C (regular specifications), Ta = -40 to $+85^{\circ}$ C (wide-range specifications)

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Schmitt	Port 2,	V_{T}^{-}	1.0	—	_	V	
trigger input voltage	$P6_4$ to $P6_7$, PA_4 to PA_7	V _T ⁺	_	_	$V_{cc} imes 0.7$	V	
voliago	174 10177	$V_T^+ - V_T^-$	0.4			V	_
Input high voltage	$\begin{tabular}{l} \hline $RES, $\overline{STBY}, $\\ $NMI, MD_2 \\ to MD_0 \end{tabular}$	V _{IH}	V _{cc} – 0.7	_	V _{cc} + 0.3	V	_
	EXTAL		$V_{\text{cc}} \times 0.7$	—	$V_{cc} + 0.3$	V	_
	Ports 1, 3, 5, B to G, P 6_0 to P 6_3 , P A_0 to P A_3		2.0	_	V _{cc} + 0.3	V	_
	Port 4		2.0	—	AV _{cc} + 0.3	3 V	
Input low voltage	$\overline{\text{RES}}, \overline{\text{STBY}}, \\ \text{MD}_2 \text{ to } \text{MD}_0$	V_{IL}	-0.3	—	0.5	V	
	NMI, EXTAL, Ports 1, 3 to 5, B to G, $P6_0$ to $P6_3$, PA_0 to PA_3		-0.3		0.8	V	
Output high	All output pins	$V_{\rm OH}$	$V_{cc} - 0.5$	—		V	$I_{OH} = -200 \ \mu A$
voltage			3.5	—	—	V	I _{он} = –1 mA
Output low	All output pins			—	0.4	V	I _{oL} = 1.6 mA
voltage	Ports 1, A to C		—	—	1.0	V	I _{oL} = 10 mA
Input leakage	RES	_{in}		—	10.0	μA	$V_{in} = 0.5 \text{ V to } V_{cc}$
current	$\overline{\text{STBY}}$, NMI, MD ₂ to MD ₀		—	—	1.0	μA	– 0.5 V
	Port 4		—	—	1.0	μΑ	$V_{\rm in}$ = 0.5 V to $AV_{\rm CC}$ $-$ 0.5 V
Three-state leakage current (off state)	Ports 1 to 3, 5, 6, A to G	_{TSI}	_	_	1.0	μΑ	$V_{in} = 0.5 \text{ V}$ to V_{cc} - 0.5 V
MOS input pull-up current	Ports A to E	-l _P	50	—	300	μA	$V_{in} = 0 V$
Input	RES	C _{in}			80	pF	$V_{in} = 0 V$
capacitance	NMI	_	_	_	50	pF	[─] f = 1 MHz _T
	All input pins except RES and NMI		_	_	15	pF	

			Inst	Add	Addressing Mode/ Instruction Length (Bytes)	sing Lenc	Mo(Bvtt	es)			
		eziS bnar		Вn	l'EBN)	, +u83@\n83	i'bC)) 99 () () ()			Condition Code	No. of States* ¹
	Mnemonic		uЯ xx#	@E			10 10		_	Operation	I H N Z C	Advanced
BST	BST #xx:3,@aa:16	ш					9			C→(#xx:3 of @aa:16)		5
	BST #xx:3,@aa:32	В					8			C→(#xx:3 of @aa:32)		9
BIST	BIST #xx:3,Rd	В		2						– C→(#xx:3 of Rd8)		1
	BIST #xx:3,@ERd	В		4						¬ C→(#xx:3 of @ERd)		4
	BIST #xx:3,@aa:8	В					4			– C→(#xx:3 of @aa:8)		4
	BIST #xx:3,@aa:16	В				-	9			– C→(#xx:3 of @aa:16)		5
	BIST #xx:3,@aa:32	В					8			¬ C→(#xx:3 of @aa:32)		6
BAND	BAND #xx:3,Rd	В		2						C∧(#xx:3 of Rd8)→C	↓ </td <td>1</td>	1
	BAND #xx:3,@ERd	В		4						C∧(#xx:3 of @ERd)→C	↓ 	3
	BAND #xx:3,@aa:8	ш					4			C∧(#xx:3 of @aa:8)→C	↔ 	с
	BAND #xx:3,@aa:16	В				-	9			C∧(#xx:3 of @aa:16)→C	↔ 	4
	BAND #xx:3,@aa:32	В					8			C∧(#xx:3 of @aa:32)→C	↔ 	5
BIAND	BIAND #xx:3,Rd	ш		2						C∧[¬ (#xx:3 of Rd8)]→C	↔ 	~
	BIAND #xx:3,@ERd	ш		4						C∧[¬ (#xx:3 of @ERd)]→C	↔ 	з
	BIAND #xx:3,@aa:8	В					4			C∧[¬ (#xx:3 of @aa:8)]→C	↓ 	3
	BIAND #xx:3,@aa:16	В				_	9			C∧[¬ (#xx:3 of @aa:16)]→C	↓ </td <td>4</td>	4
	BIAND #xx:3,@aa:32	В					∞			C∧[¬ (#xx:3 of @aa:32)]→C	↔ 	5
BOR	BOR #xx:3,Rd	В		2						C∨(#xx:3 of Rd8)→C	↓ </td <td>1</td>	1
	BOR #xx:3,@ERd	В		4						C∨(#xx:3 of @ERd)→C	↓ </td <td>3</td>	3

PDDDR—Port D Data Direction Register H'FEBC Port D [On-chip ROM version Only]

Bit	:	7	6	5	4	3	2	1	0
		PD7DDR	PD6DDR	PD5DDR	PD4DDR	PD3DDR	PD2DDR	PD1DDR	PD0DDR
Initial val	ue :	0	0	0	0	0	0	0	0
Read/Wr	ite:	W	W	W	W	W	W	W	W

Specify input or output for individual port D pins

PEDDR—Port E Data Direction Register H'FEBD Port E

Bit	:	7	6	5	4	3	2	1	0
		PE7DDR	PE6DDR	PE5DDR	PE4DDR	PE3DDR	PE2DDR	PE1DDR	PE0DDR
Initial value	:	0	0	0	0	0	0	0	0
Read/Write	:	W	W	W	W	W	W	W	W

Specify input or output for individual port E pins

PFDDR—Port F Data Direction Register

Bit	:	7	6	5	4	3	2	1	0
		PF7DDR	PF6DDR	PF5DDR	PF4DDR	PF3DDR	PF2DDR	PF1DDR	PF0DDR
Modes 4 to 6						1			
Initial value	:	1	0	0	0	0	0	0	0
Read/Write	:	W	W	W	W	W	W	W	W
Mode 7									
Initial value	:	0	0	0	0	0	0	0	0
Read/Write	:	W	W	W	W	W	W	W	W

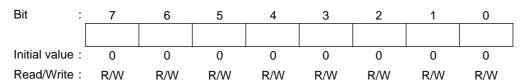
H'FEBE

Specify input or output for individual port F pins

PGDDR—Port G Data Direction Register

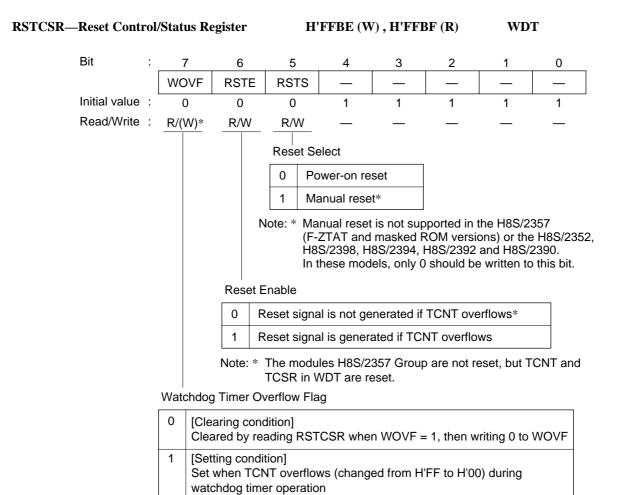
H'FEBF

Port G


Port F

Bit	:	7	6	5	4	3	2	1	0
		—	_	_	PG4DDR	PG3DDR	PG2DDR	PG1DDR	PG0DD
Modes 4, 5			1	1		I	I	I	
Initial value	:	Undefined	Undefined	Undefined	1	0	0	0	0
Read/Write	:	_	_	_	W	W	W	W	W
Modes 6, 7									
Initial value	:	Undefined	Undefined	Undefined	0	0	0	0	0
Read/Write	:				W	W	W	W	W

Specify input or output for individual port G pins


RENESAS

TCNT—Timer Counter

TCNT is an 8-bit readable/writable* up-counter.

Note: * TCNT is write-protected by a password to prevent accidental overwriting. For details see section 13.2.4, Notes on Register Access.

Note: * Can only be written with 0 for flag clearing.

The method for writing to RSTCSR is different from that for general registers to prevent accidental overwriting. For details see section 13.2.4, Notes on Register Access.